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Let A be a Noetherian ring, J ⊆ A an ideal and C a finitely
generated A-module. In this note we would like to prove the 
following statement. Let {In }n�0 be a collection of ideals satisfying: 
(i) In ⊇ Jn , for  all  n, (ii) J s · Is ⊆ Ir+s , for  all  r, s � 0 and
(iii) In ⊆ Im , whenever m � n. Then AssA (InC/ JnC ) is independent 
of n, for  n sufficiently large. Note that the set of prime ideals � 

n�1 AssA (InC / JnC ) is finite, so the issue at hand is the realization 
that the primes in AssA (InC / JnC) do not behave periodically, � 
as one might have expected, say if n�0 In were a Noetherian 
A-algebra generated in degrees greater than one. We also give a 
multigraded version of our results. 

© 2013 Elsevier Inc. All rights reserved. 

1. Introduction 

Let A be a Noetherian ring, J ⊆ A an ideal and C a finitely generated A-module. Then, by a 
well known theorem of Brodmann (see [1]), AssA (C/ JnC) is a stable set of prime ideals for n large. 
Brodmann’s result has many applications and has been generalized in various forms. For example, see 
[5,8,11,7,6,2], among others. 

In this note we are motivated by the following question. Given an ideal J ⊆ A, a finitely generated 
A-module C and a filtration of ideals {In}n�0 with Jn ⊆ In for all n, when is the set of associated 
primes AssA (InC/ JnC) a stable set of prime ideals? It turns out that the desired stability holds under 
very mild conditions on the filtration {In}n�0. It is important to note that the set of prime ideals � 

n�1 AssA (InC/ JnC) is well known to be a finite set and the issue at hand is the realization that the � 
primes in AssA (InC/ JnC) do not behave periodically, as one might have expected, say if n�0 In were 
a Noetherian  A-algebra generated in degrees greater than one (see [11]). 

Not surprisingly, our approach is through graded modules defined over finitely generated � 
A-algebras. To elaborate, let R = n�0 Rn be a finitely standard graded A-algebra, i.e., R = A[R1] 
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� 
and R1 is a finite A-module. Let M = Mn be a graded R-module with Mn = 0 for  all  n suffi-n∈Z 
ciently small. We will assume throughout that each Mn is a finitely generated A-module. Note that we � 
do not assume that M is a finitely generated R-module. Throughout, we set L := H0 

R+ (M) = Ln .n∈Z 
We say that M is quasi-finite if, in addition, Ln = 0 for  n sufficiently large. It turns out that for the 
theory of asymptotic prime divisors, it is the quasi-finite property that is crucial, and not the finite 
generation of the module M . Indeed, almost all the results we give in the context of graded mod-
ules are already known in the finite case (see [9,11,2]). Of course, finite modules are quasi-finite. For 
an example of a quasi-finite module which is not finite, we will see below that A[X]/A[ J X] as an 
A[ J X]-module, where X is an indeterminate and J ⊆ A is a proper ideal with positive grade. The 
notion of quasi-finite modules was introduced in [4]. 

It turns out that our results are not much harder to come by if we consider multigraded rings, 
i.e., standard Nd 

0-graded Noetherian A-algebras and multigraded modules over them. In section two, 
we define the types of modules we are interested in and, in particular, we extend the definition of 
quasi-finite module to the multigraded case. We then prove our basic results concerning asymptotic 
prime divisors of quasi-finite multigraded modules. In particular, we note that we can achieve the 
standard stability result known for finite modules (see Theorem 2.7). In section three we give some 
specific examples and applications of the results in section two, especially in the singly graded case. 
Our problems would be simpler to solve but less interesting if the graded (or multigraded) modules 
under consideration were always quasi-finite. To deal with modules M which are not quasi-finite, 
we look at the quasi-finite module M/L. In section four, we consider what happens in the case of 
multigraded modules that are not necessarily quasi-finite. It turns out that we can isolate the precise 
obstruction to stability of asymptotic prime divisors in the general case (see Theorem 4.4). Finally, in 
section five we present a multi-ideal version of the result alluded to in the abstract. In particular, we 
prove the following theorem. 

Theorem 1.1. Let A be a Noetherian ring, C a finitely generated R-module and J1, . . . ,  Jd ⊆ A finitely  many
ideals. Suppose that for each 1 � i � d, {Ii,ni }ni �0 is a filtration of ideals satisfying: (i) Ii,0 = A, (ii) Jni ⊆ Ii,ni ,i 
for all ni � 0, (iii) for all mi � ni ∈ N0 , I i,ni and (iv) J ri · ⊆ Ii,ri +si , for all ri and si . Then there ⊆ Ii,mi i Ii,si 
exists k = (k1, . . . ,kd) ∈Nd 

0 such that for all n = (n1, . . . ,nd) � k, 

� � � � 
AssA I1,n1 · · · Id,nd C/ Jn1 · · ·  Jnd C = AssA I1,k1 · · · Id,kd C/ Jk1 · · ·  Jkd C .1 d 1 d 

2. Quasi-finite multigraded modules 

Throughout this section R will denote a standard Nd 
0-graded Noetherian, commutative ring with 

identity, where N0 denotes the set of non-negative integers. We denote the degree (0, . . . ,0) compo-
nent of R by A. Here, we use the term ‘standard’ in the sense of Stanley, i.e., a standard Nd 

0-graded 
ring is one which is generated in total degree one. Rather than use excessive notation, we will sim-
plify our notation and use n ∈ Nd 

0 to indicate d-tuples. We will use subscripts to denote components 
of d-tuples. Thus ni means the ith component of n = (n1, . . . ,nd) ∈ Nd 

0. Superscripts will be used to 
indicate lists of d-tuples. Given n,m ∈ Nd 

0, we will write  n � m if ni � mi , for  all  1  � i � d. Finally, we 
extend all of this notation in the obvious way to Zd . 

