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tλESSENTIAL PRIME DIVISORS AND 

SEQUENCES OVER AN IDEAL 

DANIEL KATZ AND LOUIS J. RATLIFF, JR. 

§ 1. Introduction 

All rings in this paper are assumed to be commutative with identity, 
and they will generally also be Noetherian. 

In several recent papers the asymptotic theory of ideals in Noetherian 
rings has been introduced and developed. In this new theory the roles 
played in the standard theory by associated primes, i?-sequences, classical 
grade, and Cohen-Macaulay rings are played by, respectively, asymptotic 
prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-
unmixed Noetherian rings. And up to the present time it has been shown 
that quite a few results from the standard theory have a valid analogue 
in the asymptotic theory, and a number of interesting and useful new re-
sults concerning the asymptotic prime divisors of an ideal in a Noetherian 
ring have also been proved. In fact the analogy between the two theories 
is so good that a very useful (but not completely valid) working guide 
is: results from the standard theory should have a valid analogue in the 
asymptotic theory. And, although asymptotic sequences are coarser than 
i?-sequences (for example, they behave nicely when passing to Rjz with z 
a minimal prime ideal in i?), the converse of this working guide has also 
proved useful. 

However, in a number of problems it has turned out that the asymp-
totic theory is a little too coarse, so it seemed worthwhile to try to 
develop a new theory that behaved nicely when passing to R\z with z an 
arbitrary prime divisor of zero (rather than just a minimal prime divisor 
of zero). Such a theory would then be intermediate between the standard 
and asymptotic theories, and would thereby surmount some of the prob-
lems encountered in the asymptotic theory. One candidate for this new in-
termediate theory was developed in [7], where it was called the "essential" 
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theory. (The word "essential" was chosen because of the fact that if R 
is a semi-local domain and 0* cz Speci?, then Π {i?P;Pe^} is a finite R-
module if and only if every essential prime divisor of a principal ideal in 
R is contained in some P e ^  ; thus the localizations at these primes are 
somewhat analogous to the essential valuations of a Krull domain (whose 
intersection is the Krull domain).) It was shown in [7] that the essential 
theory is a good candidate for this new intermediate theory, since most 
of the results from the other two theories that are concerned with prime 
divisors, sequences, and grade have a valid analogue in the new theory. 
However, the analogy breaks down in two important regards. First, the 
essential prime divisors of I do not coincide with the asymptotic prime 
divisors of I when R is local and its completion has no imbedded prime 
divisors of zero. And, second, it was shown in [19] that many of the 
results concerning sequences over an ideal and the cograde of an ideal 
in the other two theories do not have a valid analogue in the essential 
theory. Thus this new essential theory falls short of being the desired 
intermediate theory. 

Therefore, in the present paper, we present a new candidate for this 
intermediate theory, and call it the "^-essential" theory. (The name comes 
from the fact that the u-essential prime divisors of I are the contractions 
to R of the essential prime divisors of (u) in the Rees ring of R with 
respect to J.) In this new theory the two deficiencies in the essential 
theory mentioned in the preceding paragraph are repaired, and it turns 
out to be an excellent analogue of the standard and asymptotic theories 
in all regards. Also, to some extent it emcompasses both the asymptotic 
and essential theories, since the asymptotic and essential prime divisors 
of I are also ^-essential prime divisors of 7. 

In some preliminary applications of this new theory, the second author 
has shown that a prime ideal P in a Noetherian ring R has a primary 
ideal q all of whose powers are primary if and only if there exists some 
ideal / c: P such that P is the only w-essential prime divisor of I. Then, 
because of the results on ^-essential prime divisors established in (2.5), 
this leads to several other such primary ideals, both in R and in certain 
rings related to R. Also, w-essential prime divisors have yielded some 
new results concerning Ker (R[X  ->X ] -» R[bJb  , bjb ]) and also U n 09 o

 J?(1) the ring  = Π {RP; height P = 1}. Thus this new theory seems to be 
very useful in surmounting some of the problems encountered when using 
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the asymptotic theory, so we thought it would be desirable to have a 
paper where the basics of the w-essential theory are developed—and this 
is the purpose of the present paper. 

In Section 2 we develop quite a few of the basic properties of in-
essential prime divisors. In particular, it is shown that they behave nicely 
when passing to localizations, factor rings modulo prime divisors of zero, 
faithfully flat Noetherian extension rings, and finite integral extension 
rings. 

In Section 3 it is shown that ^-essential sequences over an ideal / 
also behave nicely when passing to the same type of related rings, and 
in Section 4 it is shown that this also holds for the u-essential cograde 
of I. In Section 5 several preliminary results for Section 6 are proved, 
and in Section 6 it is shown that most of the bounds on the asymptotic 
cograde of I given in [6] have a valid analogue for the w-essential cograde. 
Finally, in Section 7 we give several examples to show some of the dif-
ferences between essential sequences over I and w-essential sequences 
over I. 

As already mentioned, the results in this paper are closely analogous 
to the previously developed asymptotic theory. They are meant to pres-
ent a new intermediate theory between the standard and asymptotic 
theories, and we feel these results show that the u-essential theory is the 
natural choice for such an intermediate theory. The applications of this 
new theory to date have been very promising, and we think this new 
theory will have many important applications in future work on the ideal 
theory of Noetherian rings. 

We are indebted to the referee for his suggestions on simplifying 
several of our proofs and for correcting our original proofs of (5.1) and 
(7.2). 

§2. (/-essential prime divisors 

In this section we prove a number of properties of the w-essential 
prime divisors of an ideal / in a Noetherian ring R. (The name comes 
from their definition: they are the contraction to R of the essential prime 
divisors of u in the Rees ring of R with respect to /.) These prime ideals 
were first considered in [3], and a few of their basic properties were 
established there. In this section we give a more complete study of these 
ideals. We begin with the basic definitions. 
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All rings in this paper are commutative with identity and they will 

generally be Noetherian. If R is a semi-local (Noetherian) ring, then R* 

will denote the completion of R in its natural topology. And if I is an 

ideal in a Noetherian ring JR, then S/t = &(R,1) will denote the Rees ring 

of R with respect to I; that is, 0t = R[u, tl], where t is an indeterminate 

and u = 1/ί. Thus 0t is a graded Noetherian subring of R[u, t], u is a 

regular element in 31, and unSt D R = In for all n > 1. 

b

(2.1) DEFINITION. Let I be an ideal in a Noetherian ring R and let 

l9 , bd be nonunits in R. Then: 

(2.1.1) A*(I) = {P e Spec iϊ; P e Ass J?//re for all large /ι}, A*(I) = {P e 

Speciϊ; Pe Ass R/(In)a for all large τι}, where (Jn)α is the integral closure 

in R of In, E(I) = {PeSpecΛ; I(RP)* + z is P^)*-primary for some 

2 e Ass (RP)*}, and, C7(J) = {p Γ) R; p e E(u@(R, /))}. P is an asymptotic 

(resp., essential, u-essentίal) prime divisor of I in case PeA*(I) (resp., 

PeE(I), PeU(I)). 

(2.12) bu - ,bd are an asymptotic (resp., essential, u-essentiaΐ) sequence 

over I in case (/, bu , bd)RψR and ί̂  β U A*((/, 6lf , fei.^i?) (resp., 

M U JF((J, 6,, , 6^)22), ba U E/(I, 6l5 , δ , . ^ ) ) for ί = 1, . ., d. An 

asymptotic (resp., essential, w-essential) sequence over (0) is simply called 

an asymptotic (resp., essential, u-essentίaΐ)sequence in R. (It is shown in 

(3.10) that 6j, , ba are a w-essential sequence in R if and only if they 

are an essential sequence in R, so the terminology "^-essential sequence 

in JR" will only be used till (3.10) is proved.) 

(2.1.3) The asymptotic (resp., essential) grade of I, denoted agd(/) 

(resp., egd(J)) is the length of an asymptotic (resp., essential) sequence 

maximal with respect to coming from J. 

(2.1.4) If R is local, then the asymptotic (resp., essential, u-essential) 

cograde of I, denoted acogd (I) (resp., ecogd (/), uecogd (/)), is the length 

of a maximal asymptotic (resp., essential, w-essential) sequence over I. 

The concepts of a zz-essential sequence over / and of uecogd (/) are 

new to this paper. But the other concepts defined in (2.1) have previously 

been studied and a number of their properties have been determined. In 

what follows we will need to use several of these properties, so (2.2) 

contains a list of those that are most often used below. 

(2.2) Remark. Let I be an ideal in a Noetherian ring R. Then the 

following hold: 
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(2.2.1) The sets Ass Rjln and Ass RI(In)a are stable for all large τι, 

by [1] and [17, (2.7)] (see also [8]), so A*(J) and A*(I) are well defined 

finite sets of prime ideals. Also, A*(J) c A*(/) and E(I) c A*(/), by [17, 

(2.7)] and [7, (3.3.1)], so E(I) is also a finite set of prime divisors of In 

for all large n. 

(2.2.2) It is clear from the definitions that each minimal prime divisor 

of I is in A*{I) Π E(I). 

(2.2.3) If z € Ass R and P is a minimal prime divisor of I + z, then 
PeE(I), by [7, (3.3.4)]. 

(2.2.4) If P e Spec R and S is a multiplicatively closed set in R such 
that Ps ψ Rs, then Pe A*(I) (resp., #(/)) if and only if Pse A*(IS) (resp., 

E(IS)\ by [18, (2.9.2)] (resp., [7, (3.3.2)]). 

(2.2.5) PeA*(I) (resp., E(I)) if and only if P/z e A*((I + z)\z) (resp., 

E((I + z)/2)) for some minimal (resp., for some) z e Ass i?, by [17, (6.3)] 

(resp., [7, (3.6)]). 

(2.2.6) If A is a Noetherian ring which is a faithfully flat i?-module, 

then A*(I) = A*(IA) Π R (resp., E(I) = E(IA) Π R), and if PeA*(J) (resp., 

E(I)) and P  * is a minimal prime divisor of PA, then P  * e ^ί*(/A) (resp., 

E{IA)\ by [17, (6.5) and (6.8)] (resp., [7, (3.7)]). 

(2.2.7) If B is a finite integral extension ring of R, then A*(I) c: 

A*(JB) (Ί # (resp., #(/) c £(IJ3) Π R). Moreover, if z e Ass B implies 

2 Π R e Ass iϊ, then equality holds, by [20] (resp., [7, (3.9)]). 

(2.2.8) If J is an ideal in R such that Rad J = Rad Z, then 2?(J) = 

E(I), by [7, (3.3.5)]. 

(2.2.9) It follows immediately from (2.1.2) that if 61? , bd in R are an 

asymptotic (resp., essential) sequence over 7, then height (I, 6j, , 6̂ )22 > 

height J + d. Therefore, by the Generalized Principal Ideal Theorem, 

if bu -',bd are an asymptotic (resp., essential) sequence in R, then 

h e i g h t ( 6 , , -. ,bd)R = d. 

(2.2.10) If bl9 , bd in R are an asymptotic (resp., essential) sequence 

over I and S is a multiplicatively closed set in R such that (J, bl9 , 6d) 

i?  :£ R , then the images of b  , &  in i?  are an asymptotic (resp., 5 s u d 5 

essential) sequence over Is, by [18, (2.9.2)] (resp. [19, (2.3)]). 

(2.2.11) Elements bu , bd in R are an asymptotic (resp., essential) 

sequence over I if and only if their images in R\z are an asymptotic 

(resp., essential) sequence over (J + z)\z for all minimal (resp., for all) 

z e Ass B, by [17, (6.3)] (resp., [19, (2.4)]). 
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(2.2.12) If A is a Noetherian ring which is a faithfully flat .R-module, 

then bί9 , bd in R are an asymptotic (resp., essential) sequence over / 

if and only if they are an asymptotic (resp., essential) sequence over I A, 

by [17, (6.5) and (6.8)] (resp., [19, (2.5)]). 

(2.2.13) Agd(7) (resp., egd(J)) is unambiguously defined and agd(J) 

(resp., egd (/)) = min {height (I(ΛP)* + z)/z; I cz Pe Spec R and z is mini-

mal in Ass (RP) (resp., z e Ass (RP)*)}, by [18, (3.1)] (resp., [19, (5.3)]). 

(2.2.14) If i? is local, then acogd(I) (resp., ecogd(J)) is unambigu-

ously defined and acogd(J) = min {depth z — £((IR* + z)/z); z is minimal 

in Ass i?*} (resp., ecogd(I) = min {depth (IR* + z); z e Assi?*}), by [2] (resp., 

[19, (3.2)]). Here £(J) denotes the analytic spread of the ideal J. 

We now begin considering w-essential prime divisors. Our first result, 

(2.3), contains three of their basic properties. 

(2.3) Remark. If I is an ideal in a Noetherian ring R, then the fol-

lowing hold: 

(2.3.1) E7((0)) = Ass R. 

(2.3.2) If P is a minimal prime divisor of /, then P e U(I). 

(2.3.3) U(I) c A*(I). 

Proof. Note that 0t = &(R, (0)) = R[u] and u is an indeterminate. 

Therefore E(μ9t) = E(uR[u]) = {(z, u)R[u] zeE((0R))}, by [19, (2.7)], and 

E((0R)) = Ass R, by [7, (3.3.3)], so 17((O)) = {(z, ϋ)Λ Π R; z e Ass R} = Ass R. 

This proves (2.3.1). 

For (2.3.2) let 9t = 0t(R, I). Then u@ f] R = I, so if P is a minimal 

prime divisor of I, then there exists a minimal prime divisor p of uέ% such 

that p Π R = P, and p e EiμSt), by (2.2.2), so P  e U(I). 

For (2.3.3), let St = &(R, I). Then it was shown in [4, Corollary 17] 

that if p is a prime divisor of u^t such that tl gl p, then p Π Re A*(I). 

And in [16, Corollary 3.16] it was shown that if I c P e Ass i?, then 

P e A*(I). Therefore it suffices to show that if p e E{μ9t) and P = p Π R, 

then either P e Ass R ox tl gL p. For this, assume that P g Ass i? and 

suppose that ί / c p , Let S = R - P. Then «(ΛP, IP) = StSy tIP c p < ^ , 

and p ^  e E(u0t ), by (2.2.4). Also  P  β Ass R  so it may be assumed that 5 s P P, 

R is local with maximal ideal P. Let 9> = 0l(R*y IR*). Now p is the 

maximal homogeneous ideal in ^?, since {u, P, tI)Θί c p, so  p ^ is the 

maximal homogeneous ideal in £f and 0tv is a dense subspace of ϊf^, by [12, 

Lemma 3.2]. Let L — ϋf^, so L* = ( ^ ) * , and so there exists z* e Ass L* 
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such that (2*, u)L* is pL*-primary, since p e E(u&). Let z = z* Π ^ and 

u; = 2 Π -R*, so 2 e Ass 5*, and so w e Ass iϊ* and Sf\z ^ @(R*lw, (IR* + 

itf)/α;), by [22, Theorem 1.5 and Lemma 1.1]. Now pέfjz is a maximal ideal 

in 9>\z and <^/p^ = R*/PR*9 and trd (y/z)l(R*[w) = 1, by the isomorphism, 

so height p^/2 + 0 == height PR*/w + 1, since i?*/u; satisfies the altitude 

formula. Therefore, since P e Ass i?, it follows that height PR*jw > 1, so 

height p^jz > 2. But L/zL is unmixed and analytically unramified, by [15, 

(6.5)], and 2* is a prime divisor of 2L*, so necessarily z*jzL* is a minimal 

prime ideal and (z*9 u)L*jzL* is pL*/2L*-primary. Hence heightpL*jzL* 

= 1, and so height p^jz = 1, and this is a contradiction. Therefore £/ £ p, 

so C7(I) c A*(/). q.e.d. 

Before proving the main result in this section, (2.5), we need the fol-

lowing lemma which shows that in an important special case the asymp-

totic, essential, and w-essential prime divisors of certain ideals are all the 

same. 

(2.4) LEMMA. Let R be a locally unmixed Noetherian ring, let 

bu ,bd be elements in R such that height (bu , b^R = i for i = 1, , d, 

and let B — (bu , bd)R. Then bu , bd are an essential sequence in R 

and Ά*(B) = E(B) = U(B) = {PeSpecR; P is a minimal prime divisor 

of B), 

Proof. It is shown in [7, (6.1)] that bu --',bd are an essential se-

quence in R and that E(B) = ^  , where £P= (Pe Spec R; P is a minimal 

prime divisor of B}. Also, since R is also locally quasi-unmixed and B 

is an ideal of the principal class, A*(B) = 9 (by [13, Theorem 2.12]). 

