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Abstract 

In this paper we study conductors that occur in an integral extension of an unramified regular local ring S of 
mixed characteristic p > 0 obtained by adjoining a pnth root ω of an element of S. We calculate the primary 
decomposition of the conductor of the integral closure of S[ω] and give some applications of this calculation. 
In particular, we show that under certain special circumstances, the integral closure of S[ω] admits a finitely 
generated, maximal Cohen-Macaulay module. 

1. Introduction 

Let S be an unramified regular local ring of mixed characteristic p > 0 and R the integral closure of S 
in a finite extension of the quotient field of S. Since the quotient field of S has characteristic zero, R is a 
finite S-module. Let ω be an integral primitive element for the extension of quotient fields and write J for 
the conductor of R into S[ω]. The purpose of this note is to examine the structure of J when wp n 

= f ∈ S. 
By calculating the primary decomposition of J for such extensions with n = 1, in [6] the present author 
was able to construct a finitely generated birational maximal Cohen-Macaulay module over R. Note that 
R is not automatically Cohen-Macaulay for such an extension. The purpose of this note is to take the first 
step towards a more general result by calculating the primary decomposition for the conductor in the case 
ωp n 

= f when n ≥ 1. This is done in section three. As in [6], to obtain our results, we rely on the fact 
that R = J−1 . While at present we are not able to construct a finitely generated maximal Cohen-Macaulay 
module for general R when ωp n 

= f , we can give some sufficient conditions for the existence of such a 
module in some special cases. In particular, in section four, we show that R is a free S-module in each of the 
following cases: f is square-free, f is not a pth power modulo p, or the p-adic order of f is relatively prime 
to p. We also show that if the unique prime ideal P in S[ω] lying over pS is the P -primary component of J 
and S[ω]/P is integrally closed, then the main theorem in [6] extends for certain roots of higher order. In 
section five we illustrate some of our results with specific examples. 

2. Preliminaries 

In this section we will establish our notation and present a few preliminary observations. It turns out 
that many of our results do not require our base ring S to be an unramified regular local ring of mixed 
characteristic p, but rather that it have two crucial properties enjoyed by such a ring, namely, that for 
the prime p > 0, pS is a prime ideal and S/pS is integrally closed. The following will remain in effect 
throughout this paper. S will denote a Noetherian normal domain. Write L for the quotient field of S and 
assume char(L) = 0. Fix p ∈ Z a prime and assume either that p is a unit in S or pS is a (proper) prime 
ideal and S/pS is integrally closed. Let W be an indeterminate and take f ∈ S not a pth power. Then 
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F (W ) := W p n − f ∈ S[W ] is a monic irreducible polynomial. Let R denote the integral closure of S in 
K := L(ω), for ω a root of F (W ). Thus, R is the integral closure of S[ω]. Note that if p is a unit in S and 
f is square-free, i.e., fQ = QQ in SQ for all height-one primes Q containing f , then R = S[ω]. We will use 
this fact (and minor variants of it) below. 
Our basic strategy in this paper is to exploit the fact that R can be realized as J−1 for a suitable ideal 

J ⊆ S[ω]. Recall that for an integral domain A with quotient field E, if J ⊆ A is an ideal, then J−1 denotes 
the set of elements α ∈ E such that J · α ⊆ A. Since S is integrally closed, S[ω] is a free S-module and 
therefore satisfies Serre’s condition S2. It follows that C−1 satisfies S2 as an S[ω]-module, for any ideal 
C ⊆ S[ω]. If C−1 happens to be a ring, then C−1 satisfies S2 both as an S[ω]-module and as a ring (see the 
proposition below). This means that in constructing a prospective candidate for R, if the candidate is J−1 

for some J , then only Serre’s condition R1 must be checked. 
The following proposition summarizes the conditions relating R to J−1 for suitable J that we will call 

upon in the next section. Part (i) of the proposition is well known to experts, but we have included it for 
lack of a suitable reference. We will see in the next section that part (iv) of the proposition plays a key role 
in calculating the primary components of J , since it turns out that the pre-images of these components in 
S[W ] are grade two perfect ideals. 

Proposition 2.1. Let A be a Noetherian domain satisfying S2 and assume that A0 , the integral closure of 
A, is a finite A-module. 

(i) For an ideal C ⊆ A, C−1 satisfies S2 as an A-module. If C−1 is a ring, then C−1 also satisfies S2 as 
a ring. 

(ii) Suppose {P1, . . . , Pn} are the height-one primes of A for which APi is not a DVR. If for each 1 ≤ i ≤ n, 
Ji ⊆ A is Pi-primary and (J−1)Pi = A0 , then A0 = J−1 for J := J1 ∩ · · · ∩ Jn.i Pi 

(iii) If A =6 A0 , then A0 = J−1 , for some height-one unmixed ideal J ⊆ A. 

˜(iv) Suppose that A = B/(F ) for F ∈ B a principal prime and J ⊆ B is a grade-two ideal arising as the 
ideal of n × n minors of an (n + 1) × n matrix φ. Assume further that F ∈ J̃  and set J := J/̃(F ). Let 
Δ1, . . . , Δn+1 denote the signed minors of φ, write F := b1Δ1 + · · · + bn+1Δn+1 and let φ0 denote the 
(n + 1) × (n + 1) matrix obtained by augmenting the column of b0 is to φ (so F is the determinant of φ0). 
Then J−1 can be generated as an A-module by {ψ1,1/δ1, . . . , ψn+1,n+1/δn+1 = 1}, where ψi,i denotes 
the image in A of the (i, i)th cofactor of φ0 and δi denotes the image of Δi in A (which we assume to 
be non-zero). Moreover, p.d.B (J) = p.d.B (J

−1) = 1. Here p.d.B (J) denotes the projective dimension 
of J as a B-module. 

Proof. For part (i), we prove the case that C−1 is a ring. The first statement of part (i) follows in a similar 
fashion. If C−1 = A, there is nothing to prove, so we assume C−1 6= A. Take v ∈ C−1 and assume P ⊆ C−1 

belongs to Ass(C−1/vC−1). Thus, C−1 has depth one and therefore P is an associated prime of any principal P 
ideal contained in P . Since P ∩ A =6 0, we may assume v ∈ A. Let Q = P ∩ A. Without loss of generality, 
we may assume that A is local at Q. Write P = (vC−1 : u), for some u ∈ C−1 . Then Qu ⊆ vC−1 . Thus, 
Q(uC) ⊆ vA. Note that uC is an ideal of A. Moreover, uC 6⊆ vA, otherwise, C · (u/v) ⊆ A, in which case 
u/c ∈ C−1 and thus u ∈ vC−1 , a contradiction. Therefore, Q consists of zerodivisors on A/vA, and hence 
Q ∈ Ass(A/vA). Since A satisfies S2, height(Q) = 1. On the other hand, C−1 is an integral extension of A 
(it is finite over A), so height(P ) = 1, which is what we want. 
For parts (ii) and (iii), note that since A satisfies S2, if A is not integrally closed, it fails to satisfy Serre’s 

condition R1. On the other hand, there are only finitely many height one primes P ⊆ A such that S[ω]P is 
not a DVR, since any such prime must contain the conductor of R into A. For proofs of (ii) and (iii), see 
Proposition 2.1 in [6]. For the first part of (iv), see [9], Proposition 3.14 or [8], Lemma 2.5. For the second 
statement in (iv), consult [8], Proposition 3.1. 

Returning to our basic set-up, we note that since S is a normal domain, S[ω] is free over S and thus 
satisfies S2, and since char(S) = 0, R is a finite S-module and a finite S[ω]-module. Thus, Proposition 2.1 
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applies with A := S[ω]. In particular, there exists a height-one, unmixed ideal J ⊆ S[ω] for which J−1 = R. 
Note that J must be the conductor of R into S[ω]. Indeed, J is clearly contained in the conductor, i.e., 
J ⊆ (J−1)−1 . On the other hand, let Q be a height-one prime containing J . Then S[ω]Q is a one-dimensional 
Gorenstein local domain 1 , so 

JQ = (J
−1)−1 = ((J−1)−1)Q.Q 

Since this holds for each Q, we see that J = (J−1)−1 , so that J is the conductor of R into S[ω]. In the next 
section we will identify the primary components of the ideal J ⊆ S[ω]. 

Proposition 2.2. In the notation above, suppose that p is not a unit in S. Then there is a unique height-one 
prime in S[ω] containing p. 

Proof. Suppose p | f . Then P := (ω, p) is clearly the unique height-one prime in S[ω] containing p. Moreover, 
2in this case, S[ω]P is a DVR if and only if p - f . Suppose p - f . If f is not a pth power modulo pS, then f 

is not a pth power over the quotient field of S/pS (since S/pS is integrally closed) and it follows that F (W ) 
is irreducible mod pS (see [5], Theorem 51). Thus (p, F (W ))S[W ] is the unique height -two prime in S[W ] 
containing F (W ) and p, so pS[ω] is the unique height-one prime in S[ω] containing p. Now suppose that 

t t+1p - f and f is a pth power modulo pS. Choose h ∈ S such that f ≡ hp (mod pS), but f is not a p st 
power modulo pS if t < n. If f is a pnth power module pS, we just take t = n, even if f is a prth power 
modulo pS, for r > n. Set m := n − t. Then W p m − h is the unique irreducible factor of F (W ) modulo pS 
and it follows that (p, wp m − h)S[ω] is the unique height-one prime containing pS. Thus, in all cases, there 
exists a unique height-one prime in S[ω] lying over pS. 

For the remainder of the paper, we denote by P the unique prime in S[ω] lying over pS. We will also 
˜refer to the preimage of P in S[W ] as P . 