2.1. Notation 

� 
Let R = Rd be a Noetherian standard Nd 

0-graded ring as above. n∈Nd 
0 

(a) We will write R+ for the ideal consisting of all sums of homogeneous elements xn ∈ Rn such that 
ni � 1, for all 1 � i � d. In other words, R+ denotes the ideal of R generated by R(1,...,1) . 

(b) Throughout this paper, by a multigraded R-module we mean a Zd -graded R-module M = � 
n∈Zd Mn such that: 

(i) Each component Mn of M is a finitely generated A-module. 
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(ii) There exists a ∈ Zd such that Mn = 0 for  n � a. 

2.2. Observation 

In the notation above, suppose that x ∈ M and Rc · x = 0, for some c ∈ Nd with c �= (0, . . . ,  0).0 
Then x ∈ H0 (M). To see  this, suppose  that  t ∈ N0 is the largest component of c, so  t > 0. Then R+ 
R(t−c1,...,t−cd ) · Rc ·x = 0. In other words, R(t,...,t) · x = 0. Since R is standard graded, Rt + · x = 0, therefore 
x ∈ H0 

R+ (M). 
We now define multigraded quasi-finite modules. 

� 
Definition 2.3. Let M = n∈Zd Mn as above be a multigraded R-module. We say M is a quasi-finite 
R-module if there exists b ∈ Zd such that H0 

R+ (M)n = 0 for  n � b. 

Remark 2.4. Notice that if M is a Zd -graded R-module as above, then it follows immediately from 
the definition that M/H0 

R+ (M) is quasi-finite as a Zd -graded R-module. More generally, the next 
proposition shows that a wide range of multigraded modules are quasi-finite. 

Proposition 2.5. Let U ⊆ V be multigraded R-modules such that U is finitely generated over R and 
grade(R+, V ) >  0. Then  M  := U /V is a quasi-finite R-module. 

Proof. Consider the exact sequence 

0 → U → V → M → 0. 

Taking local cohomology with respect to R+ and using that H0 
R+ (V ) = 0 we  get  

0 → H0 (M) → H1 (U ).R+ R+ 

But, U is a finitely generated R-module, so there exists b ∈ Zd such that H1 
R+ (U )n = 0, for n ∈ Nd 

0 with 
n � b. It follows that M is quasi-finite. � 

For example, if R is the Rees algebra determined by an ideal of positive grade and V is the 
polynomial ring containing R, then, with U = R, M := V /U is an infinitely generated quasi-finite 
R-module. (See section three.) 

The following proposition is well known in the case of finitely generated graded or multigraded 
modules. Since R is Noetherian, the proofs are the same even if M is not finitely generated over R . 

Proposition 2.6. Let R be a not necessarily standard Nd 
0-graded Noetherian ring and M as above be a multi-

graded R-module. Then P ∈ AssA (M) if and only if P ∈ AssA (Mn) for some n ∈ Zd. Moreover, P ∈ AssA (Mn) 
for some n ∈ Zd if and only if there exists a prime Q ∈ AssR (M) with Q ∩ A = P . Consequently, the following 
statements hold: 

� 
(i) n∈Zd AssA (Mn) is finite if and only if AssA (M) is finite. � 
(ii) If AssR (M) is finite, then n∈Zd AssA (Mn) is finite. 

Note also that for any multiplicatively closed subset S ⊆ A, RS is a standard Nd 
0-graded Noethe-

rian AS -algebra and MS is a multigraded RS -module with the original gradings preserved since the 
elements of S have degree zero. It follows easily from this that if P ⊆ A is disjoint from S then P is 
the annihilator of an element of degree n in M if and only if P S is the annihilator of an element of 
degree n in MS . We will use this observation freely throughout this paper. 
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�

Our first theorem shows that the quasi-finite notion is sufficient to guarantee asymptotic stability 
of prime divisors. 

Theorem 2.7. Let R be a standard Nd 
0-graded Noetherian ring and M as above be a quasi-finite R-module. 

Then there exists b ∈ Zd such that for all n,m ∈ Zd with b � n � m, AssA (Mn) ⊆ AssA (Mm). Moreover,  if
AssA (M) is a finite set, then there exists k ∈ Zd such that for all n ∈ Zd with n � k, AssA (Mn) = AssA (Mk). 

Proof. Now, let b ∈ Zd be such that H0 
R+ (M)b = 0 for  all  n ∈ Zd with n � b. If  Mn = 0 for  all  n ∈ Zd 

with n � b, then  AssA (Mn) = ∅  for all such n and the conclusions of the theorem readily follow. 
Otherwise, Mn �= 0 for some n � b. Without loss of generality, we may take n = b (by increasing b if 
necessary) and assume that Mb �= 0. Note that since Mb H0 (M), it follows from Observation 2.2R+ 
that for all n � b, Rn−b · Mb �= 0. In particular, Mn �= 0. 

