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UNIFORM SYMBOLIC TOPOLOGIES IN ABELIAN 

EXTENSIONS 

CRAIG HUNEKE AND DANIEL KATZ 

Abstract. In this paper we prove that, under mild conditions, an equicharac-
teristic integrally closed domain which is a finite abelian extension of a regular 
domain has the uniform symbolic topology property. 

1. Introduction. 

The purpose of this paper is to give a partial answer to the following question: 

Question 1.1. Let R be a complete local Noetherian domain. Does there exist a 
positive integer b such that for all prime ideals P ⊆ R, P (bn) ⊆ P n , for all n ≥ 1 ? 

In fact, our results do not in general need the assumption that the ring is local 
or complete, but do require the rings to satisfy both the Uniform Artin-Rees and 
the Uniform Briançon-Skoda properties. 

Here we write P (t) to denote the tth symbolic power of the prime ideal P , namely 
P (t) = P tRP ∩ R. For any Noetherian domain R, when b as above exists, we shall 
say that R satisfies the uniform symbolic topology property on prime ideals. Uniform 
results of this type for regular rings were first given by Ein, Lazarsfeld and Smith in 
[5], by Hochster and Huneke in [8], and recently by Ma and Schwede in mixed char-
acteristic [17]. In these papers, the authors prove that if R is a regular local ring 
and d is the Krull dimension of R, then P ((d−1)n) ⊆ P n , for all prime ideals P ⊆ R 
and all n ≥ 1. In [15], uniform results were proved for isolated singularities, under 
some mild conditions on the ring. However, in that paper no effective bound was 
given. In general little is known: see the introduction to [15] for further discussion 
about this problem. Because a complete local domain containing a field, or an affine 
domain over a field, is a finite extension of a finite dimensional regular domain con-
taining a field, it is natural to consider how the uniform symbolic topology property 
behaves with respect to finite ring extensions. Thus, Question 1.1 would have a 
positive answer for such rings if whenever S ⊆ R is a finite extension of Noetherian 
domains, R has the uniform symbolic topology property on prime ideals if S has 
the uniform symbolic topology property on prime ideals. In [16] ascent and de-
scent theorems of this type were proved. Although descent of the uniform symbolic 

Received by the editors May 1, 2019. 
2010 Mathematics Subject Classification. 13A02, 13F20, 13H15. 
Key words and phrases. symbolic powers, uniform Artin-Rees. 
The first author was partially supported by NSF grant DMS-1460638, and thanks them for 

their support. 

c XXXX American Mathematical Society 

1 



2 CRAIG HUNEKE AND DANIEL KATZ 

topology property holds, the results in [16] for ascent are not strong enough to give 
a positive answer to Question 1.1. 

The entire paper is devoted to a proof of the following main theorem: Suppose 
that R is an integrally closed domain that is an abelian extension of an equichar-
acteristic excellent regular domain S satisfying our standard hypothesis (see the 
next section), such that if S has characteristic p > 0, then S is F -finite and the 
index of the corresponding Galois group is not divisible by p. Then R has the 
uniform symbolic topology property on prime ideals. 

Preliminary results and basic definitions are contained in Section 2. 
There are many delicate points in the proof. Section 3 sets up a main technical 

tool for the proof, which holds in great generality. Namely, we prove that for a 
wide class of rings, the uniform symbolic topology property holds for all prime 
ideals in R if there exist fixed integers a, b ≥ 1, with b a particular value chosen 
a priori, such that P (a) ⊆ P b , for all prime ideals P . The number b depends 
on a uniform Artin-Rees number for certain special elements which we call uniform 
multipliers for symbolic powers. This already presents a difficulty in using reduction 
to characteristic p, since it is not known how uniform Artin-Rees numbers behave 
under such reduction. 

Section 4 gives our main results in the case of a simple radical extension of an 
excellent regular ring satisfying our standard hypothesis. The main new technical 
tool is a fundamental result involving norms of elements in a simple radical ex-
tension. For a given element u in a finite extension ring of our base ring, and for 
a given prime Q, our result compares which symbolic power of the prime Q the 
element u is in to which symbolic power its norm is in for the contraction of Q to 
the base ring. This section also presents the reduction to characteristic p argument 
to prove certain elements are always uniform multipliers for symbolic powers. 

Section 5 generalizes the simple radical extension case to the case of repeated 
radical extensions. For this, after some preliminary results, we rely on induction 
and the existence of a uniform multipler for symbolic powers in repeated radical 
extensions. Our final Section 6 combines the previous work to prove the main 
theorem. We use Kummer theory in the following way. Suppose that S ⊆ R is a 
finite abelian extension of integrally closed Noetherian domains. In other words, 
if L denotes the quotient field of S and K denotes the quotient field of R, then 
the extension L ⊆ K is a Galois extension with abelian Galois group and R is the 
integral closure of S in K. If the characteristic of L (say) does not divide order 
of the Galois group and L contains an appropriate root of unity, then K is an√ √ 
extension of the form L( n a1, . . . , n at). It is not hard to see that if S is regular 
(or just a UFD), we may assume each ai is a square-free element S, that the ring√ √ 
T := S[ n a1, . . . , n at] is integrally closed, and R ⊆ T . Thus, by the descent 
theorem stated in the next section, it will be enough to show that T satisfies the 
uniform symbolic topology property. 

For a more detailed history of the problem at hand, we refer the reader to [15] 
or [16] and for unexplained terminology, we refer the reader to the book [4]. The 
paper [19] contains interesting related results concerning the linear equivalence of 
topologies defined by valuation ideals. 



3 UNIFORM SYMBOLIC TOPOLOGIES IN ABELIAN EXTENSIONS 

2. Preliminaries 

In this brief section we record the results that we will rely upon throughout 
the paper. Our work relies heavily on both the Uniform Artin-Rees Property and 
the Uniform Briançon-Skoda Property. Because of this dependence, many of our 
theorems need to assume we are in a position to use them. This leads to the 
following definition: 

Definition 2.1. Throughout this paper, we say that a reduced Noetherian ring S 
satisfies our standard hypothesis if for every finite extension T of S and reduced 
ideal J ⊆ T , T/J satisfies both the Uniform Artin-Rees Property and the Uniform 
Briançon-Skoda Property. 