Now let P e U(B) and let p e E(μ9t) such that p Π R = P, where 0t = 

0ί(R, B). Then it follows from [9, Corollary, p. 61] that 9t is locally 

unmixed, so heightp = 1, by [7, (6.1)]. Let 2* e Ass St such that z* C p 

and let z = 2* Π R. Then zeAssR and ^/z* = 9t{β\z, (B + z)\z), by [22, 

Theorem 1.5 and Lemma 1.1], and R\z satisfies the altitude formula, by 

[12, Corollary 2.7]. Therefore height p/z* + trd (^/p)/(i?/P) = height P\z + 

trd (@lz*)l(Rlz); that is, t = trά (&lp)l(R/P) = height P/z. But t < d (since 

uep and ^ is generated by u, tbu --',tbd over 2?), and height P/2 > d, 

by (2.2.9) (since the images of bu , 6d in i?/^ are an essential sequence, 

by (2.2.11)). Therefore height P/z = d. Now RP satisfies th? first chain 

condition for prime ideals, since RP is unmixed, so it follows that height P 

= d, so P e ^  , hence £/(B) c ^  . Finally, if P e ^  , then there exists a 
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minimal prime divisor p of u0ί such that p Π R = P, since u& Π R = B, 

so p e E(u$), by (2.2.2), hence P e £/(£), and so U(B) = &. q.e.d. 

The following internal characterization of U(I) was given in [3, 

Theorem 2.5]: U(I) = Π {A*(J); J i  s an ideal in R and In c J c (J»)α for 

some n > 1}. But even with this characterization the w-essential primes 

are somewhat awkward to work with. (2.5) shows that U(I) behaves very 

nicely with respect to passing to certain related rings. This is important, 

since they are very useful ideals, and once (2.5) is proved they will be 

considerably less awkward to work with. 

(2.5) THEOREM. Let I be an ideal in a Noetherίan ring R. Then the 

following hold: 

(2.5.1) If S is a multiplίcatively closed set in R, then U(IS) = {Ps; 

P e U(I) and P Π S = φ}. 

(2.5.2) P e U(I) if and only if there exists z e Ass R such that z cz P 

and P\z e U((I + *)/*). 

(2.5.3) If A is a Noetherίan ring which is a faithfully flat R-module, 

then U(I) = {P* Π R; P * e U(IA)}, and if P e U(I) and P * is a minimal 

prime divisor of PA, then P * 6 U(IA). 

(2.5.4) // B is a finite integral extension ring of R, then U(I) c: 

{Pf Π R; Pr € U(IB)}, and equality holds if ze Ass B implies z Π R e Ass R. 

(2.5.5) U((I, X)R[X]) = {(P, X)R[X] P e £/(/)}. 

(2.5.6) If J is an ideal in R that is projectively equivalent to /, that 

is, there exist positive integers m and n such that (In)a = (Jm)a, then U(J) 

(2.5.7) A*(I) U E(I) c U(I). 

(2.5.8) If I is generated by an essential sequence in R, then U(I) = E(I). 

Proof Throughout, 3t = 3l(R91). 

For (2.5.1) let Q e U(IS) and let q e E(u&(Rs, Is)) such that q Π Rs = Q. 

Then 3t(Rs, Is) = Sts, so p = q ΓΊ 9t e E{u0t), by (2.2.4), hence P == p Π R e 

U(Γ), by (2.1.1), and Q = P8. Conversely, if P e U(I) and P Π S - φ, then 

let p e E{μ0ί) such that p f) R = P. Then ps e E(u@s), by (2.2.4), and 

ps Π Rs = P8, so Ps e U(IS), by (2.1.1). 

For (2.5.2) let T be the total quotient ring of &. Then Ass St = 

{zT Π  ̂ -ε € Ass J?}, by [22, Theorem 1.5], and if z e Ass R, then ^/(zΓ Π ̂ ) 

= &(R/z,(I + 2)/z), by [22, Lemma 1.1]. Therefore (2.5.2) follows readily 

from (2.2.5) (applied to u9l) and (2.1.1). 
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For (2.5.3), let stf = &(A, lA)y so J  / is a faithfully flat ^-module, by 

[17, (6.4)]. Therefore, if P e U(I), then let p e E{u$) such that p Π R - P 

and let p  * be a minimal prime divisor of ps/. Then p* e E{ustf), by (2.2.6), 

so P * = p * Π A € E7(JA), by (2.1.1), and P* Π £ - P. Therefore Z7(J) c 

{P* Π R; P  * e f7(IA)}, and the proof of the opposite inclusion is similar. 

Finally, let P e U(I) and let P  * be a minimal prime divisor of PA. Then 

i?P cz AP* satisfy the Theorem of Transition. Therefore, since  P P e U(IP), 

by (2.5.1), it follows from what has already been proved that there exists 

Q* e U(IAP<) that lies over PP9 so Q* - P**, hence P  * e Ϊ7(IA), by (2.5.1). 

For (2.5.4), let & = 0t(B, IB), so J is a finite integral extension ring 

of 0t. Therefore the set containment follows readily from (2.2.7) (applied 

to u0t) and (2.1.1). Also, the prime divisor of zero in 0ί are the ideals 

zT Γ\ & with z e Ass R and T the total quotient ring of 0t9 by [22, 

Theorem 1.5], and a similar statement holds for J*. Therefore the last 

statement in (2.5.4) also readily follows from (2.2.7) (applied to u0t) and 

(2.1.1). 

For (2.5.5) let P 6 U(I). Then by (2.5.1), PP e U(IP) and if (PP, X)RP[X] e 

U((IP, X)RP[X]\ then (P, X)R[X] e U((I, X)R[X])9 so it may be assumed 

that R is local with maximal ideal P. Then similarly by using (2.5.3) and 

(2.5.2) it may be assumed that R is a complete local domain with maximal 

ideal P. Let St = @{R, I) and let p e E{u@) such that p Π R = P. Then 

q - (p, X)St[X\ e E((u, X)9t{X\\ by [19, (2.7)]. Now St[X\ is locally un-

mixed, by [9, Corollary, p. 61], so height q = 2, by (2.4). Also, Xju = tX, so 

q/ = q&[X, tX] is a height one prime ideal that contains u&[X, tX] and lies 

over q, by [14, Lemma 2.7]. Therefore qr e E(u@[X,tX]\ by (2.2.2), and 

9t\X, tX] = &{R[X\, (I X),R[X])> so (P,X)R[X] = q> Π Λ[X] e C7((J, X)B[X]). 

Now let Q e U((I, X)R[X\) and let P = Q n R, so Q = (P, X)B[JSΠ. 

As in the preceding paragraph it may be assumed that R is a complete 

local domain with maximal ideal P. Therefore let & = £%{R, I) and, since 

Ά(R[X\, (/, X)R[X]) = 9t\X, tX] = (say)^7, let qf e E{uSf) such that q' f] 

R[X] = Q. Then height qf - 1, by (2.4), and (u, X)0[X] c q - q> f] <%[X], 

so by the altitude formula (since R is a complete local domain) it follows 

that height q = 2. Therefore q e E((u, X)0t[X]), by (2.4), and so [19, (2.7)] 

implies that q = (p, X)^[X] where p - g ί l ^  e #(w^). Finally, p Π JR = P, 

so P e E7(JT). 

For (2.5.6), let <$* = 3t(R, Ia), so y is a finite integral extension ring 

of 0ί (since I reduces Ia) and 0t and 5^ have the same total quotient ring. 
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Therefore (2.2.7) implies E{u0t) = E(uS?) Π 9t. Thus it follows that 

U(Ia) = [7(1). 

lnNow let si — R[un, tn ]. Then St is a finite integral extension ring 

of si and si = £%(R> In). Also, it follows from the description of Ass 0t 

given in the proof of (2.5.2) that z e Ass 0t implies z f] si e Ass si. There-

fore, since E{μ9t) = E(un@), by (2.2.8), it follows from (2.2.7) that E(unsf) = 

EiμSt) Π si. Therefore it follows that U(I) = U(In) and, similarly, that 

U(J) = U(Jm). Also, U(In) = C/((/w)α) and C7(JW) = U((Jm)a) by the prece-

ding paragraph, so it follows from the hypothesis that U(I) = U(In) = 

U((In)a) = U((Jm)a) = £7(J») = C7(J). 

For (2.5.7) let P e A*(I) U E(I). Then  P P e A*(IP) U #(//>), by (2.2.4), 

and if PP e U(IP), then P 6 £/(/), by (2.5.1), so it may be assumed that R 

is local with maximal ideal P. Then (2.2.6) and (2.5.3) show that A*(I) = 

{P* ΠR; P * e iί*(IR*)}, £(I) = {P* Π Λ; P * e E(IR*)}, and J7(/) = {P* ΓΊ fi; 

P * e U(IR*)}. Therefore it may be assumed that R is complete. By (2.2.5), 

if P e E(I) (resp., A*(I)), then there exists z e Ass R (resp., a minimal 

z e Ass i?) such that z^P and P/z e E((I + z)jz) (resp., iί*((I + z)/z)). 

And if P/z e U((I + z)/z), then P e [/(/), by (2.5.2), so it may be assumed 

that J? is a complete local domain. Let 0t — @t(Ry I), so 9t is locally un-

mixed, by [9, Corollary, p. 61]. Then A*(I) = {p Π R; p e iί*(wΛ)}, by [17, 

(2.7)], and ^*(w^) = E(uO), by (2.4), so A*(I) = U(I). Also, if PeE(Γ), 

then since P is the maximal ideal in a complete local domain it follows 

from (2.1.1) that J i s P-primary. Therefore E(I) c {p f] R; p is a minimal 

prime divisor of w^}, since u@ Π i2 = 7, so ίJ(/) c [/(!), by (2.4). 

For (2.5.8), it was shown in (2.5.7) that E(I) c U(I), so it suffices to 

show the other containment. For this, let P € U(I). Then by (2.5.1) PP e 
U(IP), and if  PP e E(IP), then P e E(I), by (2.2.4). Also JP is generated by 
an essential sequence, by (2.2.10), so it may be assumed that R is local 
with maximal ideal P. Now PR* e U(IR*), by (2.5.3), and if PR* e E{IR*\ 

then P 6 E(I), by (2.2.6). Also IR* is generated by an essential sequence, 
by (2.2.12), so it may be assumed that R is a complete local ring. Now 
there exists z e Ass R such that P\z e U((I + z)/z), by (2.5.2), and if P\z e 

E((I + z)lz\ then P e E(I), by (2.2.5). Also, (I + z)\z is generated by an 
essential sequence, by (2.2.11), so it may be assumed that R is a complete 
local domain. Therefore let 9t = £%(R, I), so 9t is locally unmixed, by [9, 
Corollary, p. 61]. Now I is generated by an essential sequence, say 
bl9 , bd, so height (bu , b{)R = i for i = 1, , d, by (2.2.9) (since 
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bl9 ,bt are an essential sequence for ί = 1, ,d). Therefore E(I) = 

U(I), by (2.4), so PeE(I). q.e.d. 

(2.5.8) together with the internal characterization of U(I) mentioned 

just before (2.5) give an affirmative answer to a question that arose in 

studying essential prime divisors, namely: If / is generated by an essen-

In<tial sequence in R, then is E(I)= Π {A*(J); ^J^(In)a for some 

n > 1}. However, we show in (7.4) that, for general ideals I in Noetherian 

rings, E(I) may be a proper subset of this intersection. 

(2.5.7) shows that U(I) includes the asymptotic and essential prime 

divisors of 7, and (2.5.1)-(2.5.5) show that ^-essential prime divisors have 

the same nice properties these other prime divisors have in regard to 

passing to certain related rings. This is important, since it will be shown 

in (7.4) that U(I) may properly contain A*(I) U E{I). 

(2.6) is a corollary of (2.5.7). 

(2.6) COROLLARY. If b u ,bd are a u-essential sequence over an ideal 

I in a Noetherian ring R, then bl9 -,bd are an asymptotic sequence over 

I and an essential sequence over I. 

Proof. This is clear by (2.5.7) and (2.1.2). q.e.d. 

(2.7) Remark. Let I be an ideal in a Noetherian ring R, let M be 

a maximal ideal in R containing /, and let N = (M, f)R[X] be a maximal 

ideal in R[X]. It may be assumed that / is a monic polynomial. Then 

Ne U((lf)R[X]) if and only if M eU(I). 

Proof Since R[f] s R[X), it follows from (2.5.5) that Me U(I) if and 

only if (M,f)R[f] e U((I, f)R[f]). NowR[X] is integral over R[f], since / 

is monic, and z e Ass R[X] implies z (Ί R[f] e Ass R[f], Also, N is the only 

prime ideal in R[X] that lies over (M, f)R[β. Therefore (M,f)R[f] e 

U((lf)R[f}) if and only iΐ Ne U((I,f)R[X]\ by (2.5.4). q.e.d. 

The following lemma and its corollaries give some new information 

on essential prime divisors. These results will be especially useful in 

Section 7 where some examples are given. 

(2.8) LEMMA. Let (R, M) be a local ring and let I be an ideal in R. 

If all primary components of zero in J?* are contained in 7i?*, then Me 

E(I) if and only if I is M-primary. 

Proof. If I is M-primary, then M €E(I), by (2.2.2). 
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Conversely, assume that MeE(I), let P e A s s R/I, and let P * be a 

minimal prime divisor of PR*. Then U (AssR*) c= P*, by hypothesis, so 

IR* + z<^ P * for all 2 e Ass #*. But MeE(I) implies that / # * + z is 

MR*-primary for some z e Ass iϊ*, SO P  * = MR*, hence P — M. q.e.d. 

(2.9) COROLLARY. 1/ (R, M) is a local ring such that Ass R* has ex-

actly one element and if I is an ideal in R, then M e E(I) if and only if 

I is M-primary. 

Proof. This is clear by (2.8). q.e.d. 

(2.10) COROLLARY. Let(R, M) be a local ring such that Ass (RP)* has 

exactly one element for all PeSpec R. Then E(I) = {PeSpecίί; P is a 

minimal prime divisor of 1} for all ideals I in R. 

Proof. This follows readily from (2.2.2) and (2.9), since P e E(I) im-

plies that PP e E(IP). q.e.d. 

This section will be closed with the following proposition and its 

corollary. The proposition is a slight strengthening of [3, Corollary 2.8] 

and our proof below is detailed, as opposed to the sketch offered in [3]. 

It shows that U(I) = A*(I) in a large class of Noetherian rings. 

(2.11) PROPOSITION. Let I be an ideal in a Noetherian ring R and 

assume that (RM)* has no imbedded prime divisors of zero for all maximal 

ideals M in R that contain I. Then U(I) = A*(I) 3 E(I). 

Proof. It was shown in (2.5.7) that A*(I) UE(I) c [/(/), so it suffices 

to show that U(I) c: A*(I). For this let P e U(I) and let M be a maxi-

mal ideal in R that contains P. Then PM e U(IM), by (2.5.1), and if PM e 

A*(IM), then P € A*(I), by (2.2.4), so it may be assumed that R is local 
with maximal ideal M. Then if P* is minimal prime divisor of PR*, then 
P* e U(IR*), by (2.5.3), and if P* e A*(IR*), then P e A*(Γ), by (2.2.6), so it 

may be assumed that R is complete. Then there exists z e Ass R such 

that z c P and P/z e U((I+ z)jz), by (2.5.2), and if P\z e A*(I + z)jz\ then 

P e A*(J), by (2.2.5) (since z is minimal, by hypothesis), so it may be as-

sumed that R is a complete local domain. Then, by hypothesis, there 

exists p e Έ{μ9ΐ) such that p ΠR = P, where 9t = ^(B, J). Now 9t is 

locally unmixed, by [9, Corollary, p. 61] (since R is unmixed), sop e A*(u&)y 

by (2.4). Therefore P = p Γi R e A*(I), by [17, (2.7)]. q.e.d. 

(2.12) COROLLARY. If I is an ideal in a Noetherian ring R such that 
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I is generated by an essential sequence in R and (RM)* has no imbedded 

prime divisors of zero for all maximal ideals M in R containing I, then 

A*(I) = 

Proof. This is clear by (2.5.8) and (2.11). q.e.d. 

Some additional results concerning w-essential prime divisors will be 

proved in Section 5. However, their proofs require several new results, 

so to keep things pretty much in order of their proofs it was decided to 

delay giving these w-essential prime divisor results till the needed results 

have been proved. 

§3. ίZ-essential sequences over an ideal 

In this section we prove several results that show that ^-essential 

sequences over an ideal I in a Noetherian ring R behave nicely when 

passing to certain related rings. Then it is shown in (3.10) that bu ,bd 

are a w-essential sequence in R if and only if they are an essential se-

quence in JR. 

We begin with (3.1) which is essentially a corollary of (2.11). It shows 

that w-essential sequences over I and asymptotic sequences over I are the 

same in a large class of Noetherian rings. 

(3.1) THEOREM. Let R be a Noetherian ring such that Ass (RM)* has 

no imbedded elements for all maximal ideals M in R. Then the following 

hold for all ideals I in R. 

(3.1.1) U(I) = iί*(I) 2 E(l). 

(3.1.2) Elements bί9 , bd in R are a u-essential sequence over I if and 

only if they are an asymptotic sequence over I, and this implies bu ,bd 

are an essential sequence over I. 

(3.1.3) If R is local, then uecogd (I) = acogd (I) < ecogd(I). 

Proof. (3.1.1) is clear by (2.11), (3.12) follows immediately from (3.1.1), 

and (3.1.3) follows directly from (3.12) and (2.2.14) once it is shown that 

uecogd (J) is well defined. This is done in (4.1). q.e.d. 

In (3.3)-(3.8) we show that ^-essential sequences over / behave nicely 

when passing to certain related rings. The following lemma will be use-

ful in proving these results. 