Now, suppose f = hp t 
+ gp (p - h) so 

P = (ωp m 

− h, p)S[ω] and P̃  = ((W p m 

− h, p)S[W ]. 

Then 
m t t m m 

F (W ) = (W p )p − hp − gp = ((W p )p t−1 + · · · + hp t−1) · (W p − h) − gp. 
m m mt−1 t−1 t−1 t−1 t−1thpIn S[W ], (W p )p + · · · + hp ≡ p modulo (W p − h), so (W p )p + · · · + hp belongs to 

˜ ˜P . Thus, F (W ) ∈ P 2 if and only if p | g. In other words, in all cases, PP is not principal if and only if 
= hp 2f 

t 
+ p g, for some t and some h, g ∈ S. It follows from Proposition 2.1 that this happens if and only if 

J has a P -primary component. 
In order to identify the P -primary component of J in the case that p - f , we will need to take into 

consideration how f factors modulo higher powers of p as well. It so happens that this in turn is determined 
˜by the highest power of P containing F (W ). To elaborate, suppose that, as above, p - f and h ∈ S and 

t, m ∈ Z are such that W p m − h is the unique irreducible factor of F (W ) modulo pS and that f ≡ hp t 
(mod 

m t t m 
pS). Thus, we may write F (W ) = (W p )p − hp − pg. Set V := W p , so we have P̃ = (V − h, p)S[W ]. We 

˜ ˜ ˜wish to identify the largest power of P containing F (W ). Set P0 := (V − h, p)S[V ]. Since like powers of P 
contract to like powers of P̃0, we may work in S[V ]. 2 

P t+1 P t+2We first note that V p t − hp t ∈ ˜ \ ˜ . This follows by an easy induction on t. Since the argument 0 0 
for the base case t = 1 and the inductive step are essentially the same, we assume the base case. For the 
inductive step, 

t t t−1 t−1 t−1 t−1 

V p − hp = (V p − hp )((V p )p−1 + · · · + (hp )p−1). 

1To see that S[ω]Q is Gorenstein, set q := Q ∩ S. Since height(q) = 1, Sq is a DVR. Thus Sq [W ] is a regular domain and 
hence S[ω]Q = (Sq [W ]/(F (W )))Q is Gorenstein. 

2The extension S[V ] ⊆ S[W ] is a finite extension, so P̃nS[W ] ∩ S[V ] = P̃n ∩ S[V ] is contained in the integral closure of P̃n .0 0 

Since P̃0 is a prime ideal generated by a regular sequence, its powers are integrally closed, thus P̃n ∩ S[V ] = P̃  
0 
n , for all n. 
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P t+1By induction, the first term on the right hand side in the equation above belongs to P̃  
0 
t\ ˜ , so it suffices0 

to show that the second term belongs to P̃0\P̃ 2 (recall, P̃0 is generated by a regular sequence). Upon setting0 
)·(p−1)V = h, the second term becomes p · h(p t−1 

, which shows what we want (since p - h). In other words, 
V p t − hp t ∈ ˜ \ ˜P t+1 P t+2 

0 0 . 
P t+2 P t+2 t+2SWe now note that F (V ) = V p t −hp t −pg 6∈ ˜ . If F (V ) ∈ ˜ , upon setting V = h, we get pg ∈ p0 0 

P t+2 P i+1which implies V p t − hp t ∈ ˜ , a contradiction. Now we show F (V ) ∈ ˜ if and only if pi | g, for i ≤ t.0 0 

P i+1 P i+1 P t+1If F (V ) ∈ ˜ , then pg ∈ ˜ , since V p t − hp t ∈ ˜ . Thus, pg ∈ pi+1S (since S is normal), which gives 0 0 0 
P̃ k+1\P̃ k+2what we want. The converse is similar. Thus, we have that for some 0 ≤ k ≤ t, F (W ) ∈ , in 

k+1which case f = hp t 
+ p g, for some h, g ∈ S. Morever, p - h and p - g if k < t. 

Therefore, in the case that p - f , we will adopt the following conventions once and for all. 

Convention. In the notation above, assume p is not a unit in S and p - f . We assume that t, m and h 
have been chosen so that W p m − h is the unique irreducible factor of F (W ) modulo p and that f ≡ hp t 

P k+1\P̃ k+2(mod pS), so n = m + t. We select 0 ≤ k ≤ t such that F (W ) ∈ ˜ . This means that we can write 
t k+1f = hp + p g, where p - g if k < t. 

3. Primary components of the conductor 

In this section we identify the primary components of J (J−1 = R) in each of the following cases: f can 
be written as a product of primes and p - f or f can be written as a product of primes and the p-adic order 
of f is relatively prime to p. As noted in the previous section, there is a unique height-one prime P ⊆ S[ω] 
lying over pS and J has a P -primary component if and only if f is a pth power modulo p2S. When f can 
be written as a product of primes, and q 6= p is one of the factors, then clearly Q := (ω, q)S[ω] is the unique 
height-one prime in S[ω] containing q. Moreover, S[ω]Q is not a DVR if and only if q2 | f . It follows that 
J has a Q-primary component whenever q2 | f . Thus we see that if p - f , then J has at most one primary 
component corresponding to the prime pS and exactly one primary component for every principal prime in 
S whose square divides f . Similarly, one can see that if p | f , then J has exactly one primary component 
for every prime (including p) whose square divides f . We now proceed to describe the primary components 
of J . We start with an easy lemma. 

Lemma 3.1. Suppose p > 2 is not a unit in S. Take h ∈ S\pS and write p = 2l + 1. Set V := W p m 
and 

P̃ := (V − h, p)S[W ]. For s ≥ 0, define 

l � �X s s s s1 p
C(s) := · (−1)j+1 (V p · hp )j [(V p )p−2j − (hp )p−2j ]. 

p · (V ps − hps ) j
j=1 

Then C(s) 6∈ P̃ . � � s s s spProof. Note that since p divides j for all 1 ≤ j ≤ l, and V p − hp divides (V p )j − (hp )j , C(s) is a 

well-defined element of S[W ]. Now, C(s) 6∈ P̃  if and only if the residue class of C(s) modulo V − h, as an 
element of S, does not belong to pS. This happens if and only if 

l � � s l � �X p (hp )2jp
s+p−2j−1 X p 

)2jp
s 2j

(−1)j+1 (p − 2j) = (−1)j+1 (hp s +p−2j−1(1 − )
j p j p

j=1 j=1 

as an element of S, is not divisible by p. Since 

l � �X s 

(−1)j+1 p 
(hp )2jp

s+p−2j−1 

j
j=1 
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� � 

)2jp
s 

is divisible by p and each (hp s +p−2j−1 is not divisible by p, it’s enough to show that 

lX �� 
p 2j

(−1)j+1 

j p
j=1 

is not divisible by p, as an element of S. However, 

l lXX �� ���� 
p − 1 
j − 1 

= (−1)l+1 2l 
l 

2jp
(−1)j+1 (−1)j+1 = 2 · . 

j p
j=1 j=1 � �

2l 
l 

2l 
l 6 P ,= S). Thus C(s) 6∈ ˜in Z, p does not divideBecause p does not divide as an element of S (since pS 

as claimed. 

Lemma 3.2. Let A be a Noetherian domain satisfying S2, Q ⊆ A a height-one prime and I ⊆ Q a height-
one ideal. Suppose that Q is the only height-one prime containing I for which AQ is not a DVR. Suppose 
τ ∈ I−1\A satisfies g(T ) := T 2 − cT − q = 0, where c ∈ A\Q and q ∈ Q. Then A[τ ] has exactly two 
height-one primes lying over Q, namely Q1 := (Q, τ)A[τ ] and Q2 := (Q, τ − c)A[τ ]. 

Proof. Let H ⊆ A[T ] denote the kernel of the canonical map from A[T ] to A[τ ] taking T to τ . Clearly 
˜ ˜Q1 := (Q, T )A[T ] and Q2 := (Q, T − c)A[T ] are the unique height two primes in A[T ] containing Q and 
g(T ). If we show that H ⊆ Q̃1 ∩ Q̃2, then Q1 and Q2 are the required primes. Clearly, H ⊆ Q̃1 or H ⊆ Q̃2. 

˜ ˜We now show that H ⊆ Q1 if and only if H ⊆ Q2, which will complete the proof. For this, we claim that 
˜ ˜whenever aT + b ∈ H, then a ∈ Q. Suppose the claim holds. If H ⊆ Q1, to see that H ⊆ Q2, it suffices 

to show that any linear polynomial in H belongs to Q̃2 (since g(T ) ∈ Q̃2). Let aT + b ∈ H. By our claim, 
˜ ˜a ∈ Q, so b ∈ Q1 ∩ S = Q. Thus, aT + b ∈ QS[T ] ⊆ Q2. The converse is similar. For the claim, suppose 

−baT + b ∈ H. Then τ = , so I ⊆ (aA : b). Since A satisfies S2, any prime minimal over (aA : b) has height a 
one. By our assumption on I, Q is the only such prime. Hence (aA : b) ⊆ Q, so a ∈ Q, as required. 

In the next proposition, and in several subsequent instances, we will use the following observation. Let ⎞⎛ 

A = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

a1 0 · · · 0 0 
b1 a2 · · · 0 0 
0 b2 · · · 0 0 
. . . . . . . . · · · . . . . 
0 0 · · · ac−1 0 
0 0 · · · bc−1 ac 

0 0 · · · 0 bc 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

be a (c + 1) × c matrix with entries in S. If δi denotes the determinant obtained by deleting the ith row of 
A, then then δ1 = b1 · · · bn and δi = a1 · · · ai−1bi · · · bn, for i ≥ 2. 