Now, take c < h ∈ Nd 
0. We first show that AssA (Mb+c ) ⊆ AssA (Mb+h). Let  P ∈ AssA (Mb+c ). Without

loss of generality, we may assume that A is local at P and P = (0 : u), for  0  �= u ∈ Mb+c . We now  note
that Rh−c · u �= 0. Indeed, suppose Rh−c · u = 0. Then by Observation 2.2 above, u ∈ H0 

R+ (M). Since
u �= 0, this contradicts our choice of b. Thus,  Rh−c · u �= 0. Therefore, xu �= 0, for some x ∈ Rh−c . Since
P · xu = 0, P ∈ AssA (Mb+h ), as required.  � 

Now, suppose AssA (M) is finite. Then by Proposition 2.6, n∈Zd AssA (Mn) is a finite set. Now, � 
let {P1, . . . , Pr } denote the prime ideals n�b AssA (Mn). We can write each P j = (0 :A u j ), where 

u j ∈ Mh j , for  h1 , . . . ,hr ∈ Zd , with each  h j � b. Choose k ∈ Zd such that h j � k, for all  1  � j � r. Then, 
by the paragraph above, P j ∈ AssA (Mk ) for all j and hence, P j ∈ AssA Mn , for  all  k � n. On the other 
hand, if n � k, then  n � b. Thus,  if  P ∈ AssA (Mn), P = P j , for some 1 � j � r. Thus, for all n ∈ Zd with 
n � k, AssA (Mn) = {P1, . . . , Pr } = AssA (Mk), and this completes the proof of the proposition. � 

3. First applications 

Suppose we have a homogeneous inclusion of singly graded Noetherian R-algebras R ⊆ S . In other� 
words, S = n�0 Sn is a Noetherian ring with S0 = R0 = A and Sn ⊇ Rn for all n � 0. We assume R 
is standard graded, but do not assume that S is standard graded. Consider the R-module E = S/R . 
Notice that 

∞ 
Sn � 

E = as an A-module. 
Rn n=0 

Note that E need not be a finitely generated R-module. We however have the following: 

Lemma 3.1. AssA (E) is a finite set. 

Proof. We use a technique due to Rees [10]. Let  I denote the ideal of S generated by R1. Then, as � � 
graded ideals in S , for  each  p � 0, I p = n�0 Rp Sn and I p+1 = n�0 Rp+1 Sn . Thus, as a graded � 
S-module, I p /I p+1 = n�0 Rp Sn/Rp+1 Sn−1. If we now  write  G for the associated graded ring of S 
with respect to I , we then have  

� 
G = Rp Sn/Rp+1 Sn−1, 

n,p�0 

and as such, G can be viewed as a finitely generated (not necessarily standard) bigraded A-algebra. 
Thus, AssG (G) is finite, so by Proposition 2.6, AssA (G) is finite. 

The advantage of Rees’s technique is due to the following observation. For t � 1, consider the 
filtration of A-modules 

Rt ⊆ Rt−1 S1 ⊆ Rt−2 S2 ⊆ · · · ⊆ R1 St−1 ⊆ St . 
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�

By breaking this filtration into short exact sequences, it follows that 

t   
AssA (St /Rt ) ⊆ AssA (Rt− j S j /Rt− j+1 S j−1) ⊆ AssA (G). 

j=0 

� 
It follows that t�1 AssA (Rt /St ) is finite, which gives what we want. � 

The next proposition is just a variation on Proposition 2.4 and indicates when E as above is quasi-
finite. 

Proposition 3.2. For R, S and E as above, the following are equivalent 

1. E = S/R is a quasi-finite R-module. 
2. S is a quasi-finite R-module. 

In particular if grade(R+ , S) > 0 then S/R is a quasi-finite module. 

Proof. This follows from taking local cohomology (with respect to R+ ) of the short exact sequence 

0 −→ R −→ S −→ S/R −→ 0 

and noting that for each i � 0 we  have  Hi
R+ (R) j = 0 for  all  j 0. � 

The following corollary is an immediate consequence of Theorem 2.7, Lemma 3.1, and Proposi-
tion 3.2. It recovers from our perspective a special case of Theorem 1.1 from [2], though in our  case,
we do not need to assume that S is standard graded. 

Corollary 3.3. Let R ⊆ S be as in the previous proposition. If grade(R+ , S) > 0, then  AssA (Sn/Rn) is indepen-
dent of n, for n sufficiently large. 

Remark 3.4. It should be noted that the conclusion of Corollary 3.3 can fail if grade(R+ , S) = 0. 
Indeed, in [4], Example 3.4, one has Sn/Rn = 0 for  n odd and Sn/Rn �= 0 for  n even. Thus, for this 
example, AssA (Sn/Rn) is not stable for n large. 

In the example below, we use a result due to Herzog, Hibi and Trung from their paper [3]. 

Example 3.5. Let A = K [ X1, . . . , Xd] be a polynomial ring over a field K . Let  I1, . . . , Ir be monomial 
ideals in A. Then there exists k ∈ N0 such that for all n � k, 

� �r r 
1 I

n 
1 I

k 
i= i i= iAssA � = AssA � .r r

( 1 Ii )
n ( 1 Ii )

k 
i= i= 

� �rProof. Consider the algebra S = 1 I
n . By  [3, Corollary 1.3] we get that S is a finitely gener-n�0 i= i � �rated A-algebra. Notice that R = 1 Ii )
n is a standard graded A-subalgebra of S . Since  S is an�0( i= 

domain we have that grade(R+ , S) > 0. The result now follows by Corollary 3.3. � 

We continue with our applications in the singly graded case, by way of illustrating the strength 
of the quasi-finite condition. We begin by letting J ⊆ A be an ideal and { In}n�0 a filtration of ideals 
in A satisfying the following properties: I0 = A, Jn ⊆ In for all n � 0 and J r · Is ⊆ Ir+ s , for  all  r and s. � 
We set R := n�0 J

n , the Rees algebra of A with respect to J . For a finitely generated A-module C , 
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�

�

� �

�
�

�
�

� � 
we write U := n�0 InC , a not necessarily finite R-module. Let V := n�0 J

nC be the Rees module � 
of C with respect to J . We set  MC := U /V . Notice that since n�1 AssA (C/ JnC) is a finite set, it 
follows that AssA MC is a finite set. The following application is a special case of our main result in 
section five. 