(3.2) LEMMA. Let I be an ideal in a Noetherian ring R, let bu ,bd 
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be nonunits in R, and let B = (b  , b )R. Then b  , b  are a maxi-u d ί9 d 

mal u-essential sequence over I if and only if they are a u-essential sequence 

over I and, for each maximal ideal M in R containing I + B it holds that 

MeU(I+ B). 

Proof. This follows readily from the definition, (2.1.2). q.e.d. 

(3.3) is concerned with u-essential sequences over J and over Is. 

(3.3) THEOREM. Let I be an ideal in a Noetherian ring R and let 

1>D Jbd be nonunits in i?. Then the following hold: 

(3.3.1) If bu - , bd are a u-essential sequence over I and S is a multi-

plicatively closed set in R such that (I, b  , b ) R  Φ R  then the imagesu d s S9 

of bί9 , bd in Rs are a u-essential sequence over Is. The converse holds 

if P  Φ R  for all PeU {U((I, b  , b )R); ί = 0,1, - , d - 1}. s s l9 t 

(3.3.2) If b19 '- ,bd are a maximal u-essential sequence over I, then 

for each maximal ideal M in R that contains (I, bί9 , bd)R it holds that 

the images in RM of bu , bd are a maximal u-essential sequence over IM. 

The converse holds if the bt are all in the Jacobson radical of R. 

Proof (3.3.1) follows immediately from (2.5.1), and the first statement 

in (3.3.2) follows from (2.5.1) and (3.2). For the last statement in (3.3.2) 

it will first be shown that bl9 -',bd are a u-essential sequence over J. 

For this, suppose they are not, so there exists i (0 < i < d) such that 

b ePe U((I, b  , b^R). Let M be a maximal ideal in R containing i+1 ί9 

P. Then the Jacobson radical hypothesis implies that (J, bu , bd)R c: M, 

so the supposition and (2.5.1) imply that the image of bi+ί is in Pse 

U((I, bu - , bi)Rs)9 where S = R — M. But this implies that the images 

of 6j, , bd in RM are not a w-essential sequence over IM, in contradic-

tion to the hypothesis. Therefore bl9 , bd are a u-essential sequence 

over /. Finally, if M is a maximal ideal in R containing (J, b19 , bd)R 

and S = R — M, then the hypothesis and (2.5.1) imply that Me 

U((I, &!, , bd)R), so bl9 - - , bd are a maximal u-essential sequence over 

J, by (3.2). q.e.d. 

(3.4) is concerned with u-essential sequences over I and over (J + z)\z 

with z € Ass R. 

(3.4) THEOREM. Let I be an ideal in a Noetherian ring R and let 
bu , bd be nonunits in R. Then the following hold: 
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(3.4.1) &i, , bd are a u-essential sequence over I if and only if their 

images in Rjz are a u-essential sequence over (I + z)\z for all z e Ass R. 

(3.4.2) bu -, bd are a maximal u-essential sequence over I if and only 

if their images in R/z are a u-essential sequence over (I + z)\z for all z e 

AssR and for all maximal ideals M in R containing (I, bu , bd)R there 

exists z e Ass R such that z c M and M\z e U(((I, bu , bd)R + z)\z). 

Proof (3.4.1) follows readily from (2.5.2), and (3.4.2) follows from 

(2.5.2) and (3.2). q.e.d. 

(3.5) is concerned with w-essential sequences over / and over IA with 

A a faithfully flat Noetherian i?-algebra. 

(3.5) THEOREM. Let R c: A be Noetherian rings such that A is a 

faithfully flat R-module, let I be an ideal in R, and let bu , bd be non-

units in R. Then the following hold: 

(3.5.1) bl9 -- -, bd are a u-essential sequence over I if and only if they 

are a u-essential sequence over IA. 

(3.5.2) If R cz A satisfy the Theorem of Transition, then bu , bd are 

a maximal u-essential sequence over I if and only if they are a maximal 

u-essential sequence over IA. 

Proof (3.5.1) follows readily from (2.5.3), and (3.5.2) follows from (2.5.3) 

and (3.2). q.e.d. 

(3.6) is concerned with u-essential sequences over I and over IB with 

B a finite integral extension ring. 

(3.6) THEOREM. Let B be a finite integral extension ring of a Noe-

therian ring R, let I be an ideal in R, and let bu , bd be nonunits in R. 

Then the following hold: 

(3.6.1) If bu - - , bd are a u-essential sequence over IB, then they are 

a u-essential sequence over I. 

(3.6.2) If ze Ass B implies z Π Re Ass R, then bu - ,bd are a u-

essential sequence over I if and only if they are a u-essential sequence over 

IB. 

(3.6.3) If z e Ass B implies z (Ί Re Ass R, then bu ,bd are a maxi-

mal u-essential sequence over I if and only if they are a u-essential sequence 

over IB and for each maximal ideal M in R containing (I, bl9 , bd)R 

there exists a maximal ideal N in B such that N Π R = M and N e 
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Proof. (3.6.1) and (3.6.2) follow readily from (2.5.4), and (3.6.3) follows 

from (2.5.4) and (3.2). q.e.d. 

(3.7) is concerned with w-essential sequences over / and over IR[X]. 

(3.7) THEOREM. Let I be an ideal in a Noetherian ring R and let 

bu - , bd be nonunits in R. Then the following hold: 

(3.7.1) The following are equivalent: 

(a) bly , bd are a u-essentίal sequence over I. 

(b) bl9 , bu X, bi+ί, , bd are a u-essentίal sequence over IR[X] for 

some ί = 0, 1, ,d. 

(c) (b) holds for every ί = 0,1, ,d. 

(3.7.2) The following are equivalent: 

(a) bu , bd are a maximal u-essentίal sequence over I. 

(b) b  , b , X, b  - , b  are a maximal u-essentίal sequence over u t i+l9 d 

IR[X] for some ί = 0,1, ,d. 

(c) (b) holds for every i — 0, 1, ,d. 

Proof. (3.7.1) For j = 0,1, • - -£, £/((/, bu -,b3)R[X]) = {PR[X]; Pe 

U((I, bu , bj)R)}, by (2.5.3) (and since, for an ideal J in R, the prime 

divisors of JR[X] are the PR[X] with P a prime divisor of J). Also, it 

is clear that X is not in any prime divisor of (I, bu , b{)R[X], and, for 

k = 0,1, ,d - i, C7((J, 6  , b  X, b  .,b )R[X]) = {(P, Z)i?[X]; 1? ίy t+1, tΎk 

PeU((I, &!...., 6i+fc)i?)}, by (2.5.5). Therefore it follows that (3.7.1) (a)-(c) 

are equivalent. 

(3.7.2) follows immediately from (3.7.1) and (3.2), since the maximal 

ideals in R[X] containing (I,X)R[X] are the ideals (Λf, X)#[X] with M a 

maximal ideal in R containing /. q.e.d. 

(3.8) is concerned with ^-essential sequences over projectively equiva-

lent ideals. Remark (3.9) below is required for its proof. 

(3.8) THEOREM. Let I and J be ideals in a Noetherian ring R such 

that (In)a = {Jm)a for some n > 1 and m > 1 and let b u , bd be nonunits 

in R. Then the following hold: 

(3.8.1) bu , bd are a u-essentίal sequence over I if and only if they 

are a u-essentίal sequence over J. 

(3.8.2) bu , bd are a maximal u-essential sequence over I if and only 

if they are a maximal u-essential sequence over J. 
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Proof. (3.8.1) Note first that for each, i = 0, 1, , d we have ((/, bu 

•' , b  Y R )  = (((I») ,bΐ,bΐ, - . . , 6 ? ) 2 2 )  s o H = ( I , b  . . . , b  ) R a n d K = t a a β , 1 9  t  

((/w)α, ft?,---, 6?)fl are projectively equivalent. Therefore U(H)= C7(JBΓ), 

by (2.5.6), so &  e UU(H) if and only if 6 g U [/(if) if and only if <+1 ί+1 

6?+i £ UU(K). Therefore it follows that 61? , bd are a w-essential se-

quence over I if and only if &?,•••, &2 are a w-essential sequence over 

(Zn)α. And, similarly, bu , bd are a iz-essential sequence over J if and 

only if bψ, ,&™ are α ̂ /-essential sequence over (Jm) > Therefore 6  , b a 1? d 

are a w-essential sequence over I if and only if b\, , bn

d are a u-essential 

sequence over (In)a if and only if u, b\, , bn

d are an essential sequence 

in 0t = @(Ry (In)a), by (3.9), and this holds if and only if u, &Γ, , b^ are 

an essential sequence in St, by (2.2.8). Now 0t = ^(Λ,(Jm)a), by hypothesis, 

so this holds if and only if &Γ, , 6? are a ^-essential sequence over (J m ) α , 

by (3.9), if and only if &i, , fed are a w-essential sequence over J, as 

noted above. Therefore (3.8.1) holds. 

(3.8.2) follows immediately from (3.8.1) and (3.2). q.e.d. 

(3.9) Remark. [21]. If I is an ideal in a Noetherian ring R and 

όj, , bd are nonunits in R, then ό1? , bd are a ^-essential sequence 

over I if and only if u, bly , 6rf are an essential sequence in 0t(R, I). 

In (3.10) we show that w-essential sequences and essential sequences 

are the same (cf. [3] concluding Remark 3). 

(3.10) PROPOSITION. Let bί9 -- ,bd be nonunits in a Noetherian ring 

R. Then bu , bd are a u-essentίal sequence in R if and only if they are 

an essential sequence in R. 

Proof. It follows immediately from (2.6) (applied to I = (0)) that a 

zz-essential sequence in R is an essential sequence. 

The converse is immediate from (2.5.8) and (2.1.2). q.e.d, 

Because of (3.10) we will not henceforth talk about w-essential se-

quences in R. However, it is shown in (7.1) and its preceding comment 

that w-essential sequences over I are different from essential sequences 

over I, so it is necessary to use this terminology. 

This section will be closed with the following remark which gives 

some additional basic properties of w-essential sequences over /. 

(3.11) Remark. Let I be an ideal in a Noetherian ring R and let 

bu ' - ,bd be nonunits in R. Then the following hold: 
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(3.11.1) The following statements are equivalent: 

(a) bl9 , bd are a w-essential sequence over I; (b) bΐ\ , bn

d

d are a 

w-essential sequence over / for some positive integers nt; (c) (b) holds for 

all positive integers nit 

(3.11.2) The following statements are equivalent: 

(a) bu , bd are a u-essential sequence over /; (b) There exists an 

ί (0 < ί < d) such that bί9 , bt are a w-essential sequence over / and 

&<+i> •••>&<£ are a ^-essential sequence over (J,bl9 , 6J22; (c) (b) holds 

for all i (ί = 0,1, ,d - 1). 

Proof. (3.11.1) &!, , bd are a w-essential sequence over /if and only 

if u,bl9 , 6d are an essential sequence in 9t = ^(i?, /), by (3.9), if and 

only if u, bΐ\ --,bd

d are an essential sequence in 3t> by [19,(2.11.1)], if 

and only if δf1, , bd

d are a w-essential sequence over I, by (3.9), so 

(3.11.1) holds. 

(3.11.2) is clear by the definition, (2.1.2). q.e.d. 

§ 4. On the {[/-essential cograde of an ideal 

In this section we show that uecogd (/) is unambiguously defined for 

ideals I in a local ring R, we give one characterization of this cograde, 

and we then show that it behaves nicely when passing to certain ideals 

related to I. 

We begin by showing uecogd (I) is well defined. In (4.1), £(J) denotes 

the analytic spread of the ideal J. 

(4.1) THEOREM. If I is an ideal in a local ring R, then any two maxi-

mal u-essentίal sequences over I have the same length, so uecogd (/) is un-

ambiguously defined. Moreover, uecogd (/) = min {depth z —β({IR* + z)/z); 

z e Ass £*}. 

Proof. Let bu , bd be a maximal iz-essential sequence over I. Then 

by (3.5.2) and (3.4.2) their images in R*jz are a w-essential sequence over 

(ZR* + z)\z for all z e Ass iϊ* and for some such z their images are a 

maximal w-essential sequence over (Zβ* + z)/z. Therefore their images are 

an asymptotic sequence over (Zβ* + z)\z for all z e Ass J?* and for some 

such z their images are maximal asymptotic sequence over (IR* + z)/z, 

by (3.1.2). Now, for each zeAss i ϊ* it holds that acogd ((IR* + z)\z= 

depths - £((IR* + z)/z)9 by (2.2.14), so it follows that d < depths - £((IR* + 

z)\z) for all z e Ass R* and equality holds for some such z, so d = 
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min {depth z - £((IR* + *)/*); z e Ass i?*}. q.e.d. 

(4.2) COROLLARY. Let I be an ideal in a local ring (R, M) and let 

Sf = St(R*, 7i?*). Then uecogd (/) = min {height (MR*/*, ύ)Sf\z* z e Ass # * 

and z* = zR*[t, u] Π &>} - 1. 

Proof. By definition, £((IR* + z)\z) = depth (MR*/*, u)ZΓ, where JΓ -

&(R*/z, (IR* + *)/*), so T ^ 5̂ /2;*, by [22, Lemma 1.1]. Also, each ring 

<9*lz* is locally quasi-unmixed, so (^lz^)^/2* satisfies the first chain condi-

tion for prime ideals where Jί is the maximal homogeneous ideal in 

Sf. Therefore, by [15, (3.7)], depth (MR*\z, u)Sflz* = altitude (<¥lz*)Mz* -

height (MR*/z, u)&Ίz*. Further, altitude i&Ίz*)^,* = depth z + 1, by [15, 

(2.2.4)]. Therefore by (4.1) it follows that uecogd (I) = min {depth z -

£((IR* + z)/z); z e Assi?*} = min {depth 2 - (depths + 1) + height (MR*/*, u) 

• ^/z* z e Ass i?*} = min {height (MR*/*, u)y\z* z e Ass J?*} - 1. q.e.d. 

(4.3) shows that uecogd (I) behaves nicely when passing to certain 

related rings and ideals. 

(4.3) THEOREM. Let I be an ideal in a local ring (R, M). Then the 

following hold: 

(4.3.1) uecogd (I) = min {uecogd ((I + *)/*); z e Ass R}. 

(4.3.2) If A is a faithfully flat Noetherίan extension ring of R, then 

uecogd (I) < uecogd (IAN) for all prime ideals N in A lying over M and 

equality holds if height N = height M. 

(4.3.3) If B is a finite integral extension ring of R such that z e Ass B 

implies z Γ) R € Ass R, then uecogd (I) < uecogd (IBN) for all maximal ideals 
N in B and equality holds for some such N. 

(4.3.4) If J is projectively equivalent to I then uecogd (J) = uecogd (I). 

Proof. These statements follow immediately from, respectively, (3.4.2), 
(3.5) and (3.3.1), (3.6) and (3.3.1), and (3.8.2). q.e.d. 

§5. Preliminaries for bounds on uecogd (I) 

In this section we prove three theorems, and several corollaries of 
one of them, that are used in Section 6 to establish certain bounds on 
uecogd (I). 

We begin with the w-essential analogue of [6, (3.2)], which gives a 
nice containment relation between ideals in A*(2) and in A((I> bu , bd)R), 
where bly , bd are an asymptotic sequence over I. 
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(5.1) THEOREM. Let I be an ideal in a Noetherίan ring R, let P e U(I), 

let bu-' ,bd be a u-essentίal sequence over I, and let N be a minimal 

prime divisor of (P, b  - b )R. Then Ne £/((/, b  - b )R).19 9 d l9 9 d 

Proof. By (2.5.1) P  e U(I ) and if N  e U((I, b  , b )R \ then N N N u d N 

N e U((I, b  - , b )R). Also, the images of b  , b  in R  are a in-u d l9 d N 

essential sequence over 7, by (3.3.1), so it may be assumed that R is local 

with maximal ideal N. Then by (2.5.3) if P  * is a minimal prime divisor 

of Pi?*, then P * e U(IR*) and if NR*eU((I,b19 - ,bd)R*), then iVe 

[/((!, δj, • , bd)R). Also, &!, , bd are a iz-essential sequence over IR*, 

by (3.5.1), so it may be assumed that R is complete. By (2.5.2) there ex-

ists zeAssR such that z c P a n d P\z e U((I + z)\z) and if N/z e C/(((7, bl9 

• , &Ji? + z)jz)  then iVe U((I, b  - b )R). Also, the images of b  , 6̂  9 ί9 9 d u 

are a u-essential sequence over (I + z)jz, by (3.4.1), so it may be assumed 

that R is a complete local domain. 

Let m = ^(1?, I) and let p e E(w^) such that p f) R = P. Then 

heightp = 1, by (2.4), and u,bu , 6d are an essential sequence in 0t9 by 

(3.9). Therefore, if q is a minimal prime divisor of (p, bu , 6d)«^, then 

height q = d + 1, by (2.2.9) and since 0ί is catenary. Also, &*/& = tbu so 

g/ —q&[tbu , 26J is a height one prime divisor of u&[tbu , Z6J that 

lies over q, by [14, Lemma 2.7]. Therefore, since ^[ί61 ? . . ,^6J== 

9t{R  (I, b -"  b )R), q' Γ) Re U((I, b  , b )R). Also, ^ ΠR = N, since 9 l9 9 d l9 d 

^ Π 12- q ΓΊ R 2 (P, 6i, &*,)12. q.e.d. 