= hp k+1Proposition 3.3. Assume that p - f , p > 2 and f 
t 
+p g, for k ≥ 1 and t adhering to our conventions 

P k+1\P̃ k+2established above. Thus, F (W ) ∈ ˜ , for some 1 ≤ k ≤ t. Set ν := ωp m 
and for each 1 ≤ j ≤ k set 

t−j t−jk−j+1 j −1 j −1p g (νp )p + · · · + (hp )p 

τj := = 
νpt−j − hpt−j pj 

and 
t−1 t−1 t−2 t−2 t−j t−j 

Ij := (νp − hp , p(νp − hp ), . . . , pj−1(νp − hp ), pj )S[ω]. 

Then 

(i) I−1 is generated as an S[ω]-module by 1, τ1, . . . , τj .j 
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(ii) I−1 = S[ω, τ1, . . . , τj ].j 

(iii) (I−1)Q is a DVR for all height-one primes Q ⊆ I−1 containing P .k k 

(iv) Ik is P -primary. 

Moreover, Ik is the P -primary component of J , the conductor of of R into S[ω]. 

Proof. We first note that the final statement follows from statements (iii) and (iv). To see this, by (iv), Ik 

is P -primary. Since (Ik)−1 satisfies S2 (by Proposition 2.1), RP = (I
−1)P by (iii). Thus, (J−1)P = (I

−1)P ,k k 
from which it follows that JP = (Ik)P - since JP = (J

−1)−1 and (Ik)P = (I
−1)−1 - which gives what we P k P 

want. 
We now proceed to proofs of parts (i)-(iv). For (i), we set L(i) := (νp i 

)p−1 + · · · + (hp i 
)p−1 for any 

0 ≤ i ≤ t. An easy calculation gives that 

i i i−s i−s 

νp − hp = L(i − 1) · L(i − 2) · · · L(i − s)(νp − hp ), 

for 1 ≤ s ≤ i. It follows that (up to changes of sign) Ij is the ideal of j × j minors of the (j + 1) × j matrix ⎞⎛ 
−p 0 · · · 0 0 

L(t − 2) −p · · · 0 0 
0 L(t − 3) · · · 0 0 
. . . .

φj := 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

.. . . .· · ·. . . . 
0 0 · · · −p 0 
0 0 · · · L(t − j) −p 
0 0 · · · 0 

t−j t−j

νp − hp 

Let φ0 j denote the (j + 1) × (j + 1) matrix obtained by augmenting the column that is the transpose of the 
row vector 

k+1−j(L(t − 1) 0 · · · 0 − p g), 

after the last column of φj . If we apply Proposition 2.1 with B := S[W ], A := S[ω], φ̃ 
j the inverse image of 

ciφj and φ̃0 the inverse image of φ0 j , we get that I
−1 is generated by the fractions , where ci is the (i, i)thj j di 

ci cj+1cofactor of φ0 j and di is (up to a sign) the ith minor of φj . But = τi, for 1 ≤ i ≤ j and = 1, which di dj+1 

yields (i). 
For (ii) we will show that τi · τj ∈ I−1 , for all 1 ≤ i ≤ j ≤ k. However, we first note that for all s,j 

s s 
)p−1L(s) = (νp − hp + p · c(s), where c(s) denotes the image in S[ω] of the element C(s) defined in Lemma 

3.1. Indeed, 

L(s) · (νp s − hp s 
)

L(s) = 
νps − hps 

s+1 s+1 
νp − hp 

= 
νps − hps �P p(νp − hp )p + (−1)j+1 (νp )p−j (hp )j j=1 j

= 
p−1s s s s 

νps − hps Pl � s s s sp 

− hp )p−1 j=1(−1)j+1 
j (ν

p · hp )j [(νp )p−2j − (hp )p−2j ] 
= (νp s s 

+ 
νps − hps 

)p−1 = (νp s 

− hp s 

+ p · c(s). 

We now proceed by induction on j. Suppose j = 1. On the one hand, we have 

t−1 t−1 k−1(νp − hp ) · τ1 = (p g) · p. 
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On the other hand, 

t−1 t−1 t−1 t−1 

p · τ1 = L(t − 1) = (νp − hp )p−2 · (νp − hp ) + c(t − 1) · p. 

Thus, by the usual determinant argument, τ1 satisfies a degree two polynomial with coefficents in S[ω]. 
Therefore I−1 = S[ω, τ1], which is what we want. In fact, we have the following equations:1 

t−1 t−1 t−1 t−1k−1τ1(τ1 − c(t − 1)) = p g(νp − hp )p−2 and p(τ1 − c(t − 1)) = (νp − hp )t−1 . (*) 

Now suppose j > 1. We will show that τi · τj ∈ I−1 for all i ≤ j by a second induction on i. In fact, taking J 
0 ≤ i < j (and τ0 := 1), we have 

k−i k−j+1p g p g
τi+1 · τj = · 

νpt−i−1 − hpt−i−1 νpt−j − hpt−j 

k+1p gk−j−i = p g · 
(νpt−j − hpt−j ) · (νpt−i−1 − hpt−i−1 ) 

νp t − hp t 

k−j−i = p g · 
(νpt−j − hpt−j ) · (νpt−i−1 − hpt−i−1 ) 

t−i t−i t−i t−i 
((νp )p i−1 + · · · + (hp )p i −1) · (νp − hp )k−j−i = p g · 

(νpt−j − hpt−j ) · (νpt−i−1 − hpt−i−1 ) 
t−i t−i 

νp − hp 
k−j= gp · τi · 

(νpt−j − hpt−j ) · (νpt−i−1 − hpt−i−1 ) 

L(t − i − 1)k−j= gp · τi · 
νpt−j − hpt−j 

t−i−1 t−i−1 
)p−1(νp − hp + p · c(t − i − 1)k−j= gp · τi · 

νpt−j − hpt−j 

= gp k−j · τi · A(i + 1, j) + τi · τj · c(t − i − 1), 

t−r t−r 
(νp −hp )p−1 

where for all r ≤ j, A(r, j) := t−j t−j ∈ P . Thus 
νp −hp 

τi+1 · τj = gp k−j · τi + τi · τj · c(t − i − 1), (**) 

so induction yields τi · τj ∈ I−1 for all i ≤ j, as required. Therefore, I−1 = S[ω, τ1, . . . , τj ] and statement (ii)J j 
has been verified. 
For (iii), we will show that, starting with j = 0, each I−1 has only one height-one prime, Pj , lying over j 

P and satisfying (I−1 is not a DVR and that I−1 has two height-one primes lying over Pj , one of which j )Pj j+1 

is Pj+1 and the other, Pj 
0 
+1, has the property that (I−1 )0 is a DVR. When j = k, (I−1)Pk is also a DVR. j+1 Pj+1 k 

This will prove the third claim. When j = 0, we take I0 := S[ω] and P0 := P . 
Now, if we combine Lemmas 3.1 and 3.2 with the first equation in (*), we get that P1 := (P, τ1 − c(t − 1)) 

and P1 
0 := (P, τ1) are the unique height-one primes in I−1 lying over P . The two equations in (*) show that1 

(P1 
0 )P 0 = (ν − h)P 0 , while the first equation in (*) gives (P1)P1 = (ν − h, p)P1 . Thus, (I

−1)P 0 is a DVR and11 1 1 

hence, in any integral extension of I−1 , if we localize at any prime lying over P 0 we get a DVR. 1 1 
For j = 2, we use (**) to get 

k−2τ2 = c(t − 2)τ1 · τ2 + A(2, 2) · gp · τ1. (?) 

By Lemmmas 3.1 and 3.2, the height-one primes in I−1 lying over P1 ⊆ I−1 are P 0 := (P1, τ2) and P2 :=2 1 2 
(P1, τ2 − τ1 · c(t − 2)). Since τ2 − τ1 · c(t − 2) 6∈ P2 

0 , (?) gives τ2 ∈ (p, ν − h)P 0 (recalling (P1)P1 = (p, ν − h)P1 ).2 

Moreover, 
t−2 t−2 

p · τ2 = L(t − 2) · τ1 = {(νp − hp )p−1 + p · c(t − 2)} · τ1, 
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so 
t−2 t−2 

p · (τ2 − c(t − 2) · τ1) = (νp − hp ) · τ1. 

Therefore, p ∈ (ν − h)P 0 , so (P2 
0 )P 0 = (ν − h)P 0 . That is, (I

−1)P 0 is a DVR (and hence, (I−1)Q is a DVR for2 2 

all height-one primes Q ⊆ I−1 lying over P , save P2.) Moreover, (?) shows that (P2)P2 = (p, ν − h)P2 (since 
2 2 2 2 

2 
τ2 6∈ P2 and (P1)P1 = (p, ν − h)P1 . 
If we continue inductively, we get that I−1 has one height-one primek−1 

Pk−1 := (p, ν − h, τ1 − c(t − 1), τ2 − c(t − 2) · τ1, . . . , τk−1 − c(t − k + 1) · τk−2) 

containing P and for which (I−1 )Pk−1 is not a DVR. Moreover, (Pk−1)Pk−1 = (ν − h, p)Pk−1 . From (**), we k−1 
obtain 

τk · (τk − τk−1c(t − k)) = τk−1 · g(ν − h)p−2 . (??) 