For the reader’s convenience, we recall the definitions: 

Definition 2.2. Let S be a Noetherian ring. We say that the Uniform Artin-Rees 
Property holds for S if for every pair of finitely generated R-modules N ⊆ M , there 
exists an integer k (depending on N ⊆ M) such that for all ideals I of S, and for 
all n ≥ k, 

InM ∩ N ⊆ In−kN. 

Definition 2.3. Let S be a Noetherian reduced ring. We say that the Uniform 
Briançon-Skoda Property holds if there exists a positive integer k such that for all 
ideals I of S, and for all n ≥ k, 

In ⊆ In−k . 

Here we are writing J to denote the integral closure of an ideal J . 

Let S be a reduced Noetherian ring. By [11, Theorems 4.12, 4.13], in each of the 
following cases, S satisfies our standard hypothesis. 

i) S is essentially of finite type over an excellent Noetherian local ring. 
ii) S is a ring of characteristic p, and under the Frobenius map F : S → S, S 

is a finite module over the image of the Frobenius. If S is reduced, this is 
equivalent to saying that S1/p is module finite over S. 

iii) S is essentially of finite type over Z . 

Two main results of [16], which we use freely in this paper, are the ascent and 
descent theorems mentioned in the introduction. Note that in [16], the ring S is 
acceptable if it satisfies one of the three conditions above. In fact, the results below 
hold when S satisfies our standard hypothesis, since in [16] we used the acceptable 
hypothesis in order to invoke the Uniform Artin-Rees and the Uniform Briançon-
Skoda properties. 

Theorem 2.4. (Ascent) Let S ⊂ R be a finite integral extension of Noetherian 
domains. Assume that S is acceptable and integrally closed in its field of fractions 
K and that the field of fractions L of R is a separable extension of K. If S has 
the uniform symbolic topology property on prime ideals, then R has the uniform 
symbolic topology property for all prime ideals Q ⊆ R such that Q is the only prime 
lying over Q ∩ S. Moreover, if R is also integrally closed, the conclusion holds for 
arbitrary L. 
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Theorem 2.5. (Descent) Let S ⊂ R be a finite integral extension of Noetherian 
domains. Assume that S is acceptable and integrally closed. There exists an integer 
r, depending only on the extension S ⊂ R, such that if Q is a prime in R, q = S∩Q, 

(rbn) ⊂ qnand Q(bn) ⊂ Qn , for some fixed b and for all n ≥ 1, then q for all n ≥ 1. 
In particular, if R satisfies the uniform symbolic symbolic topology property, then 
so does S. 

As a consequence of the descent theorem, for example, if a finite group acts on 
an acceptable regular ring of equicharacteristic zero having finite Krull dimension, 
then the ring of invariants must have uniform symbolic topologies for prime ideals. 

3. Uniform multipliers for symbolic powers and Bootstrapping 

In this section we show that for a wide class of rings the uniform symbolic 
topology property holds for all prime ideals in R, if there exist fixed integers a, b ≥ 1, 
with b a particular value chosen a priori, such that P (a) ⊆ P b , for all prime ideals 
P . Of course, on the face of it, this property (which is implied by the uniform 
symbolic topology property), is much weaker. A key ingredient in this result is the 
existence of certain elements that multiply large symbolic powers of an ideal into 
powers of smaller symbolic powers. To this end, we make the following definition. 

Definition 3.1. Let R be a Noetherian ring and U a set of ideals of R (for example, 
all prime ideals or all reduced ideals). We say that a non-zerodivisor x ∈ R is a 
uniform multiplier for symbolic powers with respect to U if there exists k ≥ 1 such 
that for all ideals I ∈ U , 

nI(kn+en) ⊆ (I(e+1))n x , 

for all e ≥ 0 and n ≥ 1. If U = Spec(R), we just say that x is a uniform multiplier 
for symbolic powers. In either case, we refer to the integer k as the index of the 
multiplier x. 

Remark 3.2. It follows from [8], Theorem 1.1, that if R is a finite-dimensional regu-
lar domain containing a field, then 1 ∈ R is a uniform multiplier for symbolic powers 
for all ideals. The same theorem shows that if R is a geometrically reduced affine 
domain over a field K (which in the case that R has characteristic zero, just means 
that R is reduced), then any x in the square of the Jacobian ideal of R over K is a 
uniform multiplier for symbolic powers for all ideals. In [15], Proposition 3.4, it is 
shown that if R is is a Noetherian domain containing a field of characteristic p > 0 
such that R is F -finite and an isolated singularity, then exists an m-primary ideal 
consisting uniform multipliers for symbolic powers. In the lemma below, we point 
out how the argument from [15], which is quite similar to the one in [8], yields 
uniform multipliers for symbolic powers in more general settings. In particular, the 
existence of a uniform multiplier for symbolic powers in a repeated radical exten-
sion of an equicharacteristic regular ring is one of our crucial results. In [14], we 
prove the existence of these uniform multipliers for arbitrary hypersurfaces. 

Lemma 3.3. Suppose R is a d-dimensional F -finite integral domain containing 
a field of characteristic p > 0. Fix a ∈ R and assume there are flat R-modules 
⊆ R1/qFq such that aR1/q ⊆ Fq, for all q. Then for every ideal I ⊆ R, if we 

let h denote the maximum of the analytic spreads of the ideals IP , where P is an 
associated prime of I, then anI(nh+en) is contained in the tight closure of (I(e+1))n , 
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for all e ≥ 0 and n ≥ 1. Moreover, if a is also a test element for R, then a2 is a 
uniform multiplier for symbolic powers for all ideals of R with index d. 