Proposition 3.6. Maintain the notation established in the paragraph above. Suppose grade( J ,C ) > 0. Then  
MC is quasi-finite. In particular, AssA (InC/ JnC) is stable for all n 0. 

Proof. If grade( J ,C) >  0, then grade(R+, V ) >  0, so MC is a quasi-finite R-module, by Propo-
sition 2.5. For the second statement, AssA (MC ) is a finite set, by our comment in the previous 
paragraph, so the result now follows from Theorem 2.7. � 

4. The non-quasi-finite case 

We now return to the notation of section two. That is, R denotes a Noetherian standard 
Nd 

0-graded A-algebra and M is a (not necessarily finitely generated) multigraded R-module satisfy-
ing our standard hypotheses. Throughout we set L := H0 

R+ (M). Notice that M/L is quasi-finite, since 

H0 
R+ (M/L) = 0. 
We begin with the following proposition. 

Proposition 4.1. Let R be a Noetherian standard Nd 
0-graded A-algebra and M a multigraded R-module. Then, 

AssA (M) = AssA (L) ∪ AssA (M/L). 

In particular, for any q ∈ Zd, if  Mq/Lq �= 0, there exists s ∈ Nd 
0 such that AssA (Mq/Lq) ⊆ AssA (Mq+s). More-

over, if AssA M is a finite set, then there exists k ∈ Nd 
0 such that AssA (Mn/Ln) = AssA (Mk/Lk) for all n ∈ Nd 

0 
with n � k. 

Proof. Because AssA (M) ⊆ AssA (L) ∪ AssA (M/L), for the first statement it suffices to prove that 
AssA (M/L) is contained in AssA (M). But for this, the second statement suffices. Let P ∈ AssA (Mq/Lq). 
Then we may write P = (Lq :A u), for  u ∈ Mq\Lq . Thus,  P · u ⊆ Lq , so there  exists  t > 0 such that 
Rt · Pu = 0. In particular, P · Rsu = 0, for s = (t, . . . , t). Thus,  P ⊆ (0 :A Rsu). Suppose a ∈ A and+ 
a · Rsu = 0. Then, Rt + · au = 0, so au ∈ Lq . Thus,  a ∈ P . It follows that P = (0 :A Rsu). Since  Rsu is a 
finite A-module, it follows that P annihilates an element of Rsu, and hence P ∈ AssA (Mq+s). Since
we may choose the same t for all P ∈ AssA (Mq /Lq) (since Mq/Lq is a finite A-module), it follows 
that AssA (Mq/Lq) ⊆ AssA (Mq+s). This proves our second assertion. For the final statement, if AssA (M) 
is a finite set, it follows from the first statement of this proposition that AssA (M/L) is a finite set. 
However, M/L is quasi-finite, so our last assertion follows from Theorem 2.7. � 

Remark 4.2. In the preceding proof, note that since u ∈/ L, Rt + · u L, so that if P ∈ Ass(M/L), P is the 
annihilator of an element of M\L. 

We now set L := (0 :M R+). Clearly  AssA (L ) ⊆ AssA (L). The following proposition supplies the 
reverse containment. 

Proposition 4.3. If P ∈ AssA (Ln) for some n ∈ Nd 
0 , then  P  ∈ AssA (L ) for some s ∈ Nd 

0 . In particular,n+s 
AssA (L ) = AssA (L). 

Proof. Only the first statement requires proof. Let P ∈ AssA (Ln). By localizing at P we may assume 
that A is local and P = (0 : u) where u ∈ Ln . Now, for some t � 1, Rt + · u = 0. If t = 1, then u ∈ L andn 

P ∈ Ass(L ), as required. Otherwise, we choose t > 1 least so that Rt−1 · u �= 0. Notice P · Rt−1 · u = 0.n + + 
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Set s := (t −1, . . . , t −1). Then there is x ∈ Rs such that x ·u �= 0. We have P · xu = 0. Also R+ · (xu) = 0. 
Thus, xu ∈ L . It follows that P ∈ AssA (L ). �n+s n+s 

Here is the main result of this section. It illustrates an obstruction to the asymptotic stability of 
AssA (Mn) in case M is not quasi-finite. 

Theorem 4.4. Let R as above be a Noetherian standard Nd 
0-graded A-algebra and M a multigraded R-module 

as above. Assume that AssA (M) is finite. Consider the following statements: 

(i) There exists k ∈ Zd such that AssA (L ) = AssA (Lk), for all n ∈ Zd with n � k.n 

(ii) There exists l ∈ Zd such that AssA (Ln) = AssA (Ll), for all n ∈ Zd with n � l. 
(iii) There exists h ∈ Zd such that AssA (Mn) = AssA (Mh), for all n ∈ Zd with n � h. 

Then (i) implies (ii) and (ii) implies (iii). 

Proof. We first note that if there exists t ∈ Zd with L = 0 for  all  n � t , then  Ln = 0, for all n � t . In-n 
deed, if some Ln �= 0 for  n � t , then there exists P ∈ AssA (Ln). But by Proposition 4.3, P ∈ AssA (L ),n+s 

for some s ∈ Nd 
0, and therefore, Ln+s �= 0, a contradiction. Thus, if AssA (Ln) = ∅, for all n � k, 

then the same holds for AssA (Ln). Now suppose ∅� = AssA L = AssA (Lk), for  all  n � k. Fix  n ∈ Nd 
n 0 

with n � k. Take  P ∈ AssA (Lk). Then, by Proposition 4.3, there  exists  s ∈ Ns with P ∈ AssA (Lk+s).0 
Thus, P ∈ AssA (Lk), by choice of  k. Thus,  P ∈ AssA (L ) ⊆ AssA (Ln). Conversely,  if  P ∈ AssA (Ln), thenn 

P ∈ AssA (L ), for some r ∈ Nd 
0. Thus,  P ∈ AssA (Lk) ⊆ AssA (Lk). Thus,  AssA (Ln) = AssA (Lk ), for alln+r 

n ∈ Nd 
0 with n � k. Therefore (i) implies (ii). 