(5.2) COROLLARY. L ί̂ I 6β απ, ideal in a Noetherian ring R and let 

bu - , bd be a u-essentίal sequence over I. Then, for i — 0, 1, ,d — 1, 

given any P e U((I, b  , 6Ji?) ί/ierβ exists Q e U((I, b  , b )R) such u u i+ί 

that P C Q. Moreover, if R is locally quasί-umnίxed, then Q can be chosen 

such that height Q — height P + 1. 

Proof. The first statement follows immediately from (5.1), and the last 

statement follows from the first chain condition for prime ideals in RQ in 

the quasi-unmixed case. q.e.d. 

(5.3) is a E(I) analogue of (5.2). 

(5.3). COROLLARY. Let bu , bd be an essential sequence in a Noe-

therian ring R, fix ί (0 < i < d)9 let P e E((bl9 , bt)R\ and let N be a 

minimal prime divisor of (P, b , , b )R. Then N e E((b  , b )R).ί+1 d u d 

Proof. E((bl9 , bj)R) = U((bu • , bj)R) for j = 1, . ., d, by (2.5.8). 
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Therefore, if I = (b  , b )R, then b  , b  are a zz-essential sequence u t ί +1, d 

over I, so the conclusion follows immediately from (5.1). q.e.d. 

(5.3) is definitely a weaker result than (5.1), and it is shown in (7.3) 

that the essential sequence over I analog of (5.1) is not true. 

(5.4) is the ^-essential analogue of the following result: If P  e A*(B), 

where B is generated by an asymptotic sequence, then P e A*(I) for all 

ideals I in R such that B c= Rad I c P. 

(5.4) THEOREM. Let B c; P be ideals in a Noetherίan ring R such 

that B is generated by an essential sequence in R and P € U(B). Then 
P e U(I) for all ideals I in R such that B g Rad I ς: P. 

Proof. By (3.11.1) and the hypothesis that B c; Rad I it may be as-

sumed that B c: J. Then by (2.5.1) and (2.2.10) it may be assumed that 

R is local with maximal ideal P, and then by (2.5.3) and (2.2.12) it may 

be assumed that R is a complete local ring. Finally, by (2.5.2) and (2.2.11) 

it may be assumed that R is a complete local domain. Then P e U(B) 

implies P is a minimal prime divisor of B, by (2.4), so B is P-primary. 

Thus I is P-primary, so P e U(I\ by (2.3.2). q.e.d. 

(5.5) contains several remarks that will be used in the proof of (5.6) 

and (6.7)-(6.9). 

(5.5) Remark. The following hold for an ideal / in a local ring R: 

(5.5.1) If bu->-,bd in R are a ^-essential sequence over 1, then 

(5.5.2) If 63, , bd are nonunits in R whose images modulo In are an 

iϊ/J^-sequence for all large n, then £(((1,bu , bd)R)l(bu , bd)R) - S(I). 

(5.5.3) For all large k it holds that grade R/In = grade R/P for all 

n > k and if bu - , bd are nonunits in R whose images in R/P are an 

i?/Ifc-sequence, then their images in Rjln are an iϊ/J^-sequence for all 

n > k. 

(5.5.4) If J is an ideal in R, then £(I) > £((I + 

Proof. For (5.5.1), bl9 , bd are an asymptotic sequence over 7, by 

(2.6), so the conclusion is given by [6, (3.1)]. 

(5.5.2) and (5.5.3) are given by [6, (7.1) and (7.3)]. 

For (5.5.4) let 3t = &(R, I) and let ¥ = 3t(R\J, (I + J/)J), so £f = 0l\J* 

where J * = JR[t, u] Π &, by [22, Lemma 1.1]. Let p be a minimal prime 
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divisor of (Af/J, u)S? such that depth p == £((I + J)/J) and let P be the 

pre-image of p in ^ . Then (Λf, u)^ c P, so £{I) = depth (M, u)St > 

depth P = depth p = £((I + J)IJ). q.e.d. 

(5.6) is the final result in this section. Its proof is similar to the 

proof of [6, (7.2)], but there are enough differences that it was decided to 

include the details here. 

(5.6) THEOREM. Let I be an ideal contained in the Jacobson radical 

of a locally unmixed Noetherian ring R and assume that bu , bd are 

elements in R whose images in R\In are an R\In-sequence for all large n. 

Then bu , bd are a u-essential sequence over I. 

Proof. The hypothesis on 6X implies that bλ & U A*(J) = U {P e Speci?; 

P is a prime divisor of In for all large n}. Therefore, since U(I) c: A*(I), 

by (2.3.3), it follows that bx is a w-essential sequence over /. 

We now inductively assume that bl9 ,b 1 are a w-essential se-d_ 

quence over I. Then it is shown in [21] that bly , b γ are an essential d_ 

sequence in R, so height (bu , bd_ϊ)R = d — 1, by (2.2.9). We must show 

that δ ^  U C7((I, 6i, , &d_i)J2), so suppose, on the contrary, that bdeP 

for some P e U((I, bu , 6d_i)ίϊ). Then it may be assumed that R is local 

with maximal ideal P, by (2.5.1). Now U(J) = A*(J) for all ideals J in R, 

by (3.1.1), so P  e A*((I, bu , b^R), and so heightP = £((I, bl9 - , 6^)12) 

= £{T)+ d — 1, by [5, Theorem 3] and (5.5.1). Let ' denote residue class 

modulo (&„ -,&„_,)& Then 4(1') = £(I) = heightP - d + 1, by (5.5.2). 

d_Also, height (6j, , b 1)R = d — 1, as already noted, so by the first chain 

condition for prime ideals in R (since R is unmixed) it follows that 

height  P ' = height P-d + 1. Therefore £(Γ) = height P'. Now every mini-

mal prime divisor of (bly , bd_^)R has height d — 1, so i?r is quasi-unmixed, 

by [11, Corollary 2.2]. Therefore  P ' € A*(Γ) c A*(J'), by [5, Theorem 3] 

and (2.2.1) and so P e {Q e Speciϊ; Q is a prime divisor of In + (6^ , bd_ϊ)R 

for all large n}. However, bd e P, and this contradicts the hypothesis on 

bu *•> &d> so &!,•••, &d are a α-essential sequence over 7. q.e.d. 

§6. Some bounds for uecogd (/) 

In this section we show that most of the results in [6] concerning 

acogd (I) have a valid uecogd (/) analogue. We begin with the following 

remark. 



 61 M-ESSENTIAL PRIME DIVISORS 

(6.1) Remark, If R is a local ring, then the following hold: 

(6.1.1) If i?* has no imbedded prime divisors of zero, then uecogd(/) = 

acogd (I) for all ideals I in R, by (3.1.3). Therefore in this case all the 

results in [6] concerning acogd (I) hold for uecogd (I). 

(6.1.2) It follows immediately from (2.6) that, in general, uecogd (/) < 

acogd (I) and uecogd (I) < ecogd (I). We show in (7.4) that both inequali-

ties can hold. 

Even when the hypothesis in (6.1.1) is not satisfied, most of the bounds 

on acogd (I) in [6] have a valid uecogd (I) analogue, as we now show. 

The first of these bounds is the analogue of [6, (3.5)]: acogd (/) < 

min {little depth P; P e A*(I)}. Here, little depth P is the length of a 

shortest maximal chain of prime ideals in R/P. 

(6.2) THEOREM. If I is an ideal in a local ring (R, M), then 

uecogd (I) < min {little depth P; P e U(I)}. Therefore, if A is a faithfully 

fiat local extension ring of R, then uecogd (I) < min {little depth P*; P* e 

Proof The proof is essentially the same as that given to prove the 

asymptotic cograde case in [6, (3.5)], but use (5.1) in place of [6, (3.2)]. 

q.e.d. 

(6.3) Remark. Equality need not hold in (6.2) even when R is a com-

plete local domain and I is a height one prime ideal such that U(I) = {/}. 

Proof. [6, (3.6)] shows that equality need not hold in this case for 

asymptotic cograde. Therefore the conclusion follows, since U(I) = A*(I) 

and uecogd (/) = acogd (7) when R is a complete local domain, by (3.1). 

q.e.d. 

The next bound on acogd (I) in [6] depends on the fact that if bu , bg 

are an asymptotic sequence over I, then their images in R/I are an as-

ymptotic sequence. The w-essential sequence over I version of this does 

not hold, as noted in [7, (7.1)]. Therefore the uecogd (I) analogue of [6, 

(4.5)]: acogd (I) < agd(M//); does not hold. In fact, if I is an ideal in 

R such that M e Ass R/I, g U(I\ then uecogd (/) > 1 > 0 = egd (Λf/I). 

Therefore, since uecogd (/) = acogd (I) when R* has no imbedded prime 

divisors of zero, (6.4) is the best possible uecogd (I) analogue of [6, (4.5)]. 

(6.4) THEOREM. If I is an ideal in a local ring R, then uecogd (I) < 

agd (M/i). 
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Proof. This follows immediately from [6, (4.5)] and (6.1.2). q.e.d. 

(6.5) is the uecogd(7) version of [6, (6.1)]: acogd(I) < agd(M) - agd (7). 

(6.5) THEOREM. Let I be an ideal in a local ring (R, M) and let 

xu , xh be an essential sequence in I. Then there exists a maximal u-

essentίal sequence over 7, say bu , bd, such that xu , xh, bu , bd are 

an essential sequence in R. In particular, uecogd (7) < egd(M) — egd (7). 

Proof. The proof is the same as that given to prove [6, (6.1)], but 

use (5.5) to show that M β U(I) implies M £ U((xu , xh)R). q.e.d. 

(6.6) is the uecogd (7) analogue of [6, (6.2)]. 

(6.6) THEOREM. The following statements are equivalent for an ideal 

I in a local ring (R, M): 

(6.6.1) uecogd (/) = egd(M) - egd (7). 

(6.6.2) There exists z e Ass iϊ* such that £((IR* + z)\z) = height (IR* 

+ z)\z = egd(I) and uecogd (I) = depth z — height (IK* + z)jz. 

(6.6.3) The equalities in (6.6.2) hold for every z e Ass R* such that 

depth z = egd (M). 

Proof The proof is the same as that given to prove [6, (6.2]), except 

one must substitute for the asymptotic-references the analogous essential-

references, q.e.d. 

The final bounds on acogd (I) in [6] are lower bounds. To prove the 

uecogd (J) version of these we will use (5.5) and (5.6). 

(6.7) is the uecogd (J) version of [6, (7.4)]: If (R, M) is a quasi-unmixed 

local ring, then acogd (I) > grade M/In for all large n. 

(6.7) THEOREM. If I is an ideal in an unmixed local ring (R,M), 

then uecogd (/) > grade (M/In) for all large n. 

Proof This is clear by (5.6) and (5.5.3). q.e.d. 

(6.8) Remark. If / is an ideal in an unmixed local ring (R, M), then 

grade M\In < uecogd (/) < agd(M/In) for all large n. 

Proof. It follows from [18, (2.13)] that agd(M/In) = agd(M/I) for all 

n > 1, so this follows immediately from (6.4) and (6.7). q.e.d. 

The final result in this section, (6.9), is the uecogd (/) analogue of 

[6, (7.6)]: acogd (J) > agd(M) - i(I). 
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(6.9) THEOREM. If I is an ideal in a local ring (R, M), then uecogd (I) 

egd (M) -

Proof. By (4.1) let z e Ass JR* such that uecogd (7) = height MR*/z -

£((IR* + z)/z. Then height MR*/z > egd (M), by (2.2.13), and £((IR* + z)z) 

< £(ΐ), by (5.5.4), so the conclusion follows. q.e.d. 

§7. Some examples 

In this final section we give four examples that show some of the 

differences between essential sequences over I and w-essential sequences 

over I. 

(7.1) shows that a permutation of an essential sequence over an ideal 

J i  n a local ring need not be an essential sequence over I, even though 

this holds for zz-essential sequences over J, as is shown in [21]. 

(7.1) EXAMPLE. There exists a local domain R such that R has an 

ideal I and elements bu b2 such that bu b2 are an essential sequence over 

I and 62, b1 are not. 

Proof Let R be a complete regular local ring of altitude three and 

let α, 6, c be a regular system of parameters in R. Let p = (b — c)R, 

P = (a, c)R, and ί - p Π P , so I = p(P:p) = pP = (ab - ac, be - c2)R. 
Then E(I) = {p, P}, by (2.10), and 6, a are an essential sequence over I 

(since b is prime to I and E((I, b)R) - E((ac, c\ b)R) = {(6, c)B}, by (2.10)), 

but a e P, so a, b are not an essential sequence over I. Thus let bί = b 

and b2 = a. q.e.d. 

(7.2) shows that an essential sequence over an ideal I in a local do-

main R need not be an essential sequence in R, but a ^-essential sequence 

over I is an essential sequence in J2, as is shown in [21]. 

In the proof of (7.2) (and also in (7.4)) we again use ί{ΐ) to denote 

the analytic spread of an ideal I. 

(7.2) EXAMPLE. There exists a local domain R such that R has an 

ideal I and elements bu b2 such that bu b2 are an essential sequence over I 

and bu b2 are not an essential sequence in R. 

Proof Let (L, M — (α,b)L) be a complete regular local ring of altitude 

two, let A = L[ta, tb], where t is an indeterminate, and let R — AiMitaitb)A, 

so R is a local domain of altitude three. It will first be shown that MnR 

is MR-primary for n > 1. 
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For this, let 9t = 0t(L, M) = L[ta, tb, u] = A[u], with u = \\t. Then 

0l\u0l = A\MA = ^ ( L , M), the form ring of L with respect to M, by [22, 

Theorem 2.1], and ^ ( L  , M) is an altitude two integral domain, since L is 

regular, so u9t and MA are height one depth two prime ideals. Also, 
n u 0t Π A = MnA for all n > 1, so MπA is integrally closed for all rc > 1, 

since w71^ is (since uέ% is prime). Therefore iV = (M, to, Z&)i? is not a prime 

divisor of MnR for all τι > 1, by [5, Theorem 3] (since ί(MnR) = £(MR) 

and £(MR) < 2 (since M is generated by two elements) and since R is 

quasi-unmixed (since L is)). Also, if P e Spec R and P Φ N, then J?P is 

regular, since Λ[l/ί] = Sl(L, M) is locally regular, by [23, Theorem 2], and 

A[t] = L[t] is locally regular. Therefore, if height P = 2, then P is not a 

prime divisor of MnR for all AI > 1 (since MnRP is principal). Therefore 

A*(Mi?) = {Mi?}, so E(MB) = {MR}, by (2.2.1). 

Therefore it follows that R/MR ~ (L/M)[X, F W >  , and R*/MR* s 

(22/MK)*, so MR* is prime Also, it was just shown that Mni? is M#-

primary for all n > 1, so it follows from flatness that MnB* is MR*-primary 

for all n > 1, so A*(MΛ*) = {MR*}, hence E(MR*) = {MR*}, by (2.2.1). 

Thus it readily follows from (2.2.3) that every prime divisor of zero in j?* 

is contained in MR*, so this also holds for (M, ta)R*, and so E((M, ta)R) — 

{(M, ta)R), by (2.8). Therefore ta, tb are an essential sequence over MR, 

but (ta, tb)R = (tL[t\ Π A)R is a height one prime ideal, so ta, tb cannot 

be an essential sequence in R, so let bx = ta and b2 = tb. q.e.d. 

It was shown in (5.1) that if b £ U U(I) and P e U(I), then there ex-

ists Q 6 U((I, b)R) such that P c Q. (7.3) shows that this does not hold 

for 

(7.3) EXAMPLE. There exists a local domain R such that R has an 

ideal I, an element b, and some P e E(I) such that b is an essential se-

quence over I and no prime ideal in E((I, b)R) contains P. 

Proof. Let R, I, P, and b be as in the proof of (7.1), so E((I, b)R) = 

{(b, c)R} and P £ (b, c)R. q.e.d. 

It was shown in (2.5.7) that A*(I) U E(I) c U(I). Our final example, 

(7.4), shows that this containment may be proper. It also shows that 

uecogd (I) < acogd (/) and uecogd (I) < ecogd (I) can hold. 