Proof. With only very minor modifications, we can follow the proofs of Proposition 
3.4 and Theorem 3.5 in [15] to show that a has the required property. Starting with 
an ideal I ⊆ R, as in [15] Proposition 3.4, one uses the flatness of the Fq to show 
that aq(I [q] : xq) ⊆ (I : x)[q], for all I ⊆ R, x ∈ R and q ≥ 1. Here we are just using 
the fixed multiplier a rather than the full ideal J appearing in [15]. Note also that 
in the proofs of the results from [15], the modules Fq are assumed to be free, but 
the flatness of the modules Fq suffices, nor do we need R to be an integral domain. 
Then, as in the proof of [15], Theorem 3.5, one uses Lemma 2.4(b) from [8] to show 
that for u ∈ I(hn+en), and q = an + r, with 0 ≤ r < n, there exists s ≥ 1 such that 

Is+(h+e)(n−1) a ⊆ (I(e+1))[q]RS ∩ R. u 

Here, S denotes the complement of the union of the associated primes of I. Note 
that in [15], this latter relation is applied with d, the dimension of R instead of 
h, but Lemma 2.4(b) in [8] is actually stated with h. The rest of the proof now 

nproceeds exactly as in the proof of [15], Theorem 3.5, showing that a u is in the 
tight closure of (I(e+1))n , as required. The second statement follows from the first 
statement and the definition of test element. � 

The conclusion of the next proposition is a special case of an interesting theorem 
due to Swanson, namely [20], Theorem 3.1. However, because we only need a 
special case, the result already follows from [11], Proposition 2.2 and its proof 
under conditions much more general than Swanson’s result. 

Proposition 3.4. Let R be a Noetherian ring and x ∈ R a non-zerodivisor. Sup-
pose the pair (x) ⊆ R has uniform Artin-Rees number l, i.e., for all ideals I ⊆ R, 
and all n ≥ l, In ∩ (x) ⊆ In−l(x). Then for all ideals I ⊆ R, all n ≥ 1, and all 

n) ⊆ Im−nl(xn).m ≥ nl, Im ∩ (x 

Proof. Since the conclusion of the proposition holds for n = 1 by assumption, we 
fix n ≥ 2. For 2 ≤ i ≤ n, (xi−1)/(xi) is isomorphic to R/(x), so the pair of modules 

i+1) ⊆ (x(x i) has uniform Artin-Rees number l. Since 

(x n) ⊆ (x n−1) ⊆ · · · ⊆ R 

consists of n containments, it follows from the proof of [11], Proposition 2.2, that 
the pair (xn) ⊆ R has uniform Artin-Rees number nl. In other words, for all ideals 

n) ⊆ Im−nl(xI ⊆ R, all n ≥ 1 and all m ≥ nl, Im ∩ (x n), which is what we 
want. � 

Here is our bootstrapping theorem. 

Theorem 3.5. Let R be a Noetherian ring. Let U be a set of ideals of R, and 
suppose x ∈ R is a uniform symbolic multiplier with index k ≥ 1 for the set U . 
Assume further that the pair (x) ⊆ R has uniform Artin-Rees number l ≥ 1. If 
there exists b ≥ 1 such that I(b+1) ⊆ I l+1 , for all ideals I ∈ U , then for d = k + b, 
I(dn) ⊆ In , for all n ≥ 1 and all I ∈ U . 

Proof. Let I ∈ U . From our assumption, taking e = b in Definition 3.1, we have 
nI(dn) nI(kn+bn) ⊆ (I(b+1))n ∩ (xx = x n), 
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for all n. Since I(b+1) ⊆ I l+1 , it follows that 
nI(dn) ⊆ Inl+n ∩ (x nInl+n−ln nIn x n) ⊆ x = x , 

nwhere the second containment follows from Proposition 3.4. Cancelling x gives 
I(dn) ⊆ In , for all I ∈ U and all n, as required. � 

The following corollary is an immediate consequence of the theorem and remark 
above. 

Corollary 3.6. Let R be a Noetherian domain which is an affine domain over 
a field of characteristic zero. Then there exists d ≥ 1 such that R satisfies the 
uniform symbolic topology property if there exists c ≥ 1 such that Q(c) ⊆ Qd , for 
all prime ideals Q. 

4. Simple radical extensions 

In this section we study the uniform symbolic topology property in the ring √ 
R = S[ n a], where S is an integrally closed Noetherain domain satisfying the 
uniform symbolic topology property, n is a unit in S, and a ∈ S is square-free.√ 
We say that an element a ∈ S is square-free if a is a unit or aS = aS. Equiva-
lently, a ∈ S is square-free if a is a unit or QSQ = aSQ, for all height one primes 
containing a. Note that if a ∈ S is a non-unit and square-free, then standard field 
theory implies that Xn − a is irreducible over S, and moreover R is also integrally 
closed. If a is a unit, then R is integrally closed and even regular, if S is regular,√ 
since n · ( n a)n−1 is a unit in R. 

To see the potential pitfalls, even in this case of a simple radical extension, 
consider the case n = 2. Thus, R = S[X]/(X2 − a). Let Q ⊆ R be a prime ideal 
and set q = Q ∩ S. Assume a 6∈ q. If Q 6= qR, then the simplest case is when Q√ 
has the form (x − b, q)R, where b ∈ S, x = a is the residue class of X in R, and 
b2 − a ∈ q. This occurs, for example, when S/q is integrally closed. Choose k such 
that b2 − a ∈ q(k). In this case, we claim that for the prime Q := (x − b, q)R, we 
have that x − b ∈ Q(k) but x − b ∈/ Q2 . To see this notice that in R, 

(k) ⊂ Q(k)(x − b)(x + b) = a − b2 ∈ q , 

but x + b ∈/ Q, since a 6∈ q. Thus, x − b ∈ Q(k) as claimed. On the other hand, it is 
clear that x − b ∈/ Q2 . Thus, for this prime ideal Q, Q(k) 6⊆ Q2 . 

Now suppose that for infinitely many values of k there exists bk ∈ R and a 
prime ideal qk in R such that b2 − a ∈ q(k) 

and a 6∈ qk. Then for each such k,k k 

Qk := (x − bk, qk)R is a prime ideal satisfying Q(k) 6⊆ Q2 . It follows that R could 
not have the uniform symbolic topology property. Why can’t this happen? When, 
for example, (S, m) is a complete local domain, the reason is connected with the 
strong Artin Approximation theorem. To see this, let bk and qk be as above with 
b2

(k) (cn) ⊆ mn 
k − a ∈ qk . By [15], Theorem 2.3, there exists c ≥ 1 such that q for all 
prime ideals q ⊆ S and all n ≥ 1, since in a complete local domain, the q-symbolic 
topology is finer than the m-adic topology (see also [2], Corollary 2.12). For k ≥ c, 

(k) (tkc) tk tkwrite k = tkc + rk, where 0 ≤ rk < c. Then q ⊆ q ⊆ m . Thus, b2 − a ∈ m ,k k k 
for k ≥ c. Since tk → ∞ as k → ∞, one would have approximate solutions of 
Y 2 − a = 0 modulo mtk for infinitely many k. The strong Artin Approximation 
theorem then gives the existence of an actual solution approximating a given one to 
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a high power of m. However, since a is assumed to be square-free, this is impossible. 
For related results and interesting examples, see the paper of Rond [18]. 