Now suppose that (ii) holds. We have two cases. If AssA (Ln) = ∅  for all n � l, then  Ln = 0, for 
all n � l, and therefore M is quasi-finite. Thus, the conclusion of (iii) follows from Theorem 2.7. If
AssA (Ln) �= ∅ for all n � l, then  Ln �= 0, for all n � l, and thus, Mn �= 0, for all n � l. 

To continue, first note that since AssA (M) is finite, Proposition 4.1 implies that AssA (M/L) is also 
finite. By Theorem 2.7, there  exists  q ∈ Zd such that AssA (M/L)n = AssA (M/L)q for all n ∈ Zd with 
n � q, since  M/L is quasi-finite. If the stable value of AssA (Mn/Ln) = ∅, then  Mn = Ln for all n � q, 
and thus AssA (Mn) = AssA (Ml), for  all  n ∈ Nd 

0 with n � h, for any  h ∈ Zd with h � q and h � l, which 
gives what we want. Otherwise, if Mq/Lq �= 0, then by Proposition 4.1, there  exists  q ∈ Zd with q � q 
such that AssA (Mq/Lq) ⊆ AssA (Mq ). 

Take h ∈ Zd such that h � l and h � q . Let  P ∈ AssA (Mh). We will show  P ∈ AssA (Mn) for all n � h, 
and for this, we may assume that A is local at P . If  P ∈ AssA (Lh), then by the choice of l, P ∈ AssA (Ln) 
for all n ∈ Zd with n � h. Thus  P ∈ AssA (Mn) for all n � h. If  P ∈/ AssA (Lh ), then  P = (0 :A u) for 
u ∈ Mh\Lh . Thus, by Observation 2.2 above, Rn−h · u �= 0, for all n ∈ Zd with n � h. Note  n − h � 0. 
Since P annihilates Rn−h · u and Rn−h · u ⊆ Mn , we have  P ∈ AssA (Mn), for  all  n � h. 

Now suppose n ∈ Zd and n � h. Take  P ∈ AssA (Mn). If  P ∈ AssA (Ln), then  P ∈ AssA (Lh ), by our
choice of h and thus, P ∈ AssA (Mh ). Otherwise,  P ∈ AssA (Mn/Ln). Thus,  P ∈ AssA (Mq /Lq), by the  defi-
nition of q. Therefore, by the definition of q , P ∈ AssA (Mq ), and by Remark 4.2 above, we may assume 
that P is the annihilator of an element of Mq \Lq . Thus, as in the second paragraph of this proof, we 
may move P forward so that P ∈ AssA (Mh), since  h � q . We now  have  AssA (Mh) = AssA (Mn), for all  
n � h, which gives (iii). � 

Remark 4.5. (a) Clearly, in light of Proposition 2.6, even in the singly graded case we cannot ex-
pect stability of AssA (Mn) without a finiteness condition on AssA (M). Moreover,  in  the presence of
this condition, we cannot do better than Theorem 4.4. Indeed, notice that L is just a direct sum of 
A-modules. Thus, for example, let γ be an irrational number with a binary expansion γ := a1a2a3 · · ·  � 
and take two distinct primes P1 and P2 in A. If we set  R = A and M := n�0 Mn , where Mn := A/P1, 
for an = 0 and Mn := A/P2, for  an = 1, then L = M and AssA (M) is finite, but AssA (Mn) is neither 
stable nor periodic. 
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(b) Neither of the implications in Theorem 4.4 can be reversed. To see this, let R = k[X] denote 
the polynomial ring in one variable over the field k. Let  T be the graded R-module R/X2 R . Thus,
T = T0 ⊕ T1, with  T0 and T1 one-dimensional vector spaces over k. Moreover,  X2 · T0 = 0, X · T0 �= 0 � 
and X · T1 = 0. Let M = n�0 Mn , where Mn = T0 if n is even and Mn = T1 if n is odd. Then M = 
L := H0 

R+ (M) and Assk(Mn) = (0), for all  n, so  AssA (Ln) is stable for all n. On the other hand, setting 
L := (0 :R R+), it follows that L = 0 for  n even and L �= 0, for n odd. Thus, Assk(L ) is not stable for n n n 
n large. Therefore, statement (ii) in Theorem 4.4 does not imply statement (i). A similar example can 
be constructed to show that (iii) does not imply (ii) in the statement of Theorem 4.4. 

5. Second applications 

Let C be a finitely generated A-module, J1, . . . ,  Jd be a family of ideals and for each 1 � i � d let 
{Ii,ni }ni �0 be a filtration of ideals satisfying: (i) Ii,0 = A, (ii) Jni ⊆ Ii,ni , for all  ni � 0, (iii) Ii,ni ⊆ Ii,mi ,i 
whenever ni � mi , and (iv) J 

ri · Ii,si ⊆ Ii,ri +si , for all  ri and si . An application of the main result of this i 
section shows that if C is a finitely generated A-module, there exists k = (k1, . . . ,kd) ∈ Nd 

0 such that 
for all n = (n1, . . . ,nd) � k, 

� � � � 
AssA I1,n1 · · · Id,nd C/ Jn1 · · ·  Jnd C = AssA · · · Id,kd C/ Jk1 · · ·  Jkd C .1 d I1,k1 1 d 

Not surprisingly, we accomplish our goal by recasting the given data in terms of multigraded rings 
and modules. Throughout the rest of this section, we fix ideals J1, . . . ,  Jd ⊆ A. Keeping the notational 
conventions from the previous section, we will write Jn for Jn1 · · ·  Jnd for all n = (n1, . . . ,nd) ∈ Nd 

0.1 d 
We will need the following definition. 