(7.4) EXAMPLE. There exists a local ring R such that R has an ideal 

I such that Ά*(I) U E(I) C U(I). 
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Proof. Let (L, N = (α, b, c, d)L) be a complete regular local ring of 

altitude four, let p = aL, B = (a\ b)L, K = p Π B, and J = (c2, cd)L. Let 

P - (α, 6)L so Ass L/K = {p, P}. Let R - L/K, M = JV/lζ I = (J + £)/£, 

2 = p/K, and n; = P\K. Then i? is a local ring of altitude three, w is an 

imbedded prime divisor of zero, and Rjw = L/P is a complete regular local 

ring of altitude two such that c', d', the P-residue classes of c, d, are a 

regular system of parameters. Now (J + w)/w is generated by c/2, c'd', so 

£((I + w)jw) = 2. Therefore M/w e A*((I + w)/w) = U((I + w)/w\ by [5, 

Theorem 3] and (3.1.1), and so M  e U(I), by (2.5.2). Also, R a d ( J + w)\w 

= c'(R/w) is a principal ideal, so M/w £ E((I + w)lw\ by (2.9). And 

Rad (/ + z)\z = (a, c){Rjz\ so altitude R\z = 3 implies M\z & E((I + z)/z, 

by (2.9). Therefore M € £(J), by (2.2.5). Finally, M\z & A*((I + z)/z, by 

[5, Theorem 3], since £((I + z)/z) < 2 < altitude R\z and iϊ/,2 is quasi-

unmixed, so M & A*(I), by (2.2.5). q.e.d. 
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	§ 1. Introduction 
	All rings in this paper are assumed to be commutative with identity, and they will generally also be Noetherian. 
	In several recent papers the asymptotic theory of ideals in Noetherian rings has been introduced and developed. In this new theory the roles played in the standard theory by associated primes, i?-sequences, classical grade, and Cohen-Macaulay rings are played by, respectively, asymptotic prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-unmixed Noetherian rings. And up to the present time it has been shown that quite a few results from the standard theory have a valid analogue in the
	-

	However, in a number of problems it has turned out that the asymptotic theory is a little too coarse, so it seemed worthwhile to try to develop a new theory that behaved nicely when passing to R\z with z an arbitrary prime divisor of zero (rather than just a minimal prime divisor of zero). Such a theory would then be intermediate between the standard and asymptotic theories, and would thereby surmount some of the problems encountered in the asymptotic theory. One candidate for this new intermediate theory w
	-
	-
	-
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	theory. (The word "essential" was chosen because of the fact that if R is a semi-local domain and 0* cz Speci?, then Π {i?;Pe^} is a finite R-module if and only if every essential prime divisor of a principal ideal in R is contained in some Pe^ ; thus the localizations at these primes are somewhat analogous to the essential valuations of a Krull domain (whose intersection is the Krull domain).) It was shown in [7] that the essential theory is a good candidate for this new intermediate theory, since most of 
	P

	Therefore, in the present paper, we present a new candidate for this intermediate theory, and call it the "^-essential" theory. (The name comes from the fact that the u-essential prime divisors of I are the contractions to R of the essential prime divisors of (u) in the Rees ring of R with respect to J.) In this new theory the two deficiencies in the essential theory mentioned in the preceding paragraph are repaired, and it turns out to be an excellent analogue of the standard and asymptotic theories in all
	In some preliminary applications of this new theory, the second author has shown that a prime ideal P in a Noetherian ring R has a primary ideal q all of whose powers are primary if and only if there exists some ideal / c: P such that P is the only w-essential prime divisor of I. Then, because of the results on ^-essential prime divisors established in (2.5), this leads to several other such primary ideals, both in R and in certain rings related to R. Also, w-essential prime divisors have yielded some new r
	Un 09o
	 J?
	 J?
	(1) 

	the ring = Π {R; height P = 1}. Thus this new theory seems to be very useful in surmounting some of the problems encountered when using 
	P

	the asymptotic theory, so we thought it would be desirable to have a paper where the basics of the w-essential theory are developed—and this is the purpose of the present paper. 
	In Section 2 we develop quite a few of the basic properties of inessential prime divisors. In particular, it is shown that they behave nicely when passing to localizations, factor rings modulo prime divisors of zero, faithfully flat Noetherian extension rings, and finite integral extension rings. 
	-

	In Section 3 it is shown that ^-essential sequences over an ideal / also behave nicely when passing to the same type of related rings, and in Section 4 it is shown that this also holds for the u-essential cograde of I. In Section 5 several preliminary results for Section 6 are proved, and in Section 6 it is shown that most of the bounds on the asymptotic cograde of I given in [6] have a valid analogue for the w-essential cograde. Finally, in Section 7 we give several examples to show some of the differences
	-

	As already mentioned, the results in this paper are closely analogous to the previously developed asymptotic theory. They are meant to present a new intermediate theory between the standard and asymptotic theories, and we feel these results show that the u-essential theory is the natural choice for such an intermediate theory. The applications of this new theory to date have been very promising, and we think this new theory will have many important applications in future work on the ideal theory of Noetheri
	-

	We are indebted to the referee for his suggestions on simplifying 
	several of our proofs and for correcting our original proofs of (5.1) and 
	(7.2). 

	§2. (/-essential prime divisors 
	§2. (/-essential prime divisors 
	In this section we prove a number of properties of the w-essential prime divisors of an ideal / in a Noetherian ring R. (The name comes from their definition: they are the contraction to R of the essential prime divisors of u in the Rees ring of R with respect to /.) These prime ideals were first considered in [3], and a few of their basic properties were established there. In this section we give a more complete study of these ideals. We begin with the basic definitions. 
	All rings in this paper are commutative with identity and they will generally be Noetherian. If R is a semi-local (Noetherian) ring, then R* will denote the completion of R in its natural topology. And if I is an ideal in a Noetherian ring JR, then S/t = &(R,1) will denote the Rees ring of R with respect to I; that is, 0t = R[u, tl], where t is an indeterminate and u = 1/ί. Thus 0t is a graded Noetherian subring of R[u, t], u is a  31, uSt D R = I for all n > 1. 
	regular element in
	 and
	n
	n

	(2.1) DEFINITION. Let I be an ideal in a Noetherian ring R and let  , b be nonunits in R. Then: 
	b
	l9
	d

	(2.1.1) A*(I) for all large /ι}, A*(I) = {P e  Pe Ass R/(I) for all large τι}, where (J) is the integral closure  R I, E(I) = {PeSpecΛ; I(R)* + z is P^)*-primary for some  (R)*}, and, C7(J) = {p Γ) R; p e E(u@(R, /))}. P is an asymptotic (resp., essential, u-essentίal) prime divisor of I in case PeA*(I) (resp., PeE(I), PeU(I)). 
	 = {P e Spec iϊ; P e Ass J?//
	re
	Speciϊ;
	n
	a
	n
	α
	in
	 of
	n
	P
	2 e Ass
	P

	(2.12) b -,b are an asymptotic (resp., essential, u-essentiaΐ) sequence over I b , b)RψR and ί^ β U A*((/, 6 , fei.^i?) (resp., M U JF((J, 6,, , 6^)22), ba U E/(I, 6 , δ,.^)) for ί = 1, . ., d. An asymptotic (resp., essential, w-essential) sequence over (0) is simply called an asymptotic (resp., essential, u-essentίaΐ)sequence in R. (It is shown in 
	u
	d
	 in case (/,
	u
	d
	lf
	l5

	(3.10) b are a w-essential sequence in R if and only if they are an essential sequence in R, so the terminology "^-essential sequence in JR" will only be used till (3.10) is proved.) 
	 that 6j, ,
	a

	(2.1.3) The asymptotic (resp., essential) grade of I, denoted agd(/) (resp., egd(J)) is the length of an asymptotic (resp., essential) sequence maximal with respect to coming from J. 
	(2.1.4) If R is local, then the asymptotic (resp., essential, u-essential) cograde of I, denoted acogd (I) (resp., ecogd (/), uecogd (/)), is the length of a maximal asymptotic (resp., essential, w-essential) sequence over I. 
	The concepts of a zz-essential sequence over / and of uecogd (/) are new to this paper. But the other concepts defined in (2.1) have previously been studied and a number of their properties have been determined. In what follows we will need to use several of these properties, so (2.2) contains a list of those that are most often used below. 
	(2.2) Remark. Let I be an ideal in a Noetherian ring R. Then the following hold: 
	(2.2.1) The sets Ass Rjl and Ass RI(I) are stable for all large τι, by [1] and [17, (2.7)] (see also [8]), so A*(J) and A*(I) are well defined finite sets of prime ideals. Also, A*(J) c A*(/) and E(I) c A*(/), by [17, (2.7)] and [7, (3.3.1)], so E(I) is also a finite set of prime divisors of Ifor all large n. 
	n
	n
	a
	n 

	(2.2.2) It is clear from the definitions that each minimal prime divisor of I is in A*{I) Π E(I). 
	(2.2.3) If z € Ass R and P is a minimal prime divisor of I + z, then PeE(I), by [7, (3.3.4)]. 
	(2.2.4) If P e Spec R and S is a multiplicatively closed set in R such that Ps ψ R, then Pe A*(I) (resp., #(/)) if and only if Pe A*(I) (resp., E(I)\ by [18, (2.9.2)] (resp., [7, (3.3.2)]). 
	s
	s
	S
	S

	(2.2.5) PeA*(I) (resp., E(I)) if and only if P/z e A*((I + z)\z) (resp., E((I + z)/2)) for some minimal (resp., for some) z e Ass i?, by [17, (6.3)] (resp., [7, (3.6)]). 
	(2.2.6) If A is a Noetherian ring which is a faithfully flat i?-module, then A*(I) = A*(IA) Π R (resp., E(I) = E(IA) Π R), and if PeA*(J) (resp., E(I)) and P * is a minimal prime divisor of PA, then P * e ^ί*(/A) (resp., E{IA)\ by [17, (6.5) and (6.8)] (resp., [7, (3.7)]). 
	(2.2.7) If B is a finite integral extension ring of R, then A*(I) c: A*(JB) (Ί # (resp., #(/) c £(IJ3) Π R). Moreover, if z e Ass B implies 2 Π R e Ass iϊ, then equality holds, by [20] (resp., [7, (3.9)]). 
	(2.2.8) If J is an ideal in R such that Rad J = Rad Z, then 2?(J) = E(I), by [7, (3.3.5)]. 
	(2.2.9) It follows immediately from (2.1.2) that if 6 , b in R are an asymptotic (resp., essential) sequence over 7, then height (I, 6j, , 6^)22 > height J + d. Therefore, by the Generalized Principal Ideal Theorem, if b -',b are an asymptotic (resp., essential) sequence in R, then height(6,, -. ,b)R = d. 
	1?
	d
	u
	d
	d

	(2.2.10) If b , b in R are an asymptotic (resp., essential) sequence 
	l9
	d

	over I and S is a multiplicatively closed set in R such that (J, b , 6) i? :£ R, then the images of b , & in i? are an asymptotic (resp., 
	l9
	d

	5 su d5 
	essential) sequence over I, by [18, (2.9.2)] (resp. [19, (2.3)]). 
	s

	(2.2.11) Elements b , b in R are an asymptotic (resp., essential) sequence over I if and only if their images in R\z are an asymptotic (resp., essential) sequence over (J + z)\z for all minimal (resp., for all) z e Ass B, by [17, (6.3)] (resp., [19, (2.4)]). 
	u
	d

	(2.2.12) If A is a Noetherian ring which is a faithfully flat .R-module,  b , b in R are an asymptotic (resp., essential) sequence over / if and only if they are an asymptotic (resp., essential) sequence over I A, by [17, (6.5) and (6.8)] (resp., [19, (2.5)]). 
	then
	ί9
	d

	(2.2.13) Agd(7) (resp., egd(J)) is unambiguously defined and agd(J) )* + z)/z; I cz Pe Spec R and z is mini (R) (resp., z e Ass (R)*)}, by [18, (3.1)] (resp., [19, (5.3)]). 
	(resp., egd (/)) = min {height (I(Λ
	P
	-
	mal in Ass
	P
	P

	(2.2.14) If i? is local, then acogd(I) (resp., ecogd(J)) is unambiguously defined and acogd(J) = min {depth z — £((IR* + z)/z); z is minimal in Ass i?*} (resp., ecogd(I) = min {depth (IR* + z); z e Assi?*}), by [2] (resp., [19, (3.2)]). Here £(J) denotes the analytic spread of the ideal J. 
	-

	We now begin considering w-essential prime divisors. Our first result, (2.3), contains three of their basic properties. 
	(2.3) Remark. If I is an ideal in a Noetherian ring R, then the following hold: 
	-

	(2.3.1) E7((0)) = Ass R. 
	(2.3.2) If P is a minimal prime divisor of /, then P e U(I). 
	(2.3.3) U(I) c A*(I). 
	Proof. Note that 0t = &(R, (0)) = R[u] and u is an indeterminate.  E(μ9t) = E(uR[u]) {(z, u)R[u] zeE((0))}, by [19, (2.7)], and E((0)) = Ass R, by [7, (3.3.3)], so 17((O)) = {(z, ϋ)Λ Π R; z e Ass R} = Ass R. This proves (2.3.1). 
	Therefore
	 =
	R
	R

	For (2.3.2) let 9t = 0t(R, I). Then u@ f] R = I, so if P is a minimal prime divisor of I, then there exists a minimal prime divisor p of uέ% such that p Π R = P, and p e EiμSt), by (2.2.2), so P e U(I). 
	For (2.3.3), let St = &(R, I). Then it was shown in [4, Corollary 17] that if p is a prime divisor of u^t such that tl gl p, then p Π Re A*(I). And in [16, Corollary 3.16] it was shown that if I c P e Ass i?, then P e A*(I). Therefore it suffices to show that if p e E{μ9t) and P = p Π R, then either P e Ass R ox tl gL p. For this, assume that P g Ass i? and  R -, I) = St tI cp<^, and p^ e E(u0t ), by (2.2.4). Also P β Ass R so it may be assumed that 
	suppose that ί/cp, Let S =
	 P. Then «(Λ
	P
	P
	Sy
	P

	5 s P P
	, 

	R 9> = 0l(R* IR*). Now p is the maximal homogeneous ideal in ^?, since {u, P, tI)Θί c p, so p^ is the  £f 0t is a dense subspace of ϊf^, by [12, Lemma 3.2]. Let L — ϋf^, so L* = (^)*, and so there exists z* e Ass L* 
	R 9> = 0l(R* IR*). Now p is the maximal homogeneous ideal in ^?, since {u, P, tI)Θί c p, so p^ is the  £f 0t is a dense subspace of ϊf^, by [12, Lemma 3.2]. Let L — ϋf^, so L* = (^)*, and so there exists z* e Ass L* 
	 is local with maximal ideal P. Let
	y
	maximal homogeneous ideal in
	 and
	v

	such that (2*, u)L* is pL*-primary, since p e E(u&). Let z = z* Π ^ and u; = 2 Π -R*, so 2 e Ass 5*, and so w e Ass iϊ* and Sf\z ^ @(R*lw, (IR* + itf)/α;), by [22, Theorem 1.5 and Lemma 1.1]. Now pέfjz is a maximal ideal  9>\z R*/PR* and trd (y/z)l(R*[w) = 1, by the isomorphism, so height p^/2 + 0 == height PR*/w + 1, since i?*/u; satisfies the altitude formula. Therefore, since P e Ass i?, it follows that height PR*jw > 1, so height p^jz > 2. But L/zL is unmixed and analytically unramified, by [15, (6.5)],
	in
	 and <^/p^ =
	9
	prime ideal and
	9


	Before proving the main result in this section, (2.5), we need the following lemma which shows that in an important special case the asymptotic, essential, and w-essential prime divisors of certain ideals are all the same. 
	-
	-

	(2.4) LEMMA. Let R be a locally unmixed Noetherian ring, let b ,b be elements in R such that height (b , b^R = i for i = 1, , d, and let B — (b , b)R. Then b , b are an essential sequence in R and Ά*(B) = E(B) = U(B) = {PeSpecR; P is a minimal prime divisor 
	u
	d
	u
	u
	d
	u
	d

	of B), 
	of B), 
	Proof. b --',b are an essential sequence in R and that E(B) = ^ , where £P= (Pe Spec R; P is a minimal prime divisor of B}. Also, since R is also locally quasi-unmixed and B is an ideal of the principal class, A*(B) = 9 (by [13, Theorem 2.12]). 
	 It is shown in [7, (6.1)] that
	u
	d
	-

	Now let P e U(B) and let p e E(μ9t) such that p Π R = P, where 0t = 0ί(R, B). Then it follows from [9, Corollary, p. 61] that 9t is locally unmixed, so heightp = 1, by [7, (6.1)]. Let 2* e Ass St such that z* C p and let z = 2* Π R. Then zeAssR and ^/z* = 9t{β\z, (B + z)\z), by [22, Theorem 1.5 and Lemma 1.1], and R\z satisfies the altitude formula, by [12, Corollary 2.7]. Therefore height p/z* + trd (^/p)/(i?/P) = height P\z + trd (@lz*)l(Rlz); that is, t = trά (&lp)l(R/P) = height P/z. But t < d (since ue
	 and ^ is generated by
	u
	d
	by (2.2.9) (since the images of
	u
	d
	by (2.2.11)). Therefore height
	 Now
	P
	condition for prime ideals, since
	P

	= d, so Pe^ , hence £/(B) c ^ . Finally, if Pe^ , then there exists a 
	= d, so Pe^ , hence £/(B) c ^ . Finally, if Pe^ , then there exists a 
	minimal prime divisor p of u0ί such that p Π R = P, since u& Π R = B, so p e E(u$), by (2.2.2), hence P e £/(£), and so U(B) = &. q.e.d. 