The following theorem is crucial for our main results concerning radical exten-
sions and involves tracking norms of elements from R. Notice that the conclusion 
of the theorem forces the prime ideal Q to be contained in the radical of (q, a)R -
which seems unlikely for an extension that is not a radical extension. Thus, it is 
not clear how to extend this result directly to more general hypersurfaces. 

Theorem 4.1. Let S be an integrally closed equicharacteristic Noetherian do-
main satisfying our standard hypothesis and assume that a is a square-free ele-
ment of S. Assume that S satisfies the uniform symbolic topology property. Let 
R = S[X]/(Xn − a), and take Q ∈ Spec(R) such that a ∈/ Q. Further assume that 
if char(R) = p > 0, then p does not divide n. Set q = Q ∩ S. Then there is a 
uniform N , not depending on Q, such that for all w ≥ 1, Q(Nw) ⊂ (aQ(w), qw)R. 

Proof. If a is a unit, the result holds trivially by taking N = 1. Otherwise, let 
n−1 n−2u = b1x + b2x + . . . + bn ∈ Q(t(n+1)) for large t determined below. The ring 

R is a free S-module with basis the powers of x up to n − 1. Letting u act on R via 
multiplication and writing the matrix of the action of u on the basis {1, x, . . . , xn−1}
yields the matrix M : ⎞⎛ ⎜⎜⎜⎜⎜⎝ 

bn b1a b2a · · · bn−1a 
bn−1 bn b1a · · · bn−2a 
. . . 

. . . 
. . . 

. . . 
. . . 

b2 b3 · · · b1a 
b1 b2 · · · · · · bn 

⎟⎟⎟⎟⎟⎠ 

Let D be the determinant of this matrix. Then D ∈ Q(t(n+1)) ∩ S ⊂ q(t) by 
[7], Proposition 3.3. Fix m to be the maximum of the uniform Artin-Rees number 
for the pair (a) ⊂ S and the uniform Briançon Skoda number for the reduced ring 
B = S/(a). Note that B is reduced since a is square-free. In particular, for all 
ideals I of S and e > m, Ie ∩ (a) ⊂ aIe−m and for every ideal J ⊂ B, the integral 
closure of Je is contained in Je−m . Such a choice is possible since S satisfies the 
uniform Artin-Rees theorem and B satisfies the uniform Briançon-Skoda theorem. 

l l−1For each l ≥ 1, set Nl = n + n + · · · + n, and choose t = 2Nn+1mkw, where k 
is chosen so that for all prime ideals P in S and for all r, P (rk) ⊂ P r . This number 
is independent of P . We now show N = (n + 1)2Nn+1mk is the N we seek. Thus, 
if u ∈ Q(Nw), then 

(2Nn+1mkw) ⊂ q 2Nn+1mwD ∈ q . 

We claim by induction on n − i, starting with i = 0, that bn−i ≡ acn−i modulo 
2Nn−imwq , for some cn−i ∈ S. 
Consider i = 0. The matrix M becomes upper triangular with bn along the 

2Nn+1mwdiagonal when we go modulo the ideal (a). We’ve seen that D ∈ q . Working 
2mw(n +...+1)Bin the reduced ring B it follows that bn is in the integral closure of q 

n 

2mw(nwhich is contained in q 
n+...+1)−mB by our choice of m. Since 
2mw(n +...+1)−m 2mwNnq 

n 

⊂ q , 
2mwNnwe may then write bn ≡ acn modulo q as claimed. 

Assume that we have proved the claim up to i − 1, where i ≤ n − 1. Hence we 
2Nn−i+1mwhave that bn−j ≡ acn−j modulo q for 0 ≤ j ≤ i − 1. 
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Let Mi be the matrix whose last n− i rows are the same as that of M , but whose 
first i-rows are ⎞⎛ ⎜⎜⎜⎝ 

cn b1 b2 ... ... ... bn−1 

cn−1 cn b1 ... ... ... bn−2 
. . .. . . . . . . . .. . . 

cn−i+1 cn−i+2 ... cn b1 ... bn−i 

⎟⎟⎟⎠ 

By multiplying each of the first i rows of Mi by a, one obtains a matrix that is 
2Nn−i+1mwcongruent to M modulo q . It follows that 

2Nn−i+1mwD ≡ a idet(Mi) modulo q . 

Hence, 
2Nn−i+1mw a idet(Mi) ∈ q . 

g−mWe may cancel one a at a time by using the fact that for large g, qg ∩(a) ⊂ aq 
by our choice of m. Successively canceling the a, we obtain that 

2Nn−i+1mw−midet(Mi) ∈ q . 

2Nn−i+1mwNow consider Mi modulo the ideal (a). Since modulo q , bn, . . . , bn−i+1 

are divisible by a, over C := B/q2Nn−i+1mw−miB, Mi is congruent to the matrix ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

cn b1 b2 · · · bn−i 0 ... 0 
cn−1 cn b1 · · · · · · bn−i · · · 0 
. . .. . . . . . . . . . . .. . . 

cn−i+1 cn−i+2 · · · cn b1 · · · · · · bn−i 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 
bn−i 0 · · · · · · · · · · · · · · · 0 

bn−i+1 bn−i 0 · · · · · · · · · · · · 0 
. . .. . . . . . . . . . . · · · · · · . 
b1 b2 · · · bn−i 0 · · · · · · 0 

Thus, 0 = det(Mi)C = ±bnn−iC. Working in B, we have 

n−i 

bn 2(n +···+1)mw−m)nB. n−i ∈ (q 

n−i2mw(n +···+1)−mB,(since i ≤ n). It follows that bn−i is in the integral closure of q 
which by our assumption on m, belongs to 

n−i2mw(n +...+1)−2mB ⊆ q 2mwNn−i B. q 

2mwNn−iWe may then write bn−i ≡ acn−i modulo q as claimed. 
wWe have now shown that all bj are divisible by a modulo q (in fact, modulo 

wq2nmw), for all w ≥ 1. It follows that u = av + r, where r ∈ q ⊂ Qw . Then 
av ∈ Q(w), and since a ∈/ Q, it follows that v ∈ Q(w), finishing the proof. � 

2We next prove that for S regular and R := S[X]/(Xn − a), a is a uniform 
multiplier for symbolic powers for R with index equal to the dimension of R. The 
point is to prove the result first in characteristic p > 0, and then use reduction to 
characteristic p when R contains a field of characteristic zero. 
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Proposition 4.2. Let S be an F -finite regular domain containing a field of charac-
teristic p > 0 and assume dim(S) = d. Let a ∈ S be square-free and suppose n ≥ 2√ 
is not divisible by p. Then for R := S[ n a], aR1/q ⊆ S1/q[R], for all q ≥ 1. In 

2particular, a is a uniform multiplier for symbolic powers for all ideals, with index 
d. 