Definition 5.1. For J1, . . . ,  Jd as above, we call a collection of ideals {In} a multi-filtration withn∈Nd 
0 

respect to J1, . . . ,  Jd if the following conditions hold: 

(i) I(0,...,0) = A. 
(ii) Jn ⊆ In , for all  n ∈Nd 

0. 
(iii) For all n � m ∈Nd 

0, Im ⊆ In . 
(iv) For all n,h ∈Nd 

0, J
n · Ih ⊆ In+h . 

Given a multi-filtration with respect to J1, . . . ,  Jd , it is now a simple matter to create a multi-
graded set-up to which we can apply the results of the previous section. 

5.2. Notation 

Let {In} be a multi-filtration with respect to J1, . . . ,  Jd . Let  C be a finitely generated A-module.n∈Nd 
0 � 

We set R := Jn , the multigraded Rees ring of A with respect to J1, . . . ,  Jd . We also set  U :=n∈Nd 
0 � � 

InC , V := JnC and M := U /V . Note that R is a standard Nd 
0-graded Noetherian ring,n∈Nd 

0 n∈Nd 
0 

and U , V and M are multigraded R-modules satisfying the standard hypotheses from the previous 
section. 

Our goal now is to show that, with the notation just established, there exists k ∈ Nd 
0 such that for 

all n ∈ Nd with n � k, AssA (Mn) = AssA (Mk ). We first note that  AssA (M) is finite, since on the one0 � � 
hand, M ⊆ C/ JnC while on the other hand, it is well known that AssA (C/ JnC) is finite n∈Nd n∈Nd 

0 � 0 

(in fact, ultimately stable), and therefore, AssA ( C/ JnC) is finite. n∈Nd 
0 

We need the following lemma which follows from [8, Lemma 1.3] (see also [5, Proposition 1.4]). 

Lemma 5.3. Let J1, . . . ,  Jd ⊆ A be as above and suppose that C is a finitely generated A-module. Suppose 
that each J i contains a nonzero divisor on C . Then there exists k ∈ Nd 

0 such that for all n ∈ Nd 
0 with n � k, 

( Jn+rC :C J r ) = JnC , for all r ∈Nd 
0 . 
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We are now ready for the principal result of this section, which immediately yields the main result 
of this paper. 

Theorem 5.4. Let A be a Noetherian ring, C a finitely generated A-module and J1, . . . ,  Jd ⊆ A finitely  many  
ideals. Suppose that {In} is a multi-filtration with respect to J1, . . . ,  Jd. Then there exists k ∈ Nd 

0 such that n∈Nd 
0 

for all n ∈ Nd 
0 with n � k, AssA (InC / JnC) = AssA (IkC / JkC). 

� � 
Proof. Set R := and M := InC/ JnC , so that M is a not necessarily finitely generated n∈Nd Jn n∈Nd 

0 

multigraded R-module. Following the notation of the previous section, we set L := H0 
R+ (M). Since

AssA (M) is finite, by Theorem 4.4 it suffices to show that there exists l ∈ Nd such that AssA (Ln) = 0 
AssA (Ll), for  all  n ∈ Nd 

0 with n � l. 
We now calculate an expression for Ln , for  n ∈ Nd 

0. Suppose u ∈ Ln . Then there exists t ∈ N0 such 
that Rt + · u = 0 in  L, for  all  u ∈ Ln (since Ln is a finitely generated A-module). It follows that if we 
set r = (t, . . . , t) ∈ Nd 

0, then  J r · u ⊆ Jn+rC in C . Thus,  Ln = ( Jn+rC :C J r ) ∩ In/ Jn . Note,  r depends 
upon n. Now, set  T := H0 

J (C), where J = J1 · · ·  Jd . Thus,  each  J j contains a non-zerodivisor on C/T . 

It follows from Lemma 5.3 that there exists k ∈ Nd 
0 such that for all n ∈ Nd 

0 with n � k and all r ∈ Nd 
0, 

( Jn+rC :C J r ) ⊆ JnC + T . 
Now, suppose n ∈ Nd 

0 and n � k. We may choose r as in the previous paragraph so that 

� � � � 
T = 0 :C J r and Ln = Jn+rC :C J r ∩ In/ Jn . 

In particular, ( Jn+rC :C J r ) = JnC + T . Increasing k if necessary, we may further assume that T ∩ 
JnC = 0, by using the multigraded form of the Artin–Rees lemma. Under these conditions 

� � � � 
Ln = JnC + T ∩ In/ JnC = JnC + InC ∩ T / JnC = InC ∩ T . 