	The following internal characterization of U(I) was given in [3, Theorem 2.5]: U(I) = Π {A*(J); Ji s an ideal in R and I c J c (J») for some n > 1}. But even with this characterization the w-essential primes are somewhat awkward to work with. (2.5) shows that U(I) behaves very nicely with respect to passing to certain related rings. This is important, since they are very useful ideals, and once (2.5) is proved they will be considerably less awkward to work with. 
	n
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	(2.5) THEOREM. Let I be an ideal in a Noetherίan ring R. Then the following hold: 
	(2.5.1) If S is a multiplίcatively closed set in R, then U(I) = {P; P e U(I) and P Π S = φ}. 
	S
	s

	(2.5.2) P e U(I) if and only if there exists z e Ass R such that z cz P and P\z e U((I + *)/*). 
	(2.5.3) If A is a Noetherίan ring which is a faithfully flat R-module, then U(I) = {P* Π R; P* e U(IA)}, and if P e U(I) and P* is a minimal prime divisor of PA, then P* 6 U(IA). 
	(2.5.4) // B is a finite integral extension ring of R, then U(I) c: {P Π R; P € U(IB)}, and equality holds if ze Ass B implies z Π R e Ass R. 
	f
	r

	(2.5.5) U((I, X)R[X]) = {(P, X)R[X] P e £/(/)}. 
	(2.5.6) If J is an ideal in R that is projectively equivalent to /, that is, there exist positive integers m and n such that (I) = (J), then U(J) 
	n
	a
	m
	a

	(2.5.7) A*(I) U E(I) c U(I). 
	(2.5.8) If I is generated by an essential sequence in R, then U(I) = E(I). 
	Proof Throughout, 3t = 3l(R1). 
	9

	For (2.5.1) let Q e U(I) and let q e E(u&(R, I)) such that q Π R = Q. Then 3t(R, I) = St, so p = q ΓΊ 9t e E{u0t), by (2.2.4), hence P == p Π R e U(Γ), by (2.1.1), and Q = P. Conversely, if P e U(I) and P Π S -φ, then let p e E{μ0ί) such that p f) R = P. Then p e E(u@), by (2.2.4), and p Π R = P, so P e U(I), by (2.1.1). 
	S
	s
	s
	s
	s
	s
	s
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	s
	s
	s
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	For (2.5.2) let T be the total quotient ring of &. Then Ass St = 
	{zT Π ^ -ε € Ass J?}, by [22, Theorem 1.5], and if z e Ass R, then ^/(zΓ Π ^) 
	= &(R/z,(I + 2)/z), by [22, Lemma 1.1]. Therefore (2.5.2) follows readily 
	from (2.2.5) (applied to u9l) and (2.1.1). 
	For (2.5.3), let stf = &(A, lA) so J / is a faithfully flat ^-module, by [17, (6.4)]. Therefore, if P e U(I), then let p e E{u$) such that p Π R -P and let p * be a minimal prime divisor of ps/. Then p* e E{ustf), by (2.2.6), so P* =p* Π A € E7(JA), by (2.1.1), and P* Π £ - P. Therefore Z7(J) c {P* Π R; P * e f7(IA)}, and the proof of the opposite inclusion is similar. Finally, let P e U(I) and let P * be a minimal prime divisor of PA. Then i? cz A* satisfy the Theorem of Transition. Therefore, since P  e U
	y
	P
	P
	P
	P
	P
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	For (2.5.4), let & = 0t(B, IB), so J is a finite integral extension ring of 0t. Therefore the set containment follows readily from (2.2.7) (applied to u0t) and (2.1.1). Also, the prime divisor of zero in 0ί are the ideals zT Γ\ & with z e Ass R and T the total quotient ring of 0t by [22, Theorem 1.5], and a similar statement holds for J*. Therefore the last statement in (2.5.4) also readily follows from (2.2.7) (applied to u0t) and (2.1.1). 
	9

	For (2.5.5) let P 6 U(I). Then by (2.5.1), P e U(I) and if (P, X)R[X] e U((I, X)R[X]\ then (P, X)R[X] e U((I, X)R[X]) so it may be assumed that R is local with maximal ideal P. Then similarly by using (2.5.3) and 
	P
	P
	P
	P
	P
	P
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	(2.5.2) it may be assumed that R is a complete local domain with maximal ideal P. Let St = @{R, I) and let p e E{u@) such that p Π R = P. Then q - (p, X)St[X\ e E((u, X)9t{X\\ by [19, (2.7)]. Now St[X\ is locally unmixed, by [9, Corollary, p. 61], so height q = 2, by (2.4). Also, Xju = tX, so q = q&[X, tX] is a height one prime ideal that contains u&[X, tX] and lies over q, by [14, Lemma 2.7]. Therefore q e E(u@[X,tX]\ by (2.2.2), and 9t\X, tX] = &{R[X\, (I X),R[X])> so (P,X)R[X] = q> Π Λ[X] e C7((J, X)B[X]
	-
	/
	r

	Now let Q e U((I, X)R[X\) and let P = Q n R, so Q = (P, X)B[JSΠ. As in the preceding paragraph it may be assumed that R is a complete local domain with maximal ideal P. Therefore let & = £%{R, I) and, since Ά(R[X\, (/, X)R[X]) = 9t\X, tX] = (say)^, let q e E{uSf) such that q' f] R[X] = Q. Then height q - 1, by (2.4), and (u, X)0[X] c q - q> f] <%[X], so by the altitude formula (since R is a complete local domain) it follows that height q = 2. Therefore q e E((u, X)0t[X]), by (2.4), and so [19, (2.7)] implie
	7
	f
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	For (2.5.6), let <$* = 3t(R, I), so y is a finite integral extension ring of 0ί (since I reduces I) and 0t and 5^ have the same total quotient ring. 
	a
	a

	Therefore (2.2.7) implies E{u0t) = E(uS?) Π 9t. Thus it follows that U(I) = [7(1). 
	a
	l
	n

	Now let si — R[u, t]. Then St is a finite integral extension ring of si and si = £%(R> I). Also, it follows from the description of Ass 0t given in the proof of (2.5.2) that z e Ass 0t implies z f] si e Ass si. Therefore, since E{μ9t) = E(u@), by (2.2.8), it follows from (2.2.7) that E(usf) = EiμSt) Π si. Therefore it follows that U(I) = U(I) and, similarly, that U(J) = U(J). Also, U(I) = C/((/)) and C7(J) = U((J)) by the preceding paragraph, so it follows from the hypothesis that U(I) = U(I) = U((I)) = U((
	n
	n 
	n
	-
	n
	n
	n
	m
	n
	w
	α
	W
	m
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	n
	a
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	For (2.5.7) let P e A*(I) U E(I). Then P  e A*(I) U #(//>), by (2.2.4), and if P e U(I), then P 6 £/(/), by (2.5.1), so it may be assumed that R is local with maximal ideal P. Then (2.2.6) and (2.5.3) show that A*(I) = {P* ΠR; P* e iί*(IR*)}, £(I) = {P* Π Λ; P* e E(IR*)}, and J7(/) = {P* ΓΊ fi; P* e U(IR*)}. Therefore it may be assumed that R is complete. By (2.2.5), if P e E(I) (resp., A*(I)), then there exists z e Ass R (resp., a minimal z e Ass i?) such that z^P and P/z e E((I + z)jz) (resp., iί*((I + z)
	P
	P
	P
	P
	y
	-

	For (2.5.8), it was shown in (2.5.7) that E(I) c U(I), so it suffices to 
	show the other containment. For this, let P € U(I). Then by (2.5.1) PP e 
	U(IP), and if PP e E(IP), then P e E(I), by (2.2.4). Also JP is generated by 
	an essential sequence, by (2.2.10), so it may be assumed that R is local 
	with maximal ideal P. Now PR* e U(IR*), by (2.5.3), and if PR* e E{IR*\ 
	then P 6 E(I), by (2.2.6). Also IR* is generated by an essential sequence, 
	by (2.2.12), so it may be assumed that R is a complete local ring. Now 
	there exists z e Ass R such that P\z e U((I + z)/z), by (2.5.2), and if P\z e 
	E((I + z)lz\ then P e E(I), by (2.2.5). Also, (I + z)\z is generated by an 
	essential sequence, by (2.2.11), so it may be assumed that R is a complete 
	local domain. Therefore let 9t = £%(R, I), so 9t is locally unmixed, by [9, 
	Corollary, p. 61]. Now I is generated by an essential sequence, say 
	bl9 , bd, so height (bu , b{)R = i for i = 1, , d, by (2.2.9) (since 
	b ,b are an essential sequence for ί = 1, ,d). Therefore E(I) = U(I), by (2.4), so PeE(I). q.e.d. 
	l9
	t

	(2.5.8) together with the internal characterization of U(I) mentioned just before (2.5) give an affirmative answer to a question that arose in studying essential prime divisors, namely: If / is generated by an essen
	-

	I
	I
	n<

	tial sequence in R, then is E(I)= Π {A*(J); ^J^(I) for some 
	n
	a

	n > 1}. However, we show in (7.4) that, for general ideals I in Noetherian rings, E(I) may be a proper subset of this intersection. 
	(2.5.7) shows that U(I) includes the asymptotic and essential prime divisors of 7, and (2.5.1)-(2.5.5) show that ^-essential prime divisors have the same nice properties these other prime divisors have in regard to passing to certain related rings. This is important, since it will be shown in (7.4) that U(I) may properly contain A*(I) U E{I). 
	(2.6) is a corollary of (2.5.7). 
	(2.6) COROLLARY. If b  ,b are a u-essential sequence over an ideal I in a Noetherian ring R, then b -,b are an asymptotic sequence over I and an essential sequence over I. 
	u
	d
	l9
	d

	Proof. This is clear by (2.5.7) and (2.1.2). q.e.d. 
	(2.7) Remark. Let I be an ideal in a Noetherian ring R, let M be a maximal ideal in R containing /, and let N = (M, f)R[X] be a maximal ideal in R[X]. It may be assumed that / is a monic polynomial. Then Ne U((lf)R[X]) if and only if MeU(I). 
	Proof Since R[f] s R[X), it follows from (2.5.5) that Me U(I) if and only if (M,f)R[f] e U((I, f)R[f]). NowR[X] is integral over R[f], since / is monic, and z e Ass R[X] implies z (Ί R[f] e Ass R[f], Also, N is the only prime ideal in R[X] that lies over (M, f)R[β. Therefore (M,f)R[f] e U((lf)R[f}) if and only iΐ Ne U((I,f)R[X]\ by (2.5.4). q.e.d. 
	The following lemma and its corollaries give some new information on essential prime divisors. These results will be especially useful in Section 7 where some examples are given. 
	(2.8) LEMMA. Let (R, M) be a local ring and let I be an ideal in R. If all primary components of zero in J?* are contained in 7i?*, then Me E(I) if and only if I is M-primary. 
	Proof. If I is M-primary, then M €E(I), by (2.2.2). 
	Conversely, assume that MeE(I), let PeAss R/I, and let P* be a minimal prime divisor of PR*. Then U (AssR*) c= P*, by hypothesis, so IR* + z<^ P* for all 2 e Ass #*. But MeE(I) implies that /#* + z is MR*-primary for some z e Ass iϊ*, SO P * = MR*, hence P — M. q.e.d. 
	(2.9) COROLLARY. 1/ (R, M) is a local ring such that Ass R* has exactly one element and if I is an ideal in R, then M e E(I) if and only if I is M-primary. 
	-

	Proof. This is clear by (2.8). q.e.d. 
	(2.10) COROLLARY. Let(R, M) be a local ring such that Ass (R)* has exactly one element for all PeSpec R. Then E(I) = {PeSpecίί; P is a minimal prime divisor of 1} for all ideals I in R. 
	P

	Proof. This follows readily from (2.2.2) and (2.9), since P e E(I) implies that P e E(I). q.e.d. 
	-
	P
	P

	This section will be closed with the following proposition and its corollary. The proposition is a slight strengthening of [3, Corollary 2.8] and our proof below is detailed, as opposed to the sketch offered in [3]. It shows that U(I) = A*(I) in a large class of Noetherian rings. 
	(2.11) PROPOSITION. Let I be an ideal in a Noetherian ring R and assume that (R)* has no imbedded prime divisors of zero for all maximal ideals M in R that contain I. Then U(I) = A*(I) 3 E(I). 
	M

	Proof. It was shown in (2.5.7) that A*(I) UE(I) c [/(/), so it suffices to show that U(I) c: A*(I). For this let P e U(I) and let M be a maximal ideal in R that contains P. Then P e U(I), by (2.5.1), and if P e A*(I), then P €A*(I), by (2.2.4), so it may be assumed that R is local with maximal ideal M. Then if P* is minimal prime divisor of PR*, then P* e U(IR*), by (2.5.3), and if P* e A*(IR*), then P e A*(Γ), by (2.2.6), so it may be assumed that R is complete. Then there exists z e Ass R such that z c P 
	-
	M
	M
	M
	M
	-
	y 

	(2.12) COROLLARY. If I is an ideal in a Noetherian ring R such that 
	)* has no imbedded prime divisors of zero for all maximal ideals M in R containing I, then 
	I is generated by an essential sequence in R and (R
	M


	A*(I) = 
	A*(I) = 
	Proof. This is clear by (2.5.8) and (2.11). q.e.d. 
	Some additional results concerning w-essential prime divisors will be proved in Section 5. However, their proofs require several new results, so to keep things pretty much in order of their proofs it was decided to delay giving these w-essential prime divisor results till the needed results have been proved. 
	§3. ίZ-essential sequences over an ideal 
	In this section we prove several results that show that ^-essential 
	sequences over an ideal I in a Noetherian ring R behave nicely when 
	 b ,b
	passing to certain related rings. Then it is shown in (3.10) that
	u
	d 

	are a w-essential sequence in R if and only if they are an essential se
	-

	quence in JR. 
	We begin with (3.1) which is essentially a corollary of (2.11). It shows 
	that w-essential sequences over I and asymptotic sequences over I are the 
	same in a large class of Noetherian rings. 
	(3.1) THEOREM. Let R be a Noetherian ring such that Ass (R)* has no imbedded elements for all maximal ideals M in R. Then the following hold for all ideals I in R. 
	M

	(3.1.1) U(I) = iί*(I) 2 E(l). 
	(3.1.2) Elements b , b in R are a u-essential sequence over I if and only if they are an asymptotic sequence over I, and this implies b ,bare an essential sequence over I. 
	ί9
	d
	u
	d 

	(3.1.3) If R is local, then uecogd (I) = acogd (I) < ecogd(I). 
	Proof. (3.1.1) is clear by (2.11), (3.12) follows immediately from (3.1.1), and (3.1.3) follows directly from (3.12) and (2.2.14) once it is shown that uecogd (J) is well defined. This is done in (4.1). q.e.d. 
	In (3.3)-(3.8) we show that ^-essential sequences over / behave nicely when passing to certain related rings. The following lemma will be useful in proving these results. 
	-

	(3.2) LEMMA. Let I be an ideal in a Noetherian ring R, let b ,b
	u
	d 

	be nonunits in R, and let B = (b , b )R. Then b , b are a maxi-
	u d ί9d 
	mal u-essential sequence over I if and only if they are a u-essential sequence over I and, for each maximal ideal M in R containing I + B it holds that MeU(I+ B). 
	Proof. This follows readily from the definition, (2.1.2). q.e.d. 
	(3.3) is concerned with u-essential sequences over J and over I. 
	s

	(3.3) THEOREM. Let I be an ideal in a Noetherian ring R and let 1>D Jb be nonunits in i?. Then the following hold: 
	d

	(3.3.1) If b - , b are a u-essential sequence over I and S is a multiplicatively closed set in R such that (I, b , b ) R Φ R then the images
	u
	d
	-

	u ds S9 
	of b , b in R are a u-essential sequence over I. The converse holds if P Φ R for all PeU {U((I, b , b )R); ί = 0,1, - , d - 1}. 
	ί9
	d
	s
	s

	ss l9t 
	(3.3.2) If b '-,b are a maximal u-essential sequence over I, then for each maximal ideal M in R that contains (I, b , b)R it holds that the images in R of b , b are a maximal u-essential sequence over I. The converse holds if the b are all in the Jacobson radical of R. 
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	d
	ί9
	d
	M
	u
	d
	M
	t

	Proof (3.3.1) follows immediately from (2.5.1), and the first statement in (3.3.2) follows from (2.5.1) and (3.2). For the last statement in (3.3.2) it will first be shown that b -',b are a u-essential sequence over J. For this, suppose they are not, so there exists i (0 < i < d) such that b ePe U((I, b , b^R). Let M be a maximal ideal in R containing 
	l9
	d

	i+1 ί9 
	P. Then the Jacobson radical hypothesis implies that (J, b , b)R c: M, so the supposition and (2.5.1) imply that the image of b is in Pe U((I, b -, bi)R) where S = R — M. But this implies that the images of 6j, , b in R are not a w-essential sequence over I, in contradiction to the hypothesis. Therefore b , b are a u-essential sequence over /. Finally, if M is a maximal ideal in R containing (J, b , b)R and S = R — M, then the hypothesis and (2.5.1) imply that Me U((I, &!, , b)R), so b - -, b are a maximal 
	u
	d
	i+ί
	s
	u
	s
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	d
	M
	M
	-
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	(3.4) is concerned with u-essential sequences over I and over (J + z)\z with z € Ass R. 
	(3.4) THEOREM. Let I be an ideal in a Noetherian ring R and let bu , bd be nonunits in R. Then the following hold: 
	(3.4.1) are a u-essential sequence over I if and only if their images in Rjz are a u-essential sequence over (I + z)\z for all z e Ass R. 
	 &i, ,
	 b
	d