As before, P 0 := (Pk−1, τk) and Pk := (Pk−1, τk − τk−1c(t − k)) are the unique height-one primes in I−1 
k k 

lying over Pk−1. Equation (??) gives τk ∈ (ν − h)P 0 and the equation
k 

p · τk = {(ν − h)p−1 + p · c(t − k)} · τk−1 

yields p · (τk − c(t − k) · τk−1) = (ν − h)p−1 . Thus (as before), (P 0 )P 0 = (ν − h)P 0 , so (I
−1)P 0 is a DVR. k k k k k 

Finally, from (**) we get 
τk(τk − c(t − k)τk−1) = gτk−1 · A(k, k), 

t−k t−k 
so τk −c(t−k)τk−1 ∈ (ν −h)Pk . Thus, by induction, (Pk)Pk = (p, ν −h)Pk . However, (ν

p −hp )·τk = p·g. 
If k < t, then p - g, so g 6∈ Pk. Hence, p ∈ (ν −h)Pk , so (Pk)Pk = (ν −h)Pk . If k = t, we have (ν −h) ·τt = p ·g 
and since τt 6∈ Pt, ν −h ∈ (p)Pt . Thus, in either case, Pk is principal, so (I

−1)Pk is a DVR. Therefore, (I
−1)Qk k 

is a DVR for every (height-one ) Q ⊆ I−1 lying over P . It follows that part (iii) has been verified. k 

For part (iv), to see that Ik is P -primary, we start by noting that, on the one hand, Ĩ  
k, the preimage of Ik 

t−1 t−1 
in S[W ], is a grade-two ideal, since pk, V p − hp is a maximal regular sequence in Ĩ  

k, while on the other 
hand, Ĩk is the ideal of k × k minors of a (k + 1) × k matrix - this follows from the proof of statement (i). 
Thus, Ĩk is a grade-two perfect ideal and is therefore grade unmixed. That is, grade(Q̃) = 2 for all associated 
primes Q̃ of Ĩ  

k. If we show that any associated prime of Ĩ  
k has height two, then since rad(Ĩ  

k) = P̃ , it will 
follow that Ĩk is P̃ -primary and hence that Ik is P -primary. However, if Q̃ is an associated prime of Ĩk, then 

˜ ˜for Q := Q ∩ S, grade(Q) = 1, since Q contains a monic polynomial. Thus, height(Q) = 1 (since S satisfies 
S2), so height(Q̃) = 2, as desired. This completes the proof of Proposition 3.3. 

Our next Proposition will allow us to identify the primary components of J that do not correspond to P . 

Proposition 3.4. For S as above, set G(W ) := W d − λae , where a ∈ S is a prime element and λ ∈ S is a 
unit in S. Assume that G(W ) is irreducible over S and set S[ω] := S[W ]/(G(W )). 

0 0(i) Assume d is a unit in S, d > e and write d = sd0 and e = se with d0 and e relatively prime. Let u 
0 

0 a aand v be positive integers such that u · d0 + (−v) · e = 1 and set τ := 
e 

and η := 
u 
. Then 

ωd0 ωv 

R = S[ω, τ, η] = S[τ, η] = J−1 , 

for 
e−2J := (ωbe−1 , ωbe−2 a, . . . , ωb1 a , a e−1)S[ω], 

with b1 < b2 < · · · < be−1 < d. 

n(ii) Assume a = p, d = p > e and p - e. For positive integers u and v such that u · pn + (−v) · e = 1, set 
aη := 
u 
. Then R = S[ω, η] = S[η] = J−1 , for J ⊆ S[ω] having the same form as in (1).ωv 

8 



(iii) If e > d in (i) or (ii), then R = J−1 for an ideal 

b1J = (ωd−1, ωd−2 a , . . . , a bd−1 ), 

with b1 < · · · < bd−1 < e. 

Proof. For (i), we first observe that g(T ) := T s−λ−1 is irreducible over S and S[τ ] is integrally closed. For the 
= γs )s 0 

)sfirst statement, if g(T ) were not irreducible over S, then λ−1 , for some γ ∈ S. Thus, (ωd
0 
= (γae , 

so that ωd
0 
= �ae 0 , for � an sth root of unity. Recalling that L denotes the quotient field of S, we have 

L ⊆ L(�ae 0 ) = L(�) ⊆ L(ω). 

Since [L(�) : L] < s and [L(ω) : L(�)] ≤ d0 , it follows that [L(ω) : L] < d, a contradiction. Thus, g(T ) is 
irreducible over S and S[τ ] = S[T ]/(g(T )). To see that S[τ ] is integrally closed, note that since s and λ are 
units in S, g0(τ) is a unit in S[τ ], which gives what we want, since g0(τ) is in the conductor of the integral 
closure of S[τ ] into S[τ ]. Therefore we have that τ is a unit in S[τ ] and S[τ ] is integrally closed. 

eNow adjoin ω to S[τ ] and note ωd
0 
= τ−1a 

0 
. We also have ηe 0 = τ uω and ηd

0 
= τ va, which shows 

that S[ω, τ, η] = S[τ, η]. But η satisfies Xd0 − τva over S[τ ] (which is irreducible over S[τ ] by degree 
considerations), so since d0 is a unit in S, in order to see that R = S[τ, η], it suffices to see that a is 
square-free in S[τ ]. To see this, we use S[τ ] = S[T ]/(g(T )). We may assume that S has been localized at 
aS. Let Q ⊆ S[τ ] be a height-one prime containing a. Then Q = (r(τ), a)S[τ ], where r(τ ) corresponds 
to a polynomial r(T ) which is an irreducible factor of g(T ) modulo aS. Since g(T ) and its derivative are 
relatively prime modulo aS (s is a unit in S), g(T ) has distinct irreducible factors modulo aS. Therefore, if 
g(T ) ≡ r(T ) · h(T ) modulo aS, then h(τ) 6∈ Q. Upon localizing, QQ = (a)Q, i.e., a is square-free, as desired. 
Therefore, R = S[ω, τ, η]. 

0 0 
aNow, S[τ ] is generated as an S-module by the set {1, 
e

d0 , . . . , ( 
a e
d0 )

s−1}. Thus, this same set generates 
w w 

a 0−1S[ω, τ ] as an S[ω]-module. Moreover, R is generated over S[ω, τ ] by 1, 
u 
, . . . , ( a u 

)e . We wish to replaceωv ωv 

2 e 0 −1 0these latter expressions by fractions of a similar type whose numerators are a, a , . . . , a . Since u and e 
are relatively prime, the set {u, 2u, . . . , (e0 − 1)u}, when reduced mod e0 , equals {1, 2, . . . , e0 − 1}. Suppose 

01 ≤ i ≤ e0 − 1. Write iu = le0 + j, with j < e . Note there is a unique 1 ≤ j ≤ e0 − 1 for each i. Since 
01 = ud0 + (−v)e , 

0i = iud0 + (−v)ie0 = (le0 + j)d0 + (−v)ie0 = jd0 + (−cj )e 

for cj := iv − ld0 . It follows that cj is less than d0 and cj ≡ iv mod d0 . From these equations we get 

0j j ωld
0 j τ −l e l iua a a a a 

= τ−l = τ−lηi = = · 
ωcj ωiv ωiv ωiv 

a aSince τ is unit, S[ω, τ, η] is generated over S[ω, τ ] by 1, , . . . , 
e 0−1 

We now note that c1 < · · · < ce0−1.ωc1 ωce−1 . 
0 0 0If i1 = jd0 + (−cj )e and i2 = (j + 1)d0 + (−cj+1)e , then i2 − i1 = d0 + (−cj+1 + cj )e . Since i2 − i1 < d0 

(the difference i2 − i1 can be negative), cj+1 > cj . 
e 0−1 aIt now follows that R = S[ω, τ, η] is generated over S[ω] by the elements τ i · 1, τ i · ( ωc1 ), . . . , τ

i · ( a 
e0−1 ),c 

ω 
a0 ≤ i ≤ s − 1, which can be written as 1, , . . . , a e−1 

, with b1 < · · · < d (since ce < d0). In0−1ωb1 ωbe−1 
< be−1 

˜Proposition 2.1, take A = S[ω], B = S[W ], F = F (W ) and J , the ideal of (e − 1) × (e − 1) minors of the 
e × (e − 1) matrix ⎞⎛ 

φ = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−a 0 · · · 0 0 
W αe−1 −a · · · 0 0 

W αe−20 · · · 0 0 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 · · · W α2 −a 
0 0 · · · 0 W α1 

⎟⎟⎟⎟⎟⎟⎟⎠ 
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with α1 + α2 + · · · + αi = bi, for 1 ≤ i ≤ e − 1. If we augment φ by adding the extra column which is the 
transpose of the row vector 

(W m−be−1 0 · · · 0 − λa), 
a ait follows that for J = (ωbe−1 , ωbe−2 a, . . . , ae−1), J−1 is generated by {1, , . . . }. Thus, R = J−1 , as
ωb1 ωbe−1 

desired. 
The proofs of parts (ii) and (iii) are quite similar to the proof of part (i). Indeed, for part (ii), that 

ηp n 
= λ−u · ω shows S[ω, η] = S[η]. Moreover, ηp n 

= λ−v · p, so from our discussion in section two, the only 
height one prime in S[η] which might not yield a DVR upon localization is P = (η, p)S[η]. But clearly PP 

is generated by η, so S[η] is integrally closed. That S[ω, η] = R equals J−1 for J having the required form 
follows as in part (i) (via Proposition 2.1). The proof of part (iii) follows the proofs of parts (i) and (ii) by 
interchanging the roles of ω and a. 

We are now ready to identify the primary components of J in the cases covered by Proposition 3.3 and 
Proposition 3.4. 