The path to the end of the proof is now clear. If we let P1, . . . , P g denote 

   
AssA (Ln) = AssA (InC ∩ T ), 

n�k n�k 

then each Pi is an associated prime of some Lhi with hi ∈ Nd 
0, hi � k, 1  � i � r. We now just  use the

fact that for all m,n ∈ Nd with m � n � k, AssA (Lm) ⊆ AssA Ln . Now, if there  exists  c ∈ Nd such that0 0 
Ln = 0 for  all  n � c, then we take l = c and note that AssA (Ln) = ∅, for  all  n � c. Otherwise, we order 
the set of primes P1, . . . , P g so that for each P1, . . . , Ps , if  Pi is among these primes, there exists 

i iai ∈ Nd with P ∈/ AssA (Lai ) and no such a exists if s + 1 � i � g . It follows that if l ∈ Nd and l � a0 0 
for 1 � i � s, then for all n � l, Pi ∈/ AssA (Ln), if  1  � i � s and P j ∈ AssA (Ln), for  s + 1 � j � g . In
particular, AssA (Ln) = AssA (Ll), for all  n � l, and the proof of the theorem is complete. � 

We now provide the result stated at the beginning of this section. 

Corollary 5.5. Let A be a Noetherian ring, C a finitely generated R-module and J1, . . . ,  Jd ⊆ A finitely  many  
ideals. Suppose that for each 1 � i � d, {Ii,ni }ni �0 is a filtration of ideals satisfying: 

(i) Ii,0 = A. 
Jni(ii) ⊆ Ii,ni , for all ni � 0.i 

(iii) Ii,ni ⊆ Ii,mi , for all mi � ni ∈ N0 . 
J ri(iv) ⊆ Ii,ri +si , for all ri and si .i · Ii,si 
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Then there exists k = (k1, . . . ,kd) ∈Nd 
0 such that for all n = (n1, . . . ,nd) � k, 

� � � � 
AssA I1,n1 · · · Id,nd C/ Jn1 · · ·  Jnd C = AssA I1,k1 · · · Id,kd C/ Jk1 · · ·  Jkd C .1 d 1 d 

Proof. For n = (n1, . . . ,nd) in Nd 
0, set  In := I1,n1 · · · Id,nd . The result follows immediately from Theo-

rem 5.4 since the collection of ideals {In} is a multigraded filtration with respect to J1, . . . ,  Jd . �n∈Nd 
0 

Remark 5.6. It is important to note that in the preceding theorem and corollary, we do not need to 
make any assumption that yields quasi-finiteness. This should be contrasted with Corollary 3.3 and � 
Remark 3.4. Indeed,  if  we take  d = 1 in the preceding corollary, and set R := n�0 J

n and S := � 
n�0 In , then we have  AssA (Sn/Rn) is stable for large n, even if  grade(R+, S) = 0. 

We now give two examples illustrating certain aspects of the theorem. 

Example 5.7. Let J1, . . . ,  Jd ⊆ A be finitely many ideals, let K ⊆ A be any ideal and set In := Jn : K ∞ , 
for all n ∈Nd 

0. Then  { Jn : K ∞} is a multi-filtration with respect to J1, . . . ,  Jd , so by Theorem  5.4, there� 
exists k ∈ Nd 

0 such that AssA ( J
n : K ∞)/ Jn is stable for all n � k. Note, that in general, n∈Nd ( Jn : K ∞) 

0 
need not be a Noetherian A-algebra. Note also that, as the proof of Theorem 5.4 shows, the stability 
of Ass(Mn) = Ass( Jn : K ∞)/ Jn depends upon the stability of Ass(Ln), for  L := H0 

R+ (M). We determine

this latter set of primes. It follows from the proof of Theorem 5.4 that there exists c ∈ Nd such that0 
Ln = ( Jn : K ∞) ∩ H0 

J (A), for all  n ∈Nd 
0 with n � c. (Recall  J = J1 · · ·  Jd .) We now note that 

� � 
Jn : K ∞ ∩ H0 

J (A) = H0 
K (A) ∩ H0 

J (A), 

for n sufficiently large (in Nd 
0). To see this, clearly H

0 
K (A)∩H0 

J (A) ⊆ ( Jn : K ∞)∩H0 
J (A). For  the reverse

inclusion, let u ∈ ( Jn : K ∞) ∩ H0 
J (A). Then  uKr ⊆ Jn for some r � 1. Notice uKr ⊆ H0 

J (A). So  uKr ⊆ 
H0 

J (A) ∩ Jn = 0 for  n large in Nd 
0, by the multigraded version of the Artin–Rees lemma. Thus u ∈ 

H0 
K (A), as required. It follows that in the present case, Ass(H0 

K (A) ∩ H0 
J (A)) is the stable value of 

Ass(Ln). Finally, suppose H0 
J (A) ∩ H0 

K (A) �= 0 and P ∈ Ass(H0 
J (A) ∩ H0 

K (A)). Then  P ∈ Ass(A) and 

P must contain both J and K , else  H0 
K (A)P ∩ H0 

J (A)P = 0. Conversely, suppose P ∈ Ass(A) and P 

contains J and K . Then  P = (0 : a) and thus J · a = 0, so a ∈ H0 
J (A). Similarly, a ∈ H0 

K (A). It follows 

that AssA (H0 
J (A)∩ H0 

K (A)) = Ass(A)∩ V ( J + K ). Therefore, for all n sufficiently large in Nd 
0, Ass(Ln) = 

Ass(A) ∩ V ( J + K ). 

Example 5.8. Let J ⊆ A be an ideal and take I ⊆ A any ideal containing J and set In := In . Then, by � 
Theorem 5.4, AssA (In/ Jn) is stable for all n 0. Let M = n�1 I

n/ Jn . Then by the proof of Theo-

rem 5.4, Ln = H0 
J (A) ∩ In , for  all  n 0, for L = H0 (M). As in the previous example, we calculate theR+ 

stable value of AssA (Ln). We now make two claims. 

Claim 1. AssA (H0 
J (A) ∩ In) = {P ∈ AssA In | P ⊇ J }. 