	(3.4.2) -, b are a maximal u-essential sequence over I if and only if their images in R/z are a u-essential sequence over (I + z)\z for all z e R and for all maximal ideals M in R containing (I, b , b)R there exists z R such that z M and M\z U(((I, b , b)R + z)\z). 
	 b
	u
	d
	Ass
	u
	d
	 e Ass
	 c
	 e
	u
	d

	Proof (3.4.1) follows readily from (2.5.2), and (3.4.2) follows from 
	(2.5.2) and (3.2). q.e.d. 
	(3.5) is concerned with w-essential sequences over / and over IA with A a faithfully flat Noetherian i?-algebra. 
	(3.5) THEOREM. Let R c: A be Noetherian rings such that A is a faithfully flat R-module, let I be an ideal in R, and let b , b be non-units in R. Then the following hold: 
	u
	d

	(3.5.1) -- -, b are a u-essential sequence over I if and only if they are a u-essential sequence over IA. 
	 b
	l9
	d

	(3.5.2) If R A satisfy the Theorem of Transition, then b , b are a maximal u-essential sequence over I if and only if they are a maximal u-essential sequence over IA. 
	 cz
	u
	d

	Proof (3.5.1) follows readily from (2.5.3), and (3.5.2) follows from (2.5.3) and (3.2). q.e.d. 
	(3.6) is concerned with u-essential sequences over I and over IB with B a finite integral extension ring. 
	(3.6) THEOREM. Let B be a finite integral extension ring of a Noetherian ring R, let I be an ideal in R, and let b , b be nonunits in R. Then the following hold: 
	-
	u
	d

	(3.6.1) If b - -, b are a u-essential sequence over IB, then they are a u-essential sequence over I. 
	u
	d

	(3.6.2) -,b are a u-essential sequence over I if and only if they are a u-essential sequence over IB. 
	 If ze
	 Ass
	 B implies z
	 Π
	 Re
	 Ass
	 R, then b
	u
	d

	(3.6.3) ,b are a maximal u-essential sequence over I if and only if they are a u-essential sequence over IB and for each maximal ideal M in R containing (I, b , b)R there exists a maximal ideal N in B such that N Π R = M and N e 
	 If z
	 e Ass
	 B implies z
	 (Ί
	 Re
	 Ass
	 R, then b
	u
	d
	-
	l9
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	Proof. (3.6.1) and (3.6.2) follow readily from (2.5.4), and (3.6.3) follows from (2.5.4) and (3.2). q.e.d. 
	(3.7) is concerned with w-essential sequences over / and over IR[X]. 
	(3.7) THEOREM. Let I be an ideal in a Noetherian ring R and let b -, b be nonunits in R. Then the following hold: 
	u
	d

	(3.7.1) The following are equivalent: 
	(a) b , b are a u-essentίal sequence over I. 
	ly
	d

	(b) b , b X, b, , b are a u-essentίal sequence over IR[X] for some ί = 0, 1, ,d. 
	l9
	u
	i+ί
	d

	(c) (b) holds for every ί = 0,1, ,d. 
	(3.7.2) The following are equivalent: 
	(a)
	(a)
	(a)
	 b , b are a maximal u-essentίal sequence over I. 
	u
	d


	(b)
	(b)
	 b , b, X, b -, b are a maximal u-essentίal sequence over 


	u t i+l9 d 
	IR[X] for some ί = 0,1, ,d. 
	(c) (b) holds for every i — 0, 1, ,d. 
	Proof. j b -,b)R[X]) = {PR[X]; Pe U((I, b , bj)R)}, by (2.5.3) (and since, for an ideal J in R, the prime divisors of JR[X] are the PR[X] with P a prime divisor of J). Also, it  X (I, b , b)R[X], and, for k = 0,1, ,d - i, C7((J, 6 , b X, b .,b )R[X]) = {(P, Z)i?[X]; 
	 (3.7.1) For
	 = 0,1, • - -£, £/((/,
	u
	3
	u
	is clear that
	 is not in any prime divisor of
	u
	{

	1? ίy t+1tΎk 
	, 

	PeU((I,)i?)}, by (2.5.5). Therefore it follows that (3.7.1) (a)-(c) are equivalent. 
	 &!...., 6
	i+fc

	(3.7.2) follows immediately from (3.7.1) and (3.2), since the maximal ideals in R[X] containing (I,X)R[X] are the ideals (Λf, X)#[X] with M a maximal ideal in R containing /. q.e.d. 
	(3.8) is concerned with ^-essential sequences over projectively equivalent ideals. Remark (3.9) below is required for its proof. 
	-

	(3.8) THEOREM. Let I and J be ideals in a Noetherian ring R such that (I) = {J) for some n > 1 and m > 1 and let b  , b be nonunits in R. Then the following hold: 
	n
	a
	m
	a
	u
	d

	(3.8.1) b , b are a u-essentίal sequence over I if and only if they are a u-essentίal sequence over J. 
	u
	d

	(3.8.2) b , b are a maximal u-essential sequence over I if and only if they are a maximal u-essential sequence over J. 
	u
	d

	Proof.
	Proof.
	 (3.8.1) Note first that for each,
	 i
	 = 0, 1, ,
	 d
	 we have ((/,
	 b
	u 

	•' ,b YR) = (((I»),bΐ,bΐ, -..,6?)22) so H=(I,b ...,b )R and K = 
	ta a βt ), ft?,---, 6?)fl are projectively equivalent. Therefore U(H)= C7(JBΓ), by (2.5.6), so & e UU(H) if and only if 6 g U [/(if) if and only if 
	, 
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	((/
	w
	α

	<+1 ί+1 
	U(K). , b are a w-essential sequence over I if and only if &?,•••, &2 are a w-essential sequence over ). And, similarly, b , b are a iz-essential sequence over J if and  bψ, (J) > Therefore 6 , b 
	6?+i £ U
	 Therefore it follows that 6
	1?
	d
	-
	(Z
	n
	α
	u
	d
	only if
	 ,&™ are α ^/-essential sequence over
	m

	a 1? d 
	 a I b\ b are a u-essential  (I) if and only if u, b\, , b are an essential sequence  0t @(R (I)), by (3.9), and this holds if and only if u, &Γ, , b^ are  St, 0t(J)), by hypothesis, ),  are a w-essential sequence over J, as noted above. Therefore (3.8.1) holds. 
	are
	 w-essential sequence over
	 if and only if
	, ,
	n
	d
	sequence over
	n
	a
	n
	d
	in
	 =
	y
	n
	a
	an essential sequence in
	 by (2.2.8). Now
	 = ^(Λ,
	m
	a
	so this holds if and only if &Γ, , 6? are a ^-essential sequence over (J
	m
	α
	by (3.9), if and only if &i, , fe
	d

	(3.8.2) follows immediately from (3.8.1) and (3.2). q.e.d. 
	(3.9) Remark. [21]. If I is an ideal in a Noetherian ring R and  b are nonunits in R, then ό , b are a ^-essential sequence  I u, b , 6 are an essential sequence in 0t(R, I). 
	όj, ,
	d
	1?
	d
	over
	 if and only if
	ly
	rf

	In (3.10) we show that w-essential sequences and essential sequences are the same (cf. [3] concluding Remark 3). 
	(3.10) PROPOSITION. Let b --,b be nonunits in a Noetherian ring 
	ί9
	d

	R. Then b , b are a u-essentίal sequence in R if and only if they are an essential sequence in R. 
	u
	d

	Proof. It follows immediately from (2.6) (applied to I = (0)) that a zz-essential sequence in R is an essential sequence. The converse is immediate from (2.5.8) and (2.1.2). q.e.d, 
	Because of (3.10) we will not henceforth talk about w-essential sequences in R. However, it is shown in (7.1) and its preceding comment that w-essential sequences over I are different from essential sequences over I, so it is necessary to use this terminology. 
	-

	This section will be closed with the following remark which gives some additional basic properties of w-essential sequences over /. 
	(3.11) Remark. Let I be an ideal in a Noetherian ring R and let bu ' -,b be nonunits in R. Then the following hold: 
	d

	(3.11.1) The following statements are equivalent: 
	(a)
	(a)
	(a)
	(a)
	 b , b are a w-essential sequence over I; (b) bΐ\ , b are a  n; (c) (b) holds for 
	l9
	d
	n
	d
	d
	w-essential sequence over / for some positive integers
	t
	all positive integers
	 n
	it 


	(3.11.2) The following statements are equivalent: 

	(a)
	(a)
	 b , b are a u-essential sequence over /; (b) There exists an ί ί d) b , b are a w-essential sequence over / and b , 6J22; (c) (b) holds for all i (ί = 0,1, ,d - 1). 
	u
	d
	 (0 <
	 <
	 such that
	ί9
	t
	&<+i> •••>&<£ are a ^-essential sequence over (J,
	l9



	Proof. b are a w-essential sequence over /if and only  u,b , 6 are an essential sequence in 9t = ^(i?, /), by (3.9), if and  u, bΐ\ --,b are an essential sequence in 3t> by [19,(2.11.1)], if , , b are a w-essential sequence over I, by (3.9), so 
	 (3.11.1) &!, ,
	d
	if
	l9
	d
	only if
	d
	d
	and only if δf
	1
	d
	d

	(3.11.1) holds. 
	(3.11.2) is clear by the definition, (2.1.2). q.e.d. 
	§ 4. On the {[/-essential cograde of an ideal In this section we show that uecogd (/) is unambiguously defined for ideals I in a local ring R, we give one characterization of this cograde, and we then show that it behaves nicely when passing to certain ideals related to I. We begin by showing uecogd (I) is well defined. In (4.1), £(J) denotes the analytic spread of the ideal J. 
	(4.1) THEOREM. If I is an ideal in a local ring R, then any two maximal u-essentίal sequences over I have the same length, so uecogd (/) is unambiguously defined. Moreover, uecogd (/) = min {depth z —β({IR* + z)/z); z e Ass £*}. 
	-
	-

	Proof. b , b be a maximal iz-essential sequence over I. Then by (3.5.2) and (3.4.2) their images in R*jz are a w-essential sequence over (ZR* + z)\z for all z e Ass iϊ* and for some such z their images are a maximal w-essential sequence over (Zβ* + z)/z. Therefore their images are an asymptotic sequence over (Zβ* + z)\z for all z e Ass J?* and for some such z their images are maximal asymptotic sequence over (IR* + z)/z, by (3.1.2). Now, for each zeAssiϊ* it holds that acogd ((IR* + z)\z= £((IR* z)/z) by (2
	Proof. b , b be a maximal iz-essential sequence over I. Then by (3.5.2) and (3.4.2) their images in R*jz are a w-essential sequence over (ZR* + z)\z for all z e Ass iϊ* and for some such z their images are a maximal w-essential sequence over (Zβ* + z)/z. Therefore their images are an asymptotic sequence over (Zβ* + z)\z for all z e Ass J?* and for some such z their images are maximal asymptotic sequence over (IR* + z)/z, by (3.1.2). Now, for each zeAssiϊ* it holds that acogd ((IR* + z)\z= £((IR* z)/z) by (2
	 Let
	u
	d
	depths -
	 +
	9

	min {depth z -£((IR* + *)/*); z e Ass i?*}. q.e.d. 

	(4.2) COROLLARY. Let I be an ideal in a local ring (R, M) and let Sf = St(R*, 7i?*). Then uecogd (/) = min {height (MR*/*, ύ)Sf\z* z e Ass #* and z* = zR*[t, u] Π &>} - 1. 
	Proof. By definition, £((IR* + z)\z) = depth (MR*/*, u)ZΓ, where JΓ &(R*/z, (IR* + *)/*), so T ^ 5^/2;*, by [22, Lemma 1.1]. Also, each ring <9*lz* is locally quasi-unmixed, so (^lz^)^* satisfies the first chain condition for prime ideals where Jί is the maximal homogeneous ideal in Sf. Therefore, by [15, (3.7)], depth (MR*\z, u)Sflz* = altitude (<¥lz*)* height (MR*/z, u)&Ίz*. Further, altitude i&Ίz*)^,* = depth z + 1, by [15, (2.2.4)]. Therefore by (4.1) it follows that uecogd (I) = min {depth z £((IR* + z
	-
	/2
	-
	Mz
	-
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	• ^/z* z e Ass i?*} = min {height (MR*/*, u)y\z* z e Ass J?*} - 1. q.e.d. 
	(4.3) shows that uecogd (I) behaves nicely when passing to certain related rings and ideals. 
	(4.3) THEOREM. Let I be an ideal in a local ring (R, M). Then the following hold: 
	(4.3.1) uecogd (I) = min {uecogd ((I + *)/*); z e Ass R}. 
	(4.3.2) If A is a faithfully flat Noetherίan extension ring of R, then uecogd (I) < uecogd (IA) for all prime ideals N in A lying over M and equality holds if height N = height M. 
	N

	(4.3.3) If B is a finite integral extension ring of R such that z e Ass B implies z Γ) RN) for all maximal ideals N in B and equality holds for some such N. 
	 € Ass
	 R, then
	 uecogd (I) < uecogd
	 (IB

	(4.3.4) If J is projectively equivalent to I then uecogd (J) = uecogd (I). 
	Proof. These statements follow immediately from, respectively, (3.4.2), 
	(3.5) and (3.3.1), (3.6) and (3.3.1), and (3.8.2). q.e.d. 
	§5. Preliminaries for bounds on uecogd (I) In this section we prove three theorems, and several corollaries of one of them, that are used in Section 6 to establish certain bounds on uecogd (I). We begin with the w-essential analogue of [6, (3.2)], which gives a nice containment relation between ideals in A*(2) and in A((I> bu , bd)R), where bly , bd are an asymptotic sequence over I. 
	(5.1) THEOREM. Let I be an ideal in a Noetherίan ring R, let P e U(I),  b-' ,b be a u-essentίal sequence over I, and let N be a minimal prime divisor of (P, b -b )R. Then Ne £/((/, b -b )R).
	let
	u
	d

	199d l9 9d 
	Proof. By (2.5.1) P e U(I) and if N e U((I, b , b)R \ then 
	NN NudN 
	N e U((I, b -, b )R). Also, the images of b , b in R are a in-
	u d l9dN 
	essential sequence over 7, by (3.3.1), so it may be assumed that R is local with maximal ideal N. Then by (2.5.3) if P * is a minimal prime divisor  U(IR*) NR*eU((I,b -,b)R*), then iVe  b)R). Also, &!, , b are a iz-essential sequence over IR*, by (3.5.1), so it may be assumed that R is complete. By (2.5.2) there ex
	of Pi?*, then P* e
	 and if
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	 zeAssR
	 such that zcPand
	 P\z
	 e
	 U((I + z)\z)
	 and if
	 N/z e
	 C/(((7,
	 b
	l9 

	• , &Ji? + z)jz) then iVe U((I, b -b )R). Also, the images of b , 6^ 
	9 ί99d u 
	are a u-essential sequence over (I + z)jz, by (3.4.1), so it may be assumed that R is a complete local domain. 
	Let m = ^(1?, I) and let p e E(w^) such that p f) R = P. Then  u,b , 6 are an essential sequence in 0t by  q (p, b , 6)«^, then  q = d 0ί tb so  —q&[tb , 26J is a height one prime divisor of u&[tb , Z6J that  q, . . ,^6J== 9t{R (I, b -" b )R), q' Γ) Re U((I, b , b )R). Also, ^ ΠR = N, since 
	heightp = 1, by (2.4), and
	u
	d
	9
	(3.9). Therefore, if
	 is a minimal prime divisor of
	u
	d
	height
	 + 1, by (2.2.9) and since
	 is catenary. Also, &*/& =
	u
	g
	/
	u
	u
	lies over
	 by [14, Lemma 2.7]. Therefore, since ^[ί6
	1?