Proof. We first note that since S is regular and R is free over S, each Fq := 
S1/q ⊗S R = S1/q[R] is flat over R, since each S1/q is finite and flat over S and 
R is torsion-free over S. Note also that R inherits the F -finite property from S.√ 
To prove the first statement in the proposition, note that S1/q [R] = S1/q[ n a] and√ 
R1/q S1/q[ nq= a]. For fixed q ≥ 1 and any r ≥ 1, we can find positive integers 

rα, β ≥ 1 such that r + nq = αn + βq. Thus, + 1 = α( 1 ) + β( 1 ). It follows that nq q n 

1 1 
n 
1 
)β ∈ S1/q[R].a · (a nq )r = (a q )α · (a 

Since this holds for all r ≥ 1, this gives what we want. For the second statement, 
if a is a non-unit, by Lemma 3.3, it suffices to observe that a is a test element for 
R - but this follows from [9], Theorem 6.9. If a is a unit, a2 is a uniform symbolic 
multiplier since R is regular. � 

Proposition 4.3. Let S be an excellent regular domain containing a field and√ 
suppose R is a finite extension of the form R = S[ n a], where a is square-free. 
Further assume that if S has characteristic p > 0, then S is F -finite and p does not 

2divide n. Then a is a uniform symbolic multipler with index d := dim(R) for the 
set of radical ideals in R. 

Proof. We may assume that a is not a unit. The case that S contains a field of 
characteristic p follows from Proposition 4.2. 

If S contains a field of characteristic zero, the proof of the result we seek proceeds 
via reduction to characteristic p. The proof follows along the same lines as most 
reduction to characteristic p proofs. In particular, we can follow the ideas in the 
proofs of [8], Theorems 4.3 and 4.4, and also the proof of Theorem 4.7 and the 
proof in the Appendix of [13]. To elaborate, the results in [8], show how, starting 
with a complete local ring A, say, and a counter-example to an inclusion of the type 
we want involving symbolic powers, one can produce a counter-example in a ring 
of positive characteristic - the point being that conditions like elements belonging 
to, or not belonging to, various symbolic powers, as well as the maximum of local 
analytic spreads can be preserved via the reduction process. On the other hand, we 
need a slight variation of this, because we will be working with two rings at once, S 
and its simple extension R – but [13], Theorem 4.7 and the Appendix, illustrate how 
to carry the ring strucure of R along in the reduction process. Another crucial point 
here is that the failure of the required property of a proposed uniform multiplier for 
symbolic powers can be preserved along the way, because the element a2 is given a 
priori as an element of the original ring – in this case R. 

We now sketch out the steps required in order to reduce our statement to positive √ 
ncharacteristic. Set x = a and assume that we have a reduced ideal I ⊆ R, 

u ∈ I(hn+en) with a2nu 6∈ (I(e+1))n , for some e ≥ 0, n ≥ 1. By standard localization 
arguments, our counter-example persists after we localize at some prime ideal in S, 
so we may assume that we have a counter-example when S is a regular local ring. 
We now lift the counterexample by completing S at its maximal ideal. Writing 
ˆ ˆ ˆS for the completion of S, we have R = S ⊗S R, which is faithfully flat over R. 
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Note also that since S is excellent, R̂ remains reduced, as do ˆ R = R/ˆ ˆR/I ˆ I and 
R/aˆ ˆ Moreover, since ˆR. R/IR̂ is faithfully flat over R/I, non-zerodivisors on the 
latter remain non-zerodivisors on the former, so that if U ⊆ R denotes the set of 

ˆ ˆnon-zerodivisors on R/I and W ⊆ R denotes the set of non-zerodivisors on R/Î, 
then U = W ∩ R and hence (R/Ik)U ,→ ( ˆ Ik)W , so that ˆ = I(k), for allR/ ̂  I(k) ∩ R 

I(hn+en)k ≥ 1. Thus, u ∈ ˆ . On the other hand, we clearly have 

I(k)R̂ = Ik ˆ R ⊆ Ik ˆ Î(k)RU ∩ ˆ RW ∩ R̂ = . 

ˆ I(k)If P is an associated prime of R/ ̂ , P ∩ W = ∅, so P is contained in a minimal 
prime of Î, and thus P is also an associated prime of I(k)R̂. It follows from this 

Î(k) R)(e+1))n (Î(e+1))nthat I(k)R̂ = , for all k. Therefore, ((I ˆ = , and therefore, 
n I(e+1))na u 6∈ (ˆ . So, we may begin again assuming that S is a complete regular 

local ring, and we have a counter-example in R as above to our proposition. 
At this point one uses Artin approximation to find an counter-example in an 