Theorem 3.5. Let J ⊆ S[ω] be the height-one unmixed ideal for which J−1 = R and assume that f can be 
written as a product of primes. 

hp k+1(i) Suppose p - f , p > 2 and write f = 
t 
+ p g according to our conventions. Let q1, . . . , qm be the 

nprincipal primes in S whose squares divide f , write ei for the qi-adic order of f and assume ei < p . If 
k > 0, then 

J = Ik ∩ J1 ∩ · · · ∩ Jm, 

where Ik is the P -primary ideal given in Proposition 3.3 and 

ei−2 ei−1Ji := (ωb(i,ei−1), ωb(i,ei−2)qi, . . . , ω
b(i,1)q , q )i i 

is the Qi := (ω, qi)-primary ideal such that (J−1 , according to Lemma 3.4.(i). Here, the exponents i )Qi = RQi 

b(i, j) correspond to the exponents bj appearing in Lemma 3.4. If f is not a pth power mod pS or k = 0, 
then 

J = J1 ∩ · · · ∩ Jm. 
nWhen ei > p , analogous statements hold (using part (iii) of Lemma 3.4). 

(ii) Suppose p | f . Write e for the p-adic order of f and and assume that p - e. Let 
e−1)Ie := (ωbe−1 , ωbe−2 p, . . . , p 

be the ideal satisfying (I−1)P = RP , according to Lemma 3.4.(ii). As in (i), let q1, . . . , qm be the primes note 
equal to p whose squares divide f and write J1, . . . , Jm for the corresponding ideals obtained from Lemma 
3.4.(i). If e ≥ 2, then 

J = Ie ∩ J1 ∩ · · · ∩ Jm. 

If e = 1, then 
J = J1 ∩ · · · ∩ Jm. 

Proof. We first note that since F 0(ω) · R ⊆ S[ω], if Q ⊆ S[ω] is a height-one prime for which S[ω]Q is not 
a DVR, then ωF 0(ω) = pnf ∈ Q. Thus, if k > 0 in (i) or e ≥ 2 in (ii), then P , Q1, . . . , Qm are exactly the 
height-one primes in S[ω] which upon localizing do not yield a DVR. If k = 0 in (i) or e = 1 in (ii), then 
we can exclude P . Therefore, Theorem 3.5 follows from Proposition 2.1, Proposition 3.3 and Proposition 
3.4, once we note that each Ji is Qi-primary. The proof of this is analogous to the proof in Proposition 3.3 

˜that Ik is P -primary. Indeed, it follows from the proof of Proposition 3.4 that Ji, the pre-image of Ji in 
S[W ], is a grade-two perfect ideal - since it has grade two and is the ideal of (e − 1) × (e − 1) minors of an 
e × (e − 1) matrix. Thus, J̃  

i is grade unmixed. On the other hand Q̃ 
i, the pre-image of Qi in S[W ], is clearly 

˜ ˜the radical of Ji. Let P be an associated prime of Ji. Then P has grade two. Thus, P ∩ S has grade one, 
since P contains a monic polynomial. Since S satisfies S2, P ∩ S has height one. Thus, P must have height 
two, and so P = Q̃i. Therefore, J̃i is Q̃i-primary, and hence, Ji is Qi-primary, as required. 
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4. Applications 

In this section we will provide some applications of the results in section three. In particular, we give 
criteria for R to be a free S-module. We also prove that the main result in [6] carries over to our present 
situation if we assume that P is the P -primary component of J and S[ω]/P is integrally closed. These are 
precisely the conditions that hold on P in [6]. 
We begin with a lemma, interesting in its own right. 

Lemma 4.1. In S[W ] consider the ideals 

A := (W ek ,W ek−1 a1, . . . ,W e1 ak−1, ak) and B := (W ft ,W ft−1 b1, . . . ,W f1 bt−1, bt), 

where, 

(a) ek > ek−1 > · · · > e1 and ft > ft−1 > · · · > f1. 

(b) a1 | a2 | · · · | ak and b1 | b2 | · · · | bt. 

(c) Each ai and bj is a product of prime elements. 

(d) For all i and j, ai and bj have no prime factor in common. 

Then there exist integers gs > · · · > g1 and products of primes c1 | c2 | · · · | cs such that 

A ∩ B = (W gs ,W gs−1 c1, . . . ,W g1 cs−1, cs). 

Moreover, A, B and A∩B are all grade-two perfect ideals. In particular, if S is Cohen-Macaulay, S[W ]/A∩B 
is Cohen-Macaulay. 

Proof. We follow a five step path. First, a matter of terminology. If G(W ) := snW n +· · ·+s0 is a polynomial 
in W , then we call each term siW i a “term” in G(W ). 

(i) G(W ) ∈ A if and only if every term in G(W ) belongs to I. This follows since A is a homogenous ideal in 
S[W ] under the natural grading and the terms in G(W ) are just its homogenous components. 

(ii) Any term in A is a multiple of one of the given generators. For this, suppose that sW e ∈ A. Then we 
may express sW e in terms of the given generators of A with degrees less than or equal to e. Say, ej ≤ e, 
ej+1 > e. Then we may write 

sW e = Aj · (ak−j W ej ) + · · · + A0 · ak, 
0where each Ai := αiW e−ei , with αi ∈ S. For, i < j, Ai(ak−iW ei ) = (αia W e−ej ) · (ak−j W ej ), wherek−i 

0= a Thus, sW e is a multiple of ak−j W e−j .ak−i k−i · ak−j . 

(iii) The terms in the set {W max{ei,fj }ak−ibt−j } generate A ∩ B. To see this, first note that the given set is 
contained in A∩B. Second, we note that since statements (i) and (ii) apply equally well to B, G(W ) ∈ A∩B 
if and only if each term in G(W ) is a multiple of one generator from A and one generator from B. So, suppose 

sW e = αW e−ei · ak−iW ei = βW e−fj · bt−j W fj . 

Then, α · ak−i = β ·bt−j , and since ak−i and bt−j have not common prime factors, we may write β = β0 · ak−i. 
Thus 

sW e = (β0W e−max{ei,fj }) · (ak−ibt−j W max{ei,bj }), 

which is what we want. 

(iv) The generating set in in the previous step can be refined as follows. Let g1 < · · · < gs be the distinct 
elements in the set {e1, . . . , ek, f1, . . . , ft}. Set cs := ak · bt and for 1 ≤ l ≤ s − 1, define cs−l := ak−ubt−v, 
where u is the largest index for which eu ≤ gl and v is the largest index for which fv ≤ gl. We now show 
that A ∩ B = (W gs , c1W gs−1 , . . . , cs−1W g1 , cg). For this, by (iii), it suffices to show that each cs−lW gl is an 
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element of the set in (iii) and that each element in the set in (iii) is a multiple of some cs−lW gl . Suppose 
cs−lW gl is one of the proposed generators. Say gl = ei, some i. Then cs−l = ak−ift−v, for some (i.e., 
the largest) v for which fv ≤ gl = ei. Thus gl = ei = max{ei, fv}, so cs−lW gl = ak−ifv−lW max{ei,fl} 

belongs to the set given in (iii). The argument is similar if gl = fj , some j. Conversely, consider the term 
ak−ibt−j W max{ei,fj }. Suppose max{ei, fj } = ei = gl, say. Then certainly i is the largest index for which 
ei ≤ gl. Moreover fj ≤ gl, so that if v is the largest index for which fv ≤ gl, then fj ≤ fv. Therefore, 
bt−v | bt−j . Thus, cs−l := ak−ibt−v divides ak−ibk−j , so ak−ibt−j W max{ei,fj } is a multiple of cs−lW gl . 

(v) For c1, . . . , cs given in (iv), c1 | c2 | · · · | cs. Consequently, A ∩ B is a grade-two perfect ideal. For 
this, the first statement is basically clear from the definition of the cr’s. Indeed, if cs−l = ak−ubt−v, then 
gl = eu ≥ fv or gl = fv ≥ eu. We examine the case gl = eu ≥ fv, the case gl = fv ≥ eu being similar. Since 
gl−1 < gl, gl−1 = eu−1 or gl−1 = fv. In either case, u − 1 is the largest index such eu−1 ≤ gl−1 and v is the 
largest index such that fv ≤ gl−1, thus, cs−l+1 = ak−u+1fv, which shows cs−l | cs−l+1. Now, for all i ≥ 1, 

0write ci+1 = ci · c It now follows that A ∩ B is the ideal of s × s minors of the (s + 1) × s matrixi+1. ⎞⎛ 

φ = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−c1 0 · · · 0 
W gs−gs−1 0−c · · · 02 

W gs−1−gs−20 · · · 0 
. . . . . . . . . . . . 
0 0 · · · 0−cs 
0 0 · · · W g1 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

Since the grade of A ∩ B is clearly two, it follows that A ∩ B is a grade-two perfect ideal. That A and 
B are also grade-two perfect ideals follows in similar fashion. The final statement follows by applying the 
Auslander-Buchsbaum formula locally in S[W ]/A ∩ B. 

Theorem 4.2. R is a free S-module in each of the following cases : 

(i) p - f and f is square-free, i.e., QQ = fSQ for every height-one prime Q ⊆ S containing f . 

(ii) f can be written as a product of primes and one of the following conditions holds : (a) p - f and f is 
= hp t 

not a pth power modulo pS, (b) p - f and f + pg, with p - g, (c) p | f and the p-adic order of f 
is realtively prime to p or (d) p is a unit in S. 