	9 l99d l9 d 
	^ Π 12-q ΓΊ R 2 (P, 6i, &*,)12. q.e.d. 
	(5.2) COROLLARY. L^ί I 6β απ, ideal in a Noetherian ring R and let b -, b be a u-essentίal sequence over I. Then, for i — 0, 1, ,d — 1, given any P e U((I, b , 6Ji?) ί/ierβ exists Q e U((I, b , b )R) such 
	u
	d

	u u i+ί 
	that P C Q. Moreover, if R is locally quasί-umnίxed, then Q can be chosen such that height Q — height P + 1. 
	Proof. The first statement follows immediately from (5.1), and the last  R in the quasi-unmixed case. q.e.d. 
	statement follows from the first chain condition for prime ideals in
	Q

	(5.3) is a E(I) analogue of (5.2). 
	 Let b , b be an essential sequence in a Noetherian ring R, fix ί i < d) let P e E((b , b)R\ and let N be a minimal prime divisor of (P, b, , b )R. Then N e E((b , b )R).
	(5.3). COROLLARY.
	u
	d
	-
	 (0 <
	9
	l9
	t

	ί+1d ud 
	Proof. E((b , bj)R) = U((b • , bj)R) for j = 1, . ., d, by (2.5.8). 
	l9
	u

	Therefore, if I = (b , b )R, then b , b are a zz-essential sequence 
	u t ί +1d 
	, 

	over I, so the conclusion follows immediately from (5.1). q.e.d. 
	(5.3) is definitely a weaker result than (5.1), and it is shown in (7.3) that the essential sequence over I analog of (5.1) is not true. 
	(5.4) is the ^-essential analogue of the following result: If P e A*(B), where B is generated by an asymptotic sequence, then P e A*(I) for all ideals I in R such that B c= Rad I c P. 
	(5.4) THEOREM. Let B c; P be ideals in a Noetherίan ring R such that B is generated by an essential sequence in R and P € U(B). Then P e U(I) for all ideals I in R such that B g Rad I ς: P. 
	Proof. By (3.11.1) and the hypothesis that B c; Rad I it may be assumed that B c: J. Then by (2.5.1) and (2.2.10) it may be assumed that R is local with maximal ideal P, and then by (2.5.3) and (2.2.12) it may be assumed that R is a complete local ring. Finally, by (2.5.2) and (2.2.11) it may be assumed that R is a complete local domain. Then P e U(B) implies P is a minimal prime divisor of B, by (2.4), so B is P-primary. Thus I is P-primary, so P e U(I\ by (2.3.2). q.e.d. 
	-

	(5.5) contains several remarks that will be used in the proof of (5.6) and (6.7)-(6.9). 
	(5.5) Remark. The following hold for an ideal / in a local ring R: 
	(5.5.1) If b->-,b in R are a ^-essential sequence over 1, then 
	u
	d

	(5.5.2) If 6, , b are nonunits in R whose images modulo I are an iϊ/J^-sequence for all large n, then £(((1,b , b)R)l(b , b)R) -S(I). 
	3
	d
	n
	u
	d
	u
	d

	(5.5.3) For all large k it holds that grade R/I = grade R/P for all 
	n

	n > k and if b -, b are nonunits in R whose images in R/P are an i?/I-sequence, then their images in Rjl are an iϊ/J^-sequence for all 
	u
	d
	fc
	n

	n > k. 
	(5.5.4) If J is an ideal in R, then £(I) > £((I + 
	Proof. For (5.5.1), b , b are an asymptotic sequence over 7, by (2.6), so the conclusion is given by [6, (3.1)]. 
	l9
	d

	(5.5.2) and (5.5.3) are given by [6, (7.1) and (7.3)]. 
	For (5.5.4) let 3t = &(R, I) and let ¥ = 3t(R\J, (I + J/)J), so £f = 0l\J* where J* = JR[t, u] Π &, by [22, Lemma 1.1]. Let p be a minimal prime 
	For (5.5.4) let 3t = &(R, I) and let ¥ = 3t(R\J, (I + J/)J), so £f = 0l\J* where J* = JR[t, u] Π &, by [22, Lemma 1.1]. Let p be a minimal prime 
	divisor of (Af/J, u)S? such that depth p == £((I + J)/J) and let P be the pre-image of p in ^. Then (Λf, u)^ c P, so £{I) = depth (M, u)St > depth P = depth p = £((I + J)IJ). q.e.d. 

	(5.6) is the final result in this section. Its proof is similar to the proof of [6, (7.2)], but there are enough differences that it was decided to include the details here. 
	(5.6) THEOREM. Let I be an ideal contained in the Jacobson radical of a locally unmixed Noetherian ring R and assume that b , b are  are an R\I-sequence for all large n. Then b , b are a u-essential sequence over I. 
	u
	d
	elements in R whose images in R\I
	n
	n
	u
	d

	Proof. implies that b & U A*(J) = U {P e Speci?;  I for all large n}. Therefore, since U(I) c: A*(I),  b is a w-essential sequence over /. 
	 The hypothesis on 6
	X
	λ
	P is a prime divisor of
	n
	by (2.3.3), it follows that
	x

	 b ,b are a w-essential se
	We now inductively assume that
	l9
	1
	-

	d_  I. b , b are an essential 
	quence over
	 Then it is shown in [21] that
	ly
	γ

	d_  R, (b , b_ϊ)R = d — 1, by (2.2.9). We must show _i)J2), so suppose, on the contrary, that beP  U((I, b , 6_i)ίϊ). Then it may be assumed that R is local with maximal ideal P, by (2.5.1). Now U(J) = A*(J) for all ideals J in R,  A*((I, b , b^R), and so heightP = £((I, b -, 6^)12) 
	sequence in
	 so height
	u
	d
	that δ^ U C7((I, 6i, , &
	d
	d
	for some P e
	u
	d
	by (3.1.1), so P e
	u
	l9

	= £{T)+ d — 1, by [5, Theorem 3] and (5.5.1). Let ' denote residue class modulo (&„ -,&„_,)& Then 4(1') = £(I) = heightP -d + 1, by (5.5.2). d_
	 b )R = d — 1, as already noted, so by the first chain condition for prime ideals in R (since R is unmixed) it follows that height P ' = height P-d + 1. Therefore £(Γ) = height P'. Now every mini (b , b_^)R has height d — 1, so i? is quasi-unmixed, by [11, Corollary 2.2]. Therefore P ' € A*(Γ) c A*(J'), by [5, Theorem 3]  {Q e Q I + (6^ , b_ϊ)R  n}. b e P, and this contradicts the hypothesis on b *•> &d> so &!,•••, &d are a α-essential sequence over 7. q.e.d. 
	Also, height (6j, ,
	1
	-
	mal prime divisor of
	ly
	d
	r
	and (2.2.1) and so P e
	 Speciϊ;
	 is a prime divisor of
	n
	d
	for all large
	 However,
	d
	u

	§6. Some bounds for uecogd (/) 
	In this section we show that most of the results in [6] concerning acogd (I) have a valid uecogd (/) analogue. We begin with the following remark. 
	(6.1) Remark, If R is a local ring, then the following hold: 
	(6.1.1) If i?* has no imbedded prime divisors of zero, then uecogd(/) = acogd (I) for all ideals I in R, by (3.1.3). Therefore in this case all the results in [6] concerning acogd (I) hold for uecogd (I). 
	(6.1.2) It follows immediately from (2.6) that, in general, uecogd (/) < acogd (I) and uecogd (I) < ecogd (I). We show in (7.4) that both inequalities can hold. 
	-

	Even when the hypothesis in (6.1.1) is not satisfied, most of the bounds on acogd (I) in [6] have a valid uecogd (I) analogue, as we now show. The first of these bounds is the analogue of [6, (3.5)]: acogd (/) < min {little depth P; P e A*(I)}. Here, little depth P is the length of a shortest maximal chain of prime ideals in R/P. 
	(6.2) THEOREM. If I is an ideal in a local ring (R, M), then uecogd (I) < min {little depth P; P e U(I)}. Therefore, if A is a faithfully fiat local extension ring of R, then uecogd (I) < min {little depth P*; P* e 
	Proof The proof is essentially the same as that given to prove the asymptotic cograde case in [6, (3.5)], but use (5.1) in place of [6, (3.2)]. q.e.d. 
	(6.3) Remark. Equality need not hold in (6.2) even when R is a complete local domain and I is a height one prime ideal such that U(I) = {/}. 
	-

	Proof. [6, (3.6)] shows that equality need not hold in this case for asymptotic cograde. Therefore the conclusion follows, since U(I) = A*(I) and uecogd (/) = acogd (7) when R is a complete local domain, by (3.1). 
	q.e.d. 
	 (I) b , bare an asymptotic sequence over I, then their images in R/I are an asymptotic sequence. The w-essential sequence over I version of this does not hold, as noted in [7, (7.1)]. Therefore the uecogd (I) analogue of [6, (4.5)]: acogd (I) < agd(M//); does not hold. In fact, if I is an ideal in R such that M e Ass R/I, g U(I\ then uecogd (/) > 1 > 0 = egd (Λf/I). Therefore, since uecogd (/) = acogd (I) when R* has no imbedded prime divisors of zero, (6.4) is the best possible uecogd (I) analogue of [6, 
	The next bound on acogd
	 in [6] depends on the fact that if
	u
	g 
	-

	(6.4) THEOREM. If I is an ideal in a local ring R, then uecogd (I) < agd (M/i). 
	Proof. This follows immediately from [6, (4.5)] and (6.1.2). q.e.d. 
	(6.5) is the uecogd(7) version of [6, (6.1)]: acogd(I) < agd(M) - agd (7). 
	(6.5) THEOREM. Let I be an ideal in a local ring (R, M) and let x , x be an essential sequence in I. Then there exists a maximal uessentίal sequence over say b , b, such that x , x, b , b are an essential sequence in R. In particular, uecogd (7) < egd(M) — egd (7). 
	u
	h
	-
	 7,
	u
	d
	u
	h
	u
	d

	Proof. The proof is the same as that given to prove [6, (6.1)], but  M U(I) M U((x ,x)R). q.e.d. 
	use (5.5) to show that
	 β
	 implies
	 £
	u
	h

	(6.6) is the uecogd (7) analogue of [6, (6.2)]. 
	(6.6) THEOREM. The following statements are equivalent for an ideal I in a local ring (R, M): 
	(6.6.1) uecogd (/) = egd(M) - egd (7). 
	(6.6.2) There exists z e Ass iϊ* such that £((IR* + z)\z) = height (IR* 
	+ z)\z = egd(I) and uecogd (I) = depth z — height (IK* + z)jz. 
	(6.6.3) The equalities in (6.6.2) hold for every z e Ass R* such that depth z = egd(M). 
	Proof The proof is the same as that given to prove [6, (6.2]), except one must substitute for the asymptotic-references the analogous essential-references, q.e.d. 
	The final bounds on acogd (I) in [6] are lower bounds. To prove the uecogd (J) version of these we will use (5.5) and (5.6). 
	(6.7) is the uecogd (J) version of [6, (7.4)]: If (R, M) is a quasi-unmixed  (I) M/I for all large n. 
	local ring, then acogd
	 > grade
	n

	(6.7) THEOREM. If I is an ideal in an unmixed local ring (R,M), ) for all large n. 
	then
	 uecogd (/) > grade
	 (M/I
	n

	Proof This is clear by (5.6) and (5.5.3). q.e.d. 
	(6.8) Remark. If / is an ideal in an unmixed local ring (R, M), then  M\I < uecogd (/) < agd(M/I) for all large n. 
	grade
	n
	n

	Proof.(M/I) = agd(M/I) for all 
	 It follows from [18, (2.13)] that agd
	n

	n > 1, so this follows immediately from (6.4) and (6.7). q.e.d. 
	The final result in this section, (6.9), is the uecogd (/) analogue of [6, (7.6)]: acogd (J) > agd(M) -i(I). 
	(6.9) THEOREM. If I is an ideal in a local ring (R, M), then uecogd (I) egd (M) 
	-

	Proof. By (4.1) let z e Ass JR* such that uecogd (7) = height MR*/z £((IR* + z)/z. Then height MR*/z > egd (M), by (2.2.13), and £((IR* + z)z) < £(ΐ), by (5.5.4), so the conclusion follows. q.e.d. 
	-

	§7. Some examples In this final section we give four examples that show some of the differences between essential sequences over I and w-essential sequences over I. 
	(7.1) shows that a permutation of an essential sequence over an ideal Ji n a local ring need not be an essential sequence over I, even though this holds for zz-essential sequences over J, as is shown in [21]. 
	(7.1) EXAMPLE. There exists a local domain R such that R has an  b such that b b are an essential sequence over I and, b are not. 
	ideal I and elements b
	u
	2
	u
	2
	 6
	2
	1

	Proof Let R be a complete regular local ring of altitude three and let α, 6, c be a regular system of parameters in R. Let p = (b — c)R, P = (a, c)R, and ί-pΠP, so I = p(P:p) = pP = (ab -ac, be -c)R. Then E(I) = {p, P}, by (2.10), and 6, a are an essential sequence over I (since b is prime to I and E((I, b)R) - E((ac, c\ b)R) = {(6, c)B}, by (2.10)),  = b  b = a. q.e.d. 
	2
	but
	 a
	 e P, so
	 a, b
	 are not an essential sequence over
	 I.
	 Thus let
	 b
	ί
	and
	2

	(7.2) shows that an essential sequence over an ideal I in a local domain R need not be an essential sequence in R, but a ^-essential sequence over I is an essential sequence in J2, as is shown in [21]. 
	-

	In the proof of (7.2) (and also in (7.4)) we again use ί{ΐ) to denote the analytic spread of an ideal I. 
	(7.2) EXAMPLE. There exists a local domain R such that R has an  b such that b b are an essential sequence over I  b are not an essential sequence in R. 
	ideal I and elements b
	u
	2
	u
	2
	and b
	u
	2

	Proof Let (L, M — (α,b)L) be a complete regular local ring of altitude two, let A = L[ta, tb], where t is an indeterminate, and let R — A
	iMitaitb)A
	, 

	R is MR-primary for n > 1. 
	so
	 R
	 is a local domain of altitude three. It will first be shown that
	 M
	n

	For this, let 9t = 0t(L, M) = L[ta, tb, u] = A[u], with u = \\t. Then 0l\u0l = A\MA = ^(L, M), the form ring of L with respect to M, by [22, Theorem 2.1], and ^(L , M) is an altitude two integral domain, since L is regular, so u9t and MA are height one depth two prime ideals. Also, 
	n 
	u 0t MA for all n > 1, so MA is integrally closed for all rc > 1, ^ is (since uέ% is prime). Therefore iV = (M, to, Z&)i? is not a prime  MR for all τι > 1, by [5, Theorem 3] (since ί(MR) = £(MR) and £(MR) < 2 (since M is generated by two elements) and since R is  L P R P Φ N, is regular, since Λ[l/ί] = Sl(L, M) is locally regular, by [23, Theorem 2], and A[t] = L[t] is locally regular. Therefore, if height P = 2, then P is not a  MR for all AI > 1 (since MR is principal). Therefore A*(Mi?) = {Mi?}, so E(MB
	 ΠA =
	n
	π
	since w
	71
	divisor of
	n
	n
	quasi-unmixed (since
	 is)). Also, if
	 e Spec
	 and
	 then J?
	P
	prime divisor of
	n
	n
	P

	Therefore it follows that R/MR ~ (L/M)[X, FW> , and R*/MR* s i? is M#B* is MR*-primary for all n > 1, so A*(MΛ*) = {MR*}, hence E(MR*) = {MR*}, by (2.2.1). Thus it readily follows from (2.2.3) that every prime divisor of zero in j?* is contained in MR*, so this also holds for (M, ta)R*, and so E((M, ta)R) — {(M, ta)R), by (2.8). Therefore ta, tb are an essential sequence over MR, but (ta, tb)R = (tL[t\ Π A)R is a height one prime ideal, so ta, tb cannot  R, b = ta and b = tb. q.e.d. 
	(22/MK)*, so MR* is prime Also, it was just shown that M
	n
	-
	primary for all n > 1, so it follows from flatness that M
	n
	be an essential sequence in
	 so let
	x
	2

	It was shown in (5.1) that if b £ U U(I) and P e U(I), then there exists Q 6 U((I, b)R) such that P c Q. (7.3) shows that this does not hold for 
	-

	(7.3) EXAMPLE. There exists a local domain R such that R has an ideal I, an element b, and some P e E(I) such that b is an essential sequence over I and no prime ideal in E((I, b)R) contains P. 
	-

	Proof. Let R, I, P, and b be as in the proof of (7.1), so E((I, b)R) = {(b, c)R} and P £ (b, c)R. q.e.d. 
	It was shown in (2.5.7) that A*(I) U E(I) c U(I). Our final example, (7.4), shows that this containment may be proper. It also shows that uecogd (I) < acogd (/) and uecogd (I) < ecogd (I) can hold. 
	(7.4) EXAMPLE. There exists a local ring R such that R has an ideal I such that Ά*(I) U E(I) C U(I). 
	Proof. Let (L, N = (α, b, c, d)L) be a complete regular local ring of  p aL, B = (a\ b)L, K, cd)L. Let P - (α, 6)L so Ass L/K = {p, P}. Let R - L/K, M = JV/lζ I = (J + £)/£, 2 = p/K, and n; = P\K. Then i? is a local ring of altitude three, w is an imbedded prime divisor of zero, and Rjw = L/P is a complete regular local ring of altitude two such that c', d', the P-residue classes of c, d, are a  w)/w, c'd', so £((I + w)jw) = 2. Therefore M/w e A*((I + w)/w) = U((I + w)/w\ by [5, Theorem 3] and (3.1.1), and 
	altitude four, let
	 =
	 = p Π B, and J = (c
	2
	regular system of parameters. Now (J +
	 is generated by c
	/2

	= c'(R/w) is a principal ideal, so M/w £ E((I + w)lw\ by (2.9). And Rad (/ + z)\z = (a, c){Rjz\ so altitude R\z = 3 implies M\z & E((I + z)/z, by (2.9). Therefore M € £(J), by (2.2.5). Finally, M\z & A*((I + z)/z, by [5, Theorem 3], since £((I + z)/z) < 2 < altitude R\z and iϊ/,2 is quasi-unmixed, so M & A*(I), by (2.2.5). q.e.d. 
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