affine algebra over a field of characteristic zero. If we were only working with S, 
then by [8], Theorem 4.3 we could create a counter-example in an affine algebra, but 
we need to preserve our counter-example in a ring over S. We may therefore, follow 
the path laid out in [13], Theorem 4.7 and the Appendix. One uses equations over 
S to capture the ring structure of R. For example, since R is free over S with basis 
1, x, . . . , xn−1 , where f(X) has degree n, one writes each product xi · xj in terms of 
the basis with coefficients in S. The resulting equations can be thought of solutions 
over S to a system of equations in n variables over S. Similarly, one can realize 
the associative property of multiplication and the distributive property as solutions 
to equations over S. Since the ideal I is a submodule of R as an S-module, one 
can choose a set of generators for I and write equations expressing the closure of I 
under multiplication by elements of R, using the consequences of taking products 
of the basis elements of R over S with the generators of I as an S-module. As in [8], 
Theorem 4.3, one can transfer all of this data and the attendant data associated to 
our counter-example to a finitely generated algebra over the coefficient field, say E, 
of S. Here we are thinking of S as a formal power series ring in d variables over E. 
In fact, one first adjoins to E all of the relevant elements from S that are solutions 
to the various equations tracking the data to obtain a subring ring S0 and then uses 
[8] (which relies upon [3]) to find a ring S1 and maps S0 ,→ S1 → S in which all 
of the conditions from S are preserved, and such that all of the ideals and modules 
that we started with in S are obtained by tensoring their counterparts in S1 with S 
over S1. Moreover, S1 is a regular ring and the counter-example in question holds 
in the extension R1 := S1[x]. Note that this can be done so that the element x still 
satisfies the equation xn − a = 0, a is square-free in S1 and the rings R1 and R1/I1 

are reduced, where I1 is generated by the images in S1 of the original generators of 
I. Now, strictly speaking, the field E is not the original field E0 contained in the 
original S, but one can assume E0 ⊆ E, and the last paragraph of [10], Theorem 
3.5.1 explains how to reduce to the case that E0 = E. 

The next step is to reduce to an affine algebra over Z, which can be done in a 
standard way by collecting all coefficients of all the finitely many equations which 
describe our situation, and then letting A be the finitely generated Z-algebra ob-
tained as the subring of the base field given by adjoining those finitely many ele-
ments to Z. One further uses generic flatness to insure that after creating models 
RA and (R/I)A of R and R/I over this finitely generated Z-subalgebra A of k, there 
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exists a dense subset of closed points S ⊆ Spec A such that we still a counterex-
ample after moding out any one of the closed points in S. These counterexamples 
now live in positive characteristic, and by choosing the characteristic large enough 
we can avoid any divisors of our fixed integer n. Moreover, as described in Chapter 
2 of [10] and [8, Theorem 4.3], we retain all relevant information, including ana-
lytic spreads and the various ideals being reduced. This leads to a contradiction by 
Proposition 4.2. � 

The following is the main result of this section. 

Theorem 4.4. Let S be a finite dimensional excellent regular domain contain-
ing a field and suppose that S satisfies our standard hypothesis. Take a ∈ S√ 
square-free, n ≥ 1 and set R := S[ n a]. If S has positive characteristic, as-√ 
sume that S is F -finite, and p does not divide n. Then R := S[ n a] satisfies 
the uniform symbolic topology property on prime ideals. 

2Proof. By Proposition 4.3, a is a uniform multiplier for symbolic powers for R 
2nQ(dn) ⊆ Qnwith index d. In particular, a for all n, where d := dim(S). 

Now, consider the set U of prime ideals in R not containing a. We claim there 
exists k1 ≥ 1 such that Q(k1n) ⊆ Qn , for all Q ∈ U and n ≥ 1. Since in either 
characteristic, R admits a uniform multiplier for symbolic powers with respect to 
U (namely a2), by Theorem 3.5 it suffices to find b ≥ 1 such that for all Q ∈ U , 
Q(b+1) ⊆ Ql+1 , where l is the uniform Artin-Rees number for (a2) ⊆ R. For any 
such Q, set q = Q ∩ S. Then by Theorem 4.1, there exists N ≥ 1, independent of 
Q, such that Q(Nw) ⊆ (aQ(w), qw), for all w ≥ 1. It follows from this, that for any 

tQ(w)t ≥ 1, Q(Nt w) ⊆ (a , qw), for all w ≥ 1. 
Thus, taking t = 2(l + 1) and w = (l + 1)d, we have for all Q ∈ U : 

Q(N2(l+1)(l+1)d) ⊆ (a2(l+1)Q((l+1)d) d(l+1))) ⊆ (Ql+1 d(l+1)) = Ql+1 , q , q . 

Thus, if we set b = N2(l+1)(l + 1)d − 1, we obtain Q(b+1) ⊆ Ql+1 , for all Q not 
containing a, which gives the k1 we seek. 

Now, let V denote the set of prime ideals in R containing a. Then for any Q ∈ V , 
Q is the only prime in R lying over Q∩S. Thus, by Theorem 2.4, there exists k2 ≥ 1, 
such that Q(k2 n) ⊆ Qn , for all Q ∈ V and n ≥ 1. If we take c = max{k1, k2}, it 
follows that Q(cn) ⊆ Qn for all Q in Spec(R) and n ≥ 1, which is what we want. � 

Remark 4.5. Unfortunately, we are not able to extend Theorem 4.4 to the case of√ 
radical ideals. If I ⊆ S[ n a] is a radical ideal and a ∈ S is a square-free element not 
belonging to any minimal prime of I, then the proof of Theorem 4.1 goes through, 
and thus also, the corresponding part of Theorem 4.4. On the other hand, if a 
belongs to every minimal prime of I, then by making a minor modification of the 
Ascent Theorem, one can show that the corresponding part of Theorem 4.4 also 
goes through. The problem comes when I is an intersection of both types of primes. 
In this case we can write I = K ∩ L, where every minimal prime over K does not 
contain a and every minimal prime over L contains a. There is a uniform c such that 
K(cn) ⊆ Kn and L(cn) ⊆ Ln , for all such K, L and all n. Thus, I(cn) ⊆ Kn ∩ Ln . 
It is easy to show there exists t ≥ 1 such that Knt ∩ Lnt ⊆ In and thus I(ctn) ⊆ In 

for all n, but we do not know if such a t exists uniformly, independent of I. 
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5. Repeated radical extensions 

In this section we extend the main result in the previous section to the case√ √ 
R = S[ n a1, . . . , n ar], with a1, . . . , at ∈ S square-free and sufficiently general. 

We begin with a definition. 

Definition 5.1. Let S be an integrally closed domain, n ≥ 1, and a1, . . . , ar square-
free elements. We say that n and a1, . . . , ar satisfy property (*) if n is a unit and 
no two of ai and aj are contained in the same height one prime of S. 

Proposition 5.2. Let S be an integrally closed Noetherian domain, n ≥ 1 and 
a1, . . . ar ∈ S square-free elements satisfying property (*). Then a2, . . . , ar are √ 
square-free in S[ n a1]. 