Proof. For (i), note that we are not assuming that primes minimal over f are principal. Thus P is the only 
possible height-one prime for which S[ω]P is not a DVR. If f is not a pth power modulo pS, then as we saw 
in section two, P = pS[ω], so R = S[ω] is certainly a free S-module. If f is a pth power modulo pS, then 

t k+1write f = hp + p g according to our established conventions. If k = 0, then, as mentioned in section two, 
PP = (ω)P , so again R = S[ω] is a free S-module. For k > 0, we have that R = I−1 , by Proposition 2.1 andk 
Proposition 3.3 (or Theorem 3.5). Retaining the notation of Proposition 3.3, we have that I−1 is generatedk 
as an S[ω]-module by 1, τ1, . . . , τk. For each 1 ≤ j ≤ k, let dj denote the degree in ω of the numerator of τj , 
when τj is expressed as a fraction whose denominator is pj (see the definition of τj in the second line of the 
proof of Proposition 3.3). Then d1 < · · · < dk and a moment’s thought reveals that 

n−dk −1τk1, ω, . . . , ωd1−1, τ1, ωτ1, . . . , ω
d2−d1−1τ1, τ2, . . . , ω

d3−d2−1τ2, . . . , τk, . . . , ω
p 

generate R as an S-module. Since these elements are clearly linearly independent over S, R is a free S-
module. 
For part (ii), we first note that if conditions (a), (b) or (d) hold, then there is no P -primary component 

of J , and for condition (c), the P primary component of J has the form Ie taken in Propostion 3.4. By 
Proposition 3.4, all of these cases have the following in common : every primary component of J has the form 
(ωmc , qωmc−1 , . . . , qc−1ωm1 , qc)S[ω] with q a principal prime (for which c+1 equals the q-adic order of f) and 

nmc > mc−1 > · · · > m1 positive integers less than p . If we lift each of these ideals to S[W ] and repeatedly 
napply Lemma 4.1, it follows that J = (ωed , a1ω

ed−1 , . . . , ad−1ω
e1 , ad), where 1 < e2 < · · · < ed < p and 
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˜a1 | a2 | · · · | ad are products of primes whose squares divide f . Since J , the preimage of J in S[W ], is 
the ideal of d × d minors of a (d + 1) × d matrix, we can find the generators of J−1 as an S-module using 

˜Proposition 2.1. Indeed, J is given (up to changes in sign) by the d × d minors of the matrix ⎞⎛ 

φ = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−a1 0 · · · 0 
W ed −ed−1 0−a · · · 02 

W ed−1−ed−20 · · · 0 
0 0 · · · 0 
. . . . . . . . . . . . 
0 0 · · · 0−ad 
0 0 · · · W e1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

where a0 i := ai for 2 ≤ i ≤ d. If we express F (W ) = W c · W ed + u · ad, then augmenting the appropriate ai−1 

column to φ allows us to calculate (up to a sign) the S[ω]-module generators of J−1 . Via Proposition 2.1, 
the resulting generators are 

0 0 0 0 0 0 a · a3 · · · ad · u a1 · a3 · · · a · u a1 · a2 · · · ad−1 · u 
1, 2 , d , . . . , . 

ωed a1ωed−1 ad−1ωe1 

We can rewrite these generators as : 

n−ed n−ed−1 
n−e1ωp ωp ωp 

1, , , . . . , . 
a1 a2 ad 

As in the proof of part (i), we can multiply each of these generators by an appropriate power of ω to create 
a linearly independent set of generators of R as an S-module. This completes the proof of Theorem 4.2. 

Our second theorem of this section generalizes part of the argument from [6] which shows the existence of 
a birational, finite Cohen-Macualy module in the case of radical extensions of prime order. As an application 
of this theorem, we show that in our present context, the argument applies when P is the primary component 
of J . 

Theorem 4.3. Let (S, n) be a regular local ring. Assume that f(W ) ∈ B := S[W ] is a monic, irreducible 
polynomial such that S[ω] := B/f(W )B is local. Let R denote the integral closure of S[ω] and assume that 
R is a finite module over S[ω]. Write J ⊆ S[ω] for the conductor of R into S[ω]. Suppose J = P ∩ L, where: 

(i) P is a height-one prime such that S[ω]P is not a DVR and L is the intersection of the remaining 
primary components of J that are not P -primary. 

(ii) S[ω]/P and S[ω]/L are Cohen Macaulay and S[ω]/P is integrally closed. 

(iii) P is the only associated prime of J lying over P ∩ S. 

Then R admits a finite, birational maximal Cohen-Macaulay module. 

Proof. For ideal C ⊆ S[ω], we will write C̃ to denote its preimage in B. Note that since S[ω] is local, there is 
a unique maximal ideal m in B containing f(W ). Since B acts on S[ω] modules via the canonical map from 
B to S[ω], we may assume that B is local at m when considering this action. Now, L ∩ S is a height-one, 
unmixed ideal of S, and therefore a principal ideal. Let a ∈ L be a generator for L ∩ S. Note that condition 
(iii) in the statement of the theorem guarantees that a 6∈ P . Set K := aL−1 , an ideal of S[ω]. We first 
note that K is a height-one, unmixed ideal of S[ω] contained in L. For this, we recall the following fact. 
Suppose C ⊆ S[ω] is an ideal such that C−1 is a ring and (C−1)−1 = C. Then C · C−1 = C. Indeed, 
(C · C−1)C−1 = C · C−1 , and thus, C · C−1 ⊆ (C−1)−1 = C. It follows that C · C−1 = C. Now, let Q be an 
associated prime of L, so that Q is an associated prime of J not equal to P . Then, 
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(LL−1)Q = LQL
−1 = JQJ

−1 = JQ = LQ.Q Q 

Thus, LL−1 ⊆ L, and hence LL−1 = L. In particular, K ⊆ L. On the other hand, if Q is an associated prime 
of K, then Q = (aL−1 : c), for some c 6∈ aL−1 . We also have Qc ⊆ aL−1 , and thus QcL ⊆ aL−1L = aL. If 

ccL ⊆ aL, then ∈ L−1 , contrary to the choice of c. Thus, Q consists of zerodivisors modulo the ideal aL. a 
It follows that Q is contained in Q0 for Q0 an associated prime of aS[ω] or L. Since these latter associated 
primes have height one, Q has height one. Thus, K = aL−1 is a height-one, unmixed ideal contained in L. 

˜It follows that K ⊆ B is an unmixed, grade-two ideal. 
Now, since S[ω]/L = B/L̃ is Cohen-Macaulay, L̃ ⊆ B is a grade-two perfect ideal, so L̃ is given by the n×n 

minors of an (n + 1) × n matrix, by the Hilbert-Burch Theorem. Thus, 1 = projdimB (L) = projdimB (L
−1), 

by Proposition 2.1. Thus, projdimB (aL
−1) = projdimB (K) = 1. Therefore, 

projdimB (S[ω]/K) = projdimB (B/K̃) = 2, 

and B/K̃ is Cohen-Macaulay. Set I := P ∩ K. 
We will show that I−1 is the module we seek. To begin, we first show that I−1 is an R-module. Since 

R = J−1 , [6], Lemma 3.5 shows that I−1 is an R-module if and only if I−1 = (I · J−1)−1 . Since S[ω] satisfies 
S2, we only need to check equality at each height-one prime in S[ω]. Let Q ⊆ S[ω] be a height-one prime. 
If Q = P , then IP = = Thus, since J = J · J−1 = (I · J−1)P , so I

−1 = (I · J−1)−1 . LetPP JP . , IP P P 
Q ∈ Ass(S[ω]/L). Then, on the one hand, JQ = LQ. On the other hand IQ = KQ = (aL

−1)Q = (aJ
−1)Q. 

By [6], Lemma 3.5, I−1 is a JQ 
−1-module, and hence I−1 = (I · J−1)Q 

−1 . Finally, if Q is a height-one primeQ Q 

not containing J , JQ = S[ω]Q, so the desired equality holds in S[ω]Q. Thus, IQ 
−1 = (I · J−1)Q 

−1 , for every 
height-one prime Q, which implies I−1 = (I · J−1)−1 , so I−1 is an J−1-module, i.e., an R-module. 
To see that depth(I−1) = dim(R), it suffices to see that depthB (I

−1) = dim(R) = dim(B) − 1. Arguing 
as in the first paragraph of the proof, it suffices to show that Ĩ  is a grade two perfect ideal in B. Consider 
the exact sequence, 

0 → B/Ĩ  → B/P̃  ⊕ B/K̃ → B/(P̃ + K̃) → 0. 

Since S[ω]/P = B/P̃  is Cohen-Macaulay, depth(B/P̃ ) = dim(B) − 2. By what we have already shown, 
depth(B/K̃ ) = dim(B) − 2. Thus, we will be done by the Depth Lemma if we show that depth(B/P̃ + K̃) = 
dim(B) − 3. For then depth(B/Ĩ) = dim(B) − 2, which gives what we want. 
We now claim that P̃ + K̃ = (a, P̃ )B. Since a 6∈ P̃ , depth(B/(a, P̃ )) = depth(B/P̃ ) − 1 = dim(B) − 3, 

˜ ˜ ˜ ˜this will complete the proof. By the definition of K, a ∈ K, and it follows that (a, P )B ⊆ P + K. To 
˜ ˜ ˜finish, it suffices to show K ⊆ (a, P )B. Let c ∈ K. Then its image c0 in S[ω] belongs to K = aL−1 . Since 

L−1 ⊆ J−1 = R, c0 ∈ aR ∩ S[ω], i.e., c0 is integral over the ideal aS[ω]. But then the image of c0 in S[ω]/P 
is integral over the (non-zero) image of a in S[ω]/P . Since S[ω]/P is integrally closed, it follows that the 

˜image of c0 in S[ω]/P belongs to the ideal a · (S[ω]/P ). Thus, in B, c belongs to (a, P )B, which is what we 
want. This concludes the proof. 