To see this, note that if P J then (H0 
J (A))P = 0, so P ∈/ AssA (H0 

J (A)∩ In). Thus,  AssA (H0 
J (A)∩ In) 

is contained in {P ∈ AssA In | P ⊇ J }. On the other hand, if P ⊇ J and P ∈ AssA (In), then we localize 
at P and assume A is local at P and J �= A. Say  P = (0 : x) for x ∈ In . Then  P · x = 0. So x ∈ (0 : P ) ⊆ 
(0 : J ∞). Thus  x ∈ H0 

J (A) ∩ In . Therefore P ∈ AssA (H0 
J (A) ∩ In). This proves the first claim. 

Now, set Z = nil-radical of A. Clearly we have the following exact sequence 

0 → Z → In → In/Z → 0. (5.8.1) 
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We make a second claim, 

Claim 2. For n sufficiently large, AssA (In) = (AssA (Z)) ∪ {P | P ∈ Min(A) and I P }. (Note, here we regard 
Z as  an  A-module.) 

To see, we first note that AssA (In/Z) = {P | P ∈ Min(A) and I P }, for  n large. Clearly any min-
imal prime P not containing I belongs to AssA (In/Z) (just localize at P ). On the other hand, if 
P ∈ AssA (In/Z ), then  P ∈ AssA (A/Z), so  P is a minimal prime. But if P contains I , then  I P is nilpo-
tent. Thus, (In)P = Zp for n large, so In P /Z P = 0. Thus, P ∈/ AssA (In/Z), a contradiction. Therefore, 
for n sufficiently large, 

� � 
AssA In/Z = P P ∈ Min(A) and I P . 

It follows immediately from this and (5.8.1) that 

� � � � 
AssA In ⊆ AssA (Z) ∪ P P ∈ Min(A) and I P , 

for all large n. For the reverse containment, clearly AssA (Z ) ⊆ AssA (In). Moreover,  if  P ∈ Min(A) and 
P I then by localizing at P one sees that P ∈ AssA (In). Thus, Claim 2 holds. 

Now, as before, setting L := H0 
R+ (M), we have  Ln = H0 

J (A) ∩ In , for all large n and by Claims 1 
and 2, 

� � 
AssA (Z ) ∪ P P ∈ Min(A) and I P ∩ V ( J ), 

is the stable value of AssA (Ln), for  n sufficiently large. 

Remark 5.9. Regarding Claim 2, we have an analogue for powers of an ideal. We note that for n 
sufficiently large, 

� � 
InAssA = {P | P ∈ Ass A and P I}. 

Indeed, if P ∈ AssA (A) and P I then InP = RP . So  P ∈ AssA (In) for all n � 1. On the other hand 
suppose P ∈ AssA (In) and P ⊇ I , say  P = (0 : cn) where cn ∈ In . So for  n sufficiently large we have 

� � n0cn ∈ (0 : P ) ∩ In = In− In0 ∩ (0 : P ) = 0, 

a contradiction. Thus, for sufficiently large n, if  P ∈ AssA (In), P ∈ AssA (A), and I P . 

Finally, we note the following, which should be clear from our results above. Let C be a finitely � 
generated A-module and J1, . . . ,  Jd finitely many ideals. Assuming that C/ JnC is finite, asymp-n∈Nd 

0 

totic stability of AssA (C/ JnC), n ∈ Nd follows from Theorem 5.4 by taking the multi-filtration with0 � 
respect to J1, . . . ,  Jd to be In = A for all n ∈ Nd 

0. The finiteness of C/ JnC follows fairly read-n∈Nd 
0 

ily from basic properties of prime divisors of regular elements on a module by using extended Rees 
algebras. For example, see [8]. 

References 

[1] M. Brodmann, Asymptotic stability of Ass(M/InM), Proc. Amer. Math. Soc. 74 (1979) 16–18. 
[2] F. Hayaska, Asymptotic stability of primes associated to homogeneous components of multigraded modules, J. Algebra 306 

(2006) 535–543. 
[3] J. Herzog, T. Hibi, N.V. Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007) 304– 

322. 



29 D. Katz, T.J. Puthenpurakal / Journal of Algebra 380 (2013) 18–29 
[4] J. Herzog, T.J. Puthenpurakal, J.K. Verma, Hilbert polynomials and powers of ideals, Math. Proc. Cambridge Philos. Soc. 145 
(2008) 623–642. 

[5] D. Katz, S. McAdam, L.J. Ratliff Jr., Prime divisors and divisorial ideals, J. Pure Appl. Algebra 58 (1989) 179–186. 
[6] D. Katz, G. Rice, Asymptotic prime divisors of torsion-free symmetric powers of modules, J. Algebra 319 (2008) 2209–2234. 
[7] D. Katz, E. West, A linear function associated to asymptotic primes, Proc. Amer. Math. Soc. 132 (6) (2004) 1589–1597. 
[8] A.K. Kingsbury, R.Y. Sharp, Asymptotic behaviour of certain sets of prime ideals, Proc. Amer. Math. Soc. 124 (1996) 1703– 

1711. 
[9] S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math., vol. 1023, Springer-Verlag, New York, 1983. 

[10] D. Rees, A-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos Soc. (2) 57 (1961) 
8–17. 

[11] E. West, Primes associated to multigraded modules, J. Algebra 271 (2) (2004) 427–453. 


	Quasi-ﬁnite modules and asymptotic prime divisors
	1 Introduction
	2 Quasi-ﬁnite multigraded modules
	2.1 Notation
	2.2 Observation

	3 First applications
	4 The non-quasi-ﬁnite case
	5 Second applications
	5.2 Notation

	References