6=Proof. Fix b := ai, i√ 1 and set a1 = a. If b is not a unit we have to show that√ √ 
if Q ⊆ S[ n a] is a height one prime containing b, then bS[ n a]Q = QS[ n a]Q. Fix 
such a Q and let q = Q ∩ S. For f(x) = Xn − a ∈ S[X], consider its image in 
k(q)[X]. By our assumption on n and the height one primes containing a and b, the 
images of f 0(X) and f(X) are relatively prime over k(q), so f(X) has distinct roots 
over the algebraic closure of k(q), and thus f(X) factors as a product of distinct 
irreducible polynomials over k(q), say f(X) ≡ p1(X) · · · pr(X). It follows that in 
Sq[X], 

Q0 = (q, pi(X))Sq[X],q 

for some i, where Q0 is the lift of Q to S[X]. Without loss of generality, we assume 
i = 1. On the other hand, in Sq[X], 

f(X) = p1(X) · · · pr(X) + q0(X), 

where q0(X) ∈ qSq[X]. Thus, 

f(X)S[X]Q0 = (p1(X) + uq0(X))S[X]Q0 , 
√ 

(X))−1for for u = (p2(X)√ √ . Thus, in S[ n a]Q, p1(X) ≡ −uq0(X), and hence√ √ · · · pr 

QS[ n a]Q = qS[ n a]Q. Since bSq = qSq , we have bS[ n a]Q = QS[ n a]Q, which is 
what we want. � 

Proposition 5.3. Let S be a Noetherian integrally closed domain, n ≥ 1, and√ √ 
a1, . . . , ar square-free elements satisfying (*). Then R = S[ n a1, . . . , n ar] is inte-
grally closed. 

Proof. Induct on r. If r = 1, then as mentioned in the first paragraph of the√ 
previous section, R is integrally closed. Suppose r > 1. Set T := S[ n a1]. Then 
by the Proposition 5.2, a2, . . . , ar are square-free in T . Morevover, it is clear that 
for i, j ≥ 2, no two of ai and aj are contained in the same height one prime of T .√ √ 

�Thus, R = T [ n a2, . . . , n ar] is integrally closed, which gives what we want. 

Proposition 5.4. Let S be a finite dimensional excellent regular domain contain-
ing a field and fix n ≥ 1. Assume that if S has characteristic p > 0, then S 
is F -finite and p does not divide n. Let a1, . . . , ar be square-free elements in S√ √ 
satisfying condition (*). Set R := S[ n a1, . . . , n ar] and a := a1 · · · ar. Then a 
is a uniform multiplier for symbolic powers with index d := dim(R) for the set of 
radical ideals in R. 

2 



13 UNIFORM SYMBOLIC TOPOLOGIES IN ABELIAN EXTENSIONS 

Proof. The proof is similar to the proof of Proposition 4.3. We begin by considering√ 
the case that S has characteristic p > 0. For each 1 ≤ i ≤ r, set Ri := S[ n ai]. By 

Proposition 4.2, aiR
1/q ⊆ S1/q[Ri], for all i and all q. If we set a := a1 · · · ar, iti 

follows that aR1/q ⊆ S1/q [R], for all q. As in the proof of Proposition 4.2, 

= S1/q ⊗S R = S1/q[R]Fq 

is a flat R-module for all q, since S1/q is a flat S-module. On the other hand, a is 
a test element by [9], Theorem 6.9, and so this case follows from Lemma 3.3. If S 
has characteristic zero, we may reduce to the case of positive characteristic, as in 
the proof of Proposition 4.3. � 

Theorem 5.5. Let S be a finite dimensional regular domain containing a field and 
assume S satisfies our standing hypothesis. Fix n ≥ 1 and assume that if S has 
characteristic p > 0, then S is F -finite and p does not divide n. Let a1, . . . , ar√ √ 

nbe square-free elements in S satisfying condition (*). Then R := S[ n a1, . . . , ar] 
satisfies the uniform symbolic topology property on prime ideals. 

Proof. Again, the proof is similar to the case of a simple radical extension. We 
proceed by induction on r, the case r = 1 having been handled in the previous 
section. Set a := a1 · · · ar, and for each 1 ≤ i ≤ r, set 

√ √ √ √ 
n n nRi := S[ n a1, . . . , ai−1, ai+1, . . . , ar]. 

Each Ri satisfies the uniform symbolic topology property, by our induction hypoth-
esis. 

Let us first consider the set of prime ideals U ⊆ Spec(R) not containing a. Then, 
by Proposition 5.4, a2 is a uniform multiplier for symbolic powers for U with index 
d. On the other hand, by Propositions 5.2 and 5.3, each Ri is integrally closed and 
ai is square-free in Ri. Thus, by Theorem 4.1, there exists Ni such that for all 
Q ∈ U , 

wQ(Niw) ⊆ (aiQ
(w), q ),i 

for all w ≥ 1, where qi = Q ∩ Ri. Thus, 

Q(Niw) ⊆ (aiQ
(w), Qw), 

for all w. It follows from this, that if we set N := N1 · · · Nr, then 

Q(Nw) ⊆ (aQ(w), Qw), 

for all w ≥ 1 and Q ∈ U , and thus, 

Q(Nt w) ⊆ (a tQ(w), Qw), 

for all t ≥ 1, w ≥ 1 and Q ∈ U . We are now in the same situation as in the proof 
of Theorem 4.4, so that if we let l denote the uniform Artin-Rees number for the 
pair (a2) ⊆ R, t := (l + 1)2, w := (l + 1)d, and b = N2(l+1)(l + 1)d − 1, then 
Q(b+1) ⊆ Ql+1 , for all Q ∈ U . Since a2 is a uniform multiplier for symbolic powers 
for U with index d, it follows from Theorem 3.5, that there exists k ≥ 1 such that 
Q(kn) ⊆ Qn , for all n ≥ 1 and all Q ∈ U . 