Corollary 4.4. Continuing our ongoing notation, with ωp n 
= f , assume further that S is an unramified, 

= hp k+1regular local ring of mixed characteristic p > 0. Assume p - f and write f 
t 
+ p g in accordance with 

our standard hypothesis. Assume: 

(i) t = 1. 

(ii) S[ω]/P is integrally closed. 

Then R admits a finite, birational maximal Cohen-Macaulay module. 

Proof. We need to verify the conditions in Theorem 4.3. Note first, that our standing hypothesis that S/pS 
is integrally closed holds, since S/pS is a regular local ring. By Theorem 3.5, since t = 1, k = 1 and 
P = (ωp m − h, p)S[ω] is the P -primary component of J . If we let L denote the intersection of primary 
components of J not corresponding to P , then by Theorem 3.5 and Lemma 4.1, B/L̃ = S[ω]/L is Cohen-
Macaulay. Thus, the conditions in Theorem 4.6 hold, so R admits a finite, birational, maximal Cohen-
Macaulay module. 
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2

Remarks. (i) Suppose S is an unramified regular local ring of mixed characteristic p and wp = f , i.e., 
n = 1 in our standard set-up with p - f . This is exactly the situation in [6], so P = (ω − h, p)S[ω] and 
S[ω]/P = S/pS is integrally closed. Moreover, as shown in [6], P is the P -primary component of J . Thus, 
Corollary 4.7 is a generalization of the main result in [6]. 

(ii). Suppose, for example, that V is an unramified DVR of mixed characteristic p. Set k(p) := V/pV and 
let S = V [X1, . . . , Xn] be the polynomial ring with coefficients in V . Suppose f ∈ S and f = hp + p g, in 
accordance with our standard convention (so t = 1). Thus, for ω satsifying ωp n 

= f , P = (ωp m − h, p)S[ω] is 
the P -primary component of J . Suppose that the partial derivatives of the image of h in k(p)[X1, . . . , Xn] 
generate an ideal having height greater than one. It follows that S[ω]/P = k(p)[X1, . . . , Xn,W ]/(W p m −h) is 
regular in codimension one and hence is integrally closed (and is the coordinate ring of a Zariski hypersurface). 
By Corollary 4.4, the integral closure of S[ω] admits a finite, birational maximal Cohen-Macaulay module. 

(iii) Suppose n = 1 in Theorem 4.2. If f can be written as a product of primes, we can always assume that 
no prime dividing f appears more than p − 1 times. In particular, if p | f , we can always assume that the 
p-adic order of f is relatively prime to p. Thus, Theorem 4.2 recovers the freeness results in [7], where it 
was shown that for pth root extensions, R is a free S-module whenever p | f or f is not a pth power modulo 
p (see [7] Proposition 2.2). Even when n = 1, Theorem 4.2 gives some additional cases for R to be a free 
S-module. 

(iv) While the motivation for this paper comes from an attempt to use the structure of the conductor J to 
seek a finite, Cohen-Macaulay module over R, when R is the integral closure of the ring obtained from a 
regular local ring by adjoining the pnth root of an element of S, for R the integral closure of S[ω] and ω 
a root of an arbitrary irreducible monic polynomial f(W ) over S, the structure of J seems to exert some 
influence over the property of S being a summand of R, even if S is just a normal domain. For example, if S 
is normal, whenever J contains an element of the form g(ω) ∈ J (with degree less than the degree of f(W )) 
so that some coefficient of g(w) is a unit, an elementary argument 3 shows that JR ∩ S = J , for all ideals 
J ⊆ S, i.e., S is ideally integrally closed in R. One can then use this in many cases (e.g., S is excellent) to 
prove that S is a summand of R, see [3]. Of course, when S is a regular local ring, the Direct Summand 
Conjecture is now a theorem (see [1]), so that S is always a summand of R, but the conductor argument 
does not, apriori, require that S be regular, though the Direct Summand conjecture does. Regarding the 
converse, I do not know if the condition that S is a summand of R implies that the conductor contains an 
element with a unit coefficient. 

5. Examples 

In this section we offer some examples illustrating our results and some of the phenomomena discussed in 
previous sections. Throughout this section, we continue to maintain our established notation and conventions. 
One of the key points about pnth root extensions seems to be that R is a free S-module whenever J does not 
have a P -primary component. However, we will provide some examples where R is free, even when J has a 
P -primary component. Some of the examples will show that the nature of R is determined by the exponents 
appearing in the prime factorization of f while other examples will show that the nature of R sometimes 
depends upon the prime factorization of f modulo p (or powers of p). 
We start with some “generic” examples. 

Xed eXe2 XedExample 5.1. Suppose S := Z[X1, . . . , Xd]. Take f = Xe1 · · · , or f = p · · · , with p - ei, some1 d 2 d 
i, in the first case, or p - e in the second. In the first case, f is not a pth power in S nor is f a pth power 

3Suppose that the conductor of R to S[ω] contains an expression g(ω) in ω of degree less than n (the degree of f(W )) such 
that some coefficient of g(ω) is a unit in S. To see that JR ∩ S = J , for all ideals J ⊆ S, suppose the ith term of g(ω) is α · ωi , 
with i < n and α a unit in S. Note that if J ⊆ S is an ideal and a ∈ JR ∩ S, we can write a = j1r1 + · · · + jsrs, with each 
jk ∈ I and rk ∈ R. If we multiply both sides of this equation by g(ω), the right hand side belongs to JS[ω]. Thus, a · g(ω) 
can be written as an expression of degree less than n in ω with coefficients in J . Hence a · α ∈ J . Since α is a unit, a ∈ J , as 
required. Here we are using that S[ω] is a free S-module with basis, 1, ω, . . . , ωn−1 
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modulo pS. Thus, R is a free S-module by Theorem 4.2. In the second case, R is also a free S-module, again 
by Theorem 4.2. In fact, combining Proposition 2.1 with the proofs of Lemma 3.4, Lemma 4.1 and Theorem 
4.2, whenever we meet one of the hypotheses of Theorem 4.2, we have a constructive procedure for finding 
a basis of R as an S-module. 
For example, suppose p = 3, n = 2 and f = 38X2

7X3
6 , so ω9 = 38X2

7X3
6 . Then P = (ω, 3), Q2 := (ω, X2) 

and Q3 := (ω, X3) are the height-one primes Q ⊆ S[ω] for which S[ω]Q is not a DVR. If we apply Lemma 
p3.4 (and its proof) we obtain that RP is generated over S[ω]P by ω , that RQ2 is generated over S[ω]Q2 by 

X4 X2 
2 3and that RQ3 is generated over S[ω]Q3 by X3 and . Moreover, forω5 ω ω3 

I1 := (ω, p)7 , I2 := (ω7, X2ω
6, X2

2ω5, X2
3ω3, X2

4ω2, X2
5ω, X2

6), I3 := (ω7, X3ω
6, X3

2ω4, X3
3ω3, X3

4ω, X3
5), 

RP = (I
−1)P , RQ2 = (I

−1)Q2 , and RQ3 = (I
−1)Q3 . Thus, R = J−1 , for J = I1 ∩ I2 ∩ I3. Using Lemma 4.11 2 3 

(by taking pre-images in S[W ]), we have that 

J = (ω7 , 3X2X3ω
6 , 32X2

2X3
2ω5 , 33X2

3X3
2ω4 , 34X2

3X3
3ω3 , 35X2

4X3
4ω2 , 36X2

5X3
4ω, 37X2

6X3
5). 

Now J is easily seen to be generated (up to sign) by the 7 × 7 minors of the 8 × 7 matrix ⎞⎛ 

φ := 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−3X2X3 0 0 0 0 0 0 
ω −3X2X3 0 0 0 0 0 
0 ω −3X2 0 0 0 0 
0 0 ω −3X3 0 0 0 
0 0 0 ω −3X2X3 0 0 
0 0 0 0 ω −3X2 0 
0 0 0 0 0 ω −3X2X3 

0 0 0 0 0 0 ω 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

If we augment φ with the column whose transpose is (ω2 0 · · · 0 − 3X2X3), we obtain an 8 × 8 matrix φ0 . 
δiBy Proposition 2.1, J−1 is generated as an S[ω]-module by the fractions ji 
, where for 1 ≤ i ≤ 8, δi is the 

(i, i)th cofactor of φ0 and ji is the ith minor of φ. Thus, J−1 is generated over S[ω] by 

ω2 ω3 ω4 ω5 ω6 ω7 ω8 

1, , , , , , , , 1. 
32X2X2 33X3X2 34X3X4 35X4X4 36X5X4 37X6X53X2X3 2 2 2 3 2 3 2 3 2 3 2 3 

It follows that the elements 

ω2 ω3 ω4 ω5 ω6 ω7 ω8 

1, ω, , , , , , ,
32X2X2 33X3X2 34X3X4 35X4X4 36X5X4 37X6X53X2X3 2 2 2 3 2 3 2 3 2 3 2 3 

form a basis for R as an S-module. 

Example 5.2 In this example, we will show that even though the primary components of J depend upon 
the prime factors of f , the freeness of R as an S-module may depend not only on how f factors over S, but 
also on how f factors modulo powers of pS. In particular, for a certain factorization over S, we will give an 
example where R is not a free S-module (or Cohen-Maculay, since S will be regular) and an example where 
R is a free S-module, even though p - f and J has a P -primary component. Set S := Z[X, Y ](p,X,Y ) and 
take p = 3. We will write f = a8b7 = h9 + 27g, with a, b ∈ S prime elements. For different choices of a and 
b, we will get R free over S, i.e., R Cohen-Macaulay and R not free over S, i.e., R not Cohen-Macaulay. 

(i) Take a := X7Y +27, b := XY 4+27 and h := X7Y 4 (as in the previous example). We are going to show that 
R is not a free S-module by showing that R is not Cohen-Macaulay. Now, as in Example 5.2, R = J−1 , for J = 
I1∩I2 ∩I3, with I1, I2 and I3 as given in Example 5.2 (expressed in terms of ω, h, a, b.) Set B := S[W ](3,X,Y,W ) 

and use “tilde” to denote preimages in B. By our comments in the proof of Proposition 2.1, p.d.B (J) = 1 if 
and only if p.d.B(J−1) = 1, so depthB (R) = dim(B) − 1 = dim(R) if and only if depthB (J̃) = dim(B) − 1 if 
and only if depthB (B/J̃) = dim(B) − 2. Therefore, we will show that depthB (B/J̃) < dim(B) − 2. For this, 
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we set Ĩ  := Ĩ2 ∩ Ĩ3 = (W 7, abW 6, a2b3W 5, a3b3W 4, a4b3W 3, a5b4W 2, a6b5W, a7b6) (by Lemma 4.1). From 
the exact sequence 

B/J̃  → B/Ĩ1 ⊕ B/Ĩ  → B/(Ĩ1 + Ĩ) → 0, 

and the Depth Lemma, it follows that we must prove that depthB (B/(Ĩ  
1 + Ĩ)) < dim(B) − 3 = 1. Using the 

definitions of a, b, h, Ĩ1 and Ĩ, it follows that 

Ĩ1 + Ĩ = (X50Y 29, X52Y 28, X42Y 24W, X37Y 22W 2, X39Y 21W 2,W 3 − X21Y 12 , 3(W − X7Y 4), 9). 

Now, since Ĩ  
1 + Ĩ  contains a monic in degree 3, B/(Ĩ  

1 + Ĩ) is a finitely generated S-module. In fact, it is a 
quotient of S3 . It is not difficult to see that the depth of B/(Ĩ1 + Ĩ) is the same, whether we regard it as a 
B-module or an S-module. We are now going to write B/(Ĩ1 + Ĩ), viewed as an S-module, as S3/M , for some 
M ⊆ S3 and show that p.d.S (S

3/M) = 3. It will then follow that 0 = depthS (S
3/M) = depthB (B/(Ĩ  

1 + Ĩ)), 
which is what we want. 
To proceed, we set T := B/(W 3 − X21Y 12)B and K := (Ĩ  

1 + Ĩ)T . Now the T -ideal K is also a finitely 
generated S-module. To find a set of generators for K as an S-module, one simply multiplies the given B 
generators by 1, W , W 2 . Upon doing so, we see that K is generated as a T -module by the images (in T ) of 
the expressions : 

X50Y 29, X52Y 28, X42Y 24W, X37Y 22, X39Y 21 , 

, 3X21Y 12 − 3X7Y 4W 2−3X7Y 4 + 3W, −3X7Y 4W + 3W 2 , 9, 9W, 9W 2 . 

However, 

3X21Y 12 − 3X7Y 4W 2 ≡ −X14Y 8 · (−3X7Y 4 + 3W ) − X7Y 4 · (−3X7Y 4W + 3W 2), 

9W ≡ 3 · (−3X7Y 4 + 3W ) + X7Y · 9 and 9W 2 ≡ 3 · (−3X7Y 4W + 3W 2) + X7Y · 9W 

in T . It follows that K is generated as an S-module by the images in T of : 

X50Y 29, X52Y 28, X42Y 24W, X37Y 22, X39Y 21 , −3X7Y 4 + 3W, −3X7Y 4W + 3W 2 , 9. 

Therefore, as an S-module, B/(Ĩ  
1 + Ĩ) is isomorphic to S3/M , for M generated by the columns of the matrix ⎞⎛ 

50 29X Y ⎝ 0 
X37Y 22 X39Y 210 0 0 0 3 0 

We now note that S3/M can be resolved over S as follows : 

ˆα ψ MF : 0 → S2 → S7 → S8 → S3 → S/M → 0, 

where 

X52Y 28 0 0 0 −3X7Y 4 0 9 ⎠M̂ := X42Y 24 0 0 3 −3X7Y 40 0 . 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

X2 0 
−Y 0 
0 0 
0 X2 

0 −Y 
3 0 
0 3 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

α = 

and 
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⎞⎛ 

ψ = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

3 0 0 0 0 −X2 0 
0 3 0 0 0 Y 0 

−3XY −3X3 −9 3X2Y 2 3X4Y 0 0 
0 0 0 3 0 0 −X2 

0 0 0 0 3 0 Y 
X43Y 25 X45Y 24 3X42Y 24 0 0 0 0 
0 0 0 −X37Y 22 −X39Y 21 0 0 
0 0 X49Y 28 0 0 0 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

A straight forward calculation shows that F is a complex. Moreover, we clearly have grade(I3(M̂)) = 2 
and grade(I2(α)) = 3. Using Macaulay2, one finds that 729, X132Y 175 is a regular sequence of length two 
contained in I5(ψ). Thus, F is an exact sequence, by the Buchsbaum-Eisenbud exactness criteria. Therefore, 
p.d.S (S

3/M) = 3, and this part of the example is complete. 

(ii) Keeping S the same, we now take a := XY 3 + 27, b := X4Y 3 + 27 and h := X4Y 5 , so 

ω9 = f = a 8b7 = h9 + 27g. 

We are going to show that R is Cohen-Macaulay (i.e., a free S-module), even though none of the hypotheses 
from Theorem 4.2 are in force. As before, R = J−1 , for J = I1 ∩ I2 ∩ I3, for I1 = (ω

3 − h3 , 3(ω − h), 9), 
I2 := (ω, a)7 and I3 = (ω

7, bω6 , . . . , b7) as above. Set B := S[W ](p,X,Y,W ) and use “tilde” to denote preimages 
in B. Writing Ĩ  := Ĩ  

2 ∩ Ĩ  
2 and using the definitions of a, b, and h, we have 

Ĩ1 + Ĩ = (X28Y 36, X24Y 30W, X21Y 27W 2,W 3 − X12Y 15 , 3(W − X4Y 5), 9). 

Following the line of thought used in part (i), to see that R is Cohen-Macaulay, it suffices to show that 
B/(Ĩ  

1 + Ĩ) has depth equal to 1, either as a B-module or as an S-module. Arguing as before, one can show 
that B/Ĩ1 + Ĩ  is isomorphic to S3/M as an S-module, where M is the submodule of S3 generated by the 
columns of the matrix ⎞⎛ 

X28Y 36 0 0 −3X4Y 5 0 9 
M̂ = ⎝ X24Y 300 0 3 −3X4Y 5 0⎠ . 

X21Y 270 0 0 3 0 

To see that depthS (S
3/M ) = 1, we show p.d.S (S

3/M) = 2. In fact, 

ˆ 
→ 
ψ 
S6 MF : 0 → S3 → S3 → S3/M → 0, 

is easily seen to be a free resolution of S3/M , where ⎞⎛ 

ψ = 

⎜⎜⎜⎜⎜⎜⎝ 

3 0 0 
−3Y −9 −3XY 2 

0 0 3 
X24Y 31 3X24Y 30 0 

−X21Y 270 0 
X28Y 350 0 

⎟⎟⎟⎟⎟⎟⎠ 

Therefore, p.d.S (S
3/M) = 2 and Example 5.3 is now complete 

Example 5.3. We consider the example from [4]. Set S := (Z[U, V, X, T ]/(T 2 − 4U − V 2X))(2,U,V,X,T ), 
N := (2, U, V, X, T )S, and use lower case to denote images in S. Then S is a (non-regular) local Cohen-
Macauly UFD. Set F (W ) := W 2 − x ∈ S[W ], so ω2 = x in S[ω]. In [4], it is shown that S[ω] has an integral 
extension (in fact R, the integral closure of S[ω]) for which S is not a direct summand. It follows from part 
(iv) of the Remarks in section four, that the conductor J for this extension does not contain an expression 
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of the form a + bω with a, b ∈ S and one of the elements a or b a unit in S. We wish to illustrate this 
explicitly in this example. We start by noting that since ω · F 0(ω) = 2x, the possible height-one primes 
Q ⊆ S[ω] for which S[ω]Q is not a DVR are those containing either x or 2. In the first case, we have 
Q̃ = (W, x)S[W ] = (W, F (W ))S[W ], so Q = xS[ω]. Thus, S[ω]Q is a DVR in this case. Suppose Q contains 
2. Then W 2 − x, 2 ∈ Q̃. Since in S[W ], 

t2 − v 2W 2 = −v · (W 2 − x) + (2u) · 2, 

(2, t − vW, W 2 − x) ⊆ Q̃. In Z[U, V, X, T ], T 2 − 4U − V 2X ∈ (2, T − V W,W 2 − X), a height-three prime, so 
˜ Q(2)we must have Q = (2, t − vW, W 2 − x) in S[W ]. The displayed equation shows that F (W ) ∈ ˜ , so S[ω]Q 

˜is not a DVR for Q := (2, t − vω)S[ω]. Moreover, since Q is the only height-two prime in B containing 2 
and W 2 − x, Q is the only height-one prime in S[ω] for which S[ω]Q is not a DVR. Thus, by Proposition 
2.1, J ⊆ Q. Since Q ⊆ NS[ω], J ⊆ NS[ω], and hence the conductor J does not contain an expression of the 
form aω + b, with with either a or b a unit in S. 
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