We now consider the set of primes V ⊆ Spec(R) containing a. We can write 
V = V1 ∪ · · · ∪ Vr, where Vi denotes the set of primes in R containing ai. For each 
prime Q ∈ Vi, Q is the only prime in R lying over Q ∩ Ri. Thus, by Theorem 2.4 
and our induction hypothesis, there exists ci such that Q(cin) ⊆ Qn , for all Q ∈ Vi 
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and n ≥ 1. If we now take c = max{k, c1, . . . , cr}, it follows that Q(cn) ⊆ Qn , for 
all n ≥ 1 and all Q ⊆ R. � 

6. Abelian extensions 

We begin by recalling the basic fact of Kummer theory. Let L ⊆ K be a finite, 
Galois extension of fields such that the Galois group of K over L is abelian. Let n 
denote the index of the Galois group of K over L, i.e., n is the least positive integer 

thsuch that n power of every element in the group is the identity element. Then 
thKummer theory states that if L contains a primitive n root of unity, then there√ √ 

exist c1, . . . , cs ∈ L such that K = L( n c1, . . . , n cs). Here, one must assume that 
if L has positive characteristic p > 0, then p does not divide n. 

The next theorem is the main theorem of our paper. Most of the hard work has 
been done. What remains is to reduce to the case of a repeated radical extension. 

Theorem 6.1. Let S be a finite dimensional excellent regular domain containing 
a field and suppose that S satisfies our standing hypothesis. Let R be an abelian 
extension of S and assume that if S has characteristic p > 0, then S is F -finite 
and p does not divide the index of the associated Galois group. Then R satisfies the 
uniform symbolic topology property on prime ideals. 

Proof. Let L denote the quotient field of S and K the quotient field of R. Thus 
K is a Galois extension of L with abelian Galois group and R is the integral clo-
sure of S in K. Let n be the index of the Galois group of K over L. Since 
the uniform symbolic topology property descends in a finite extension of integrally 
closed domains, by Theorem 2.5, it suffices to show R is contained in an extension√ 

nof the form S[ 
√ 

], such that the conditions in Theorem 5.5 hold. Ina1, . . . , n ar 

fact, we will have to make a few minor modifications to S and R to obtain such a 
relation, but the strategy is still the same. 

thLet � denote a primitive n root of unity. We will first reduce to the case 
that � ∈ L, or equivalently, � ∈ S. Suppose � 6∈ L. Then the Galois group of 
K(�) over L(�) is a subgroup of the Galois group of K over L (even if � ∈ K), 
thus the former group is abelian, and its index divides n, and thus is not divisible 
by p, if the characteristic of L is p. Set S1 := S[�], so that the quotient field of 
S1 is L(�) and S1 is a regular domain satisfying the hypotheses of the theorem. 
The proof that S1 is regular is similar to the proof in Proposition 5.2. In other 
words, it suffices to see that if g(X) is the minimal polynomial of � over L, then 
for any prime q ⊆ S, g(X) factors as a product of distinct irreducible polynomials 
over k(q). But since the images of Xn − 1 and its derivative are relatively prime 
over k(q), Xn − 1 factors as a product of distinct irreducibles over k(q), so the 
same applies to g(X), and thus S1 is regular. Now if R1 denotes the integral 
closure of S1 in K(�) and the conclusion of the theorem holds for R1, then since 
the uniform symbolic topology property descends in the finite extension R ⊆ R1, 
R satisfies the uniform symbolic topology property. Thus, we may begin again, 

thassuming that S contains a primitive n root of unity. 
We now reduce to the case where S is a UFD. Let X be an indeterminate and 

write S(X) for the ring S[X] localized at the set of polynomials whose coefficients 
generate S. Note also that S(X) is a regular domain satisfying the hypotheses of 
the theorem, since the maximal ideals of S(X) are of the form mS(X), for m ⊆ S 
a maximal ideal. Thus, S(X) is locally a UFD. On the other hand, since invertible 
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ideals in S(X) are principal ([1], Theorem 2.1 (5); see also [6]), S(X) is a UFD. 
It is straight forward to check that S(X) ⊆ R(X) is an abelian extension with the 
same Galois group as S ⊆ R. Suppose there exists c ≥ 1 such that P (cn) ⊆ P n , for 
all prime ideals P ⊆ R(X) and all n ≥ 1. For any prime ideal Q ⊆ R, QR(X) is a 
prime ideal satisfying 

Q(cn)R(X) = (QR(X))(cn) and QnR(X) ∩ R = Qn , 

for all n. It follows that Q(cn) ⊆ Qn , for all Q ⊆ R and all n. Thus, we may begin 
again assuming that, in addition to our hypotheses on S, S is a UFD containing a 
primitive nth root of unity. √ √ 

nBy Kummer theory, there exist c1, . . . , cs such that K = L( n c1, . . . , cs), with 
each cj ∈ L. Suppose we could find a1, . . . ar square-free elements in S satisfy-

ning (*) such that K ⊆ K 0 := L( 
√ 
n a1, . . . , 

√ 
ar). If T is the integral closure of 

R in K 0 , then on the one hand, since the uniform symbolic topology property de-
scends in a finite extension of integrally closed domains, R will have the uniform√ √ 
symbolic topology property if T does. On the other hand, since S[ n a1, . . . , ar]√ √ 

n 

nis integrally closed by Proposition 5.3, T = S[ n a1, . . . , ar], and so T has the 
uniform symbolic topology property, by Theorem 5.5. Thus, it remains to find 
a1, . . . ar square-free elements in S satisfying (*), so that K ⊆ K 0 . For this, we first√ √ √ 

anote that if c ∈ L can be written as c = b , with a, b ∈ S, then L( n c) ⊆ L( n a, n b),√ √ 
nThus, we may enlarge K and begin again, assuming K = L( n c1, . . . , cs) with 

each ci ∈ S. 
Now, since S is a UFD, each ci is a unit or product of prime elements. Let 

a1, . . . , ar denote the collection of prime elements or units occurring as a factor of 
some ci. These are clearly square-free elements satisfying (*). Suppose that in S 

di1 n+ei dit n+et we can write each ci := a · · · a , where each 0 ≤ ei < n. Then fori1 it 

√ √di1 ditγi := a ( n ai1 )
ei1 · · · a ( n ait )

eit ,i1 it 

√ √ √ √ √ √ 
n nγn = ci, so S[ n ci] ⊆ S[ n ai1 , . . . , air ], and hence L( n ci) ⊆ L( n ai1 , . . . , air ).√ √ 

nDoing this for each ci shows K is contained in L( n a1, . . . , ar), which is what we 
want. � 
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