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HILBERT-SAMUEL POLYNOMIALS FOR THE 
CONTRAVARIANT EXTENSION FUNCTOR 

ANDREW CRABBE, DANIEL KATZ, 
JANET STRIULI, and EMANOIL THEODORESCU 

Abstract. Let  (R, m) be a local ring, and let M and N be finite R-modules. 
In this paper we give a formula for the degree of the polynomial giving the 
lengths of the modules Exti

R(M, N/m nN). A number of corollaries are given, 
and more general filtrations are also considered. 

§1. Introduction 

Let (R,m,k) be a Noetherian local ring, let I ⊆ R be an ideal, and let 
M and N be finitely generated R-modules. It is well known that if the 
lengths λ(M/InM) of the modules M/InM are finite for n large, these 
lengths are given by a rational polynomial of degree dim(M). In [7] (see 
also [6]) it is shown that the lengths of the modules TorR(M,N/InN)i 

and Exti (M,N/InN) have polynomial growth for large n whenever theR 

lengths of these modules are finite. However, the degrees of the corre-
sponding Hilbert-Samuel polynomials are not as easy to determine (see [7], 
[3], and [5]). This paper has three purposes. The first is to improve the 
known estimates for the degrees of the polynomials giving the lengths of 
Exti (M,N/InN) and TorR(M,N/InN) in  the  case  I = m by giving a pre-R i 

cise formula for these degrees. Previous results for the case I = m for the 
torsion functor were given in [3] and [5], where various assumptions were 
made in order to control this degree. In this paper we do not need to make 
any assumptions on M , N , or  R to obtain our formulas, and we need only 
make modest assumptions on them to obtain a formula that makes direct 
reference only to M and N . In fact, in Section 2 we begin by giving a general 
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2 A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 

formula (see Proposition 2.1) for the degree of the Hilbert polynomial asso-
ciated to general cohomology or homology modules, which specializes to our 
main results in Section 3 when the ideal in question is m and the cohomology 
is determined by either the contravariant extension functor (Theorem 3.2) or 
the torsion functor (Theorem 3.12). For example, the following theorem is a 
direct consequence of our main result in Section 3. Here we write E i (n)M,N,m 

for the Hilbert polynomial giving λ(Exti (N, M/mnM)), for n large.R 

Theorem 1.1. Let (R, m, k) be a local Noetherian ring, and let M and N 
be two finitely generated R-modules such that M has a rank and dim(N) =  
dim(R). Then  deg(E i (n)) = dim(N) − 1.M,N,m 

As  we  show  below,  the degree of  E i (n) is partially controlled by the M,N,m 

dimension of Ωi (M), the ith syzygy of M . Consequently, as an applicationR 
of our degree formula, we obtain the following proposition, which yields some 
information about the dimension of the syzygies of finite-length modules. In 
Proposition 1.2, we use p.d.(M) to denote the projective dimension of M . 

Proposition 1.2. Let (R, m, k) be a local ring, and let M be a finitely 
generated R-module, free of constant rank on the punctured spectrum of R. 
Assume that dim(R) ≥ 2, that the Betti numbers of M are nondecreasing, 
and that i <  p.d.(M). Then  dim(Ωi+1(M)) = d.R 

Our second purpose, especially regarding Section 3, is to lay the ground-
work for results concerning indecomposable modules in [2], where knowledge 
of the relative growth of the Hilbert polynomials of large syzygies of the 
residue field k is required. In particular, Theorem 1.1 above plays a crucial 
role in [2]. 

Finally, in Section 4, we address our third purpose, to show that the 
results of Section 3 can, in many cases, be extended to more general filtra-
tions to give results for the extension functor parallel to those given in [5] 
for the torsion functor. 

§2. General cohomology 

Throughout, (R, m, k) denotes a Noetherian local ring of Krull dimen-
sion d, and all modules are finitely generated R-modules. In this section we 
prove a general result about the Hilbert polynomial associated to an ideal 
and the cohomology (or homology) of a complex. We start by letting 

α β C: X → Y → Z 
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be a complex of finitely generated R-modules with Y = 0. We assume that 
I ⊆R is an ideal such that the homology modules H(C⊗R/In) associated to 
C ⊗R/I n have finite length for n large. By [7, Proposition 3], the lengths of 
the modules H(C ⊗R/I n) are given by a polynomial P C (n) for  n large. The I 
following proposition strengthens [7, Proposition 3], in that we replace the 
degree estimate there by an equality. In the statement of this proposition 
we set � � � 

M := InZ  im(β) /In im(β). 
n≥0 

Note that M is a finitely generated graded module over the Rees algebra of 
R with respect to I , so that if its graded components have finite length as 
R-modules, then these lengths are ultimately given by a rational polynomial 
of degree dim(M) − 1. 

Proposition 2.1. Let (R, m, k) be a local ring, and let C as above be a 
complex of finitely generated R-modules with Y = 0. Let  I ⊆ R be an ideal 
such that the lengths of the cohomology modules H(C ⊗R/In) are nonzero 
and finite for n large, and let P C (n) denote the corresponding Hilbert-I 
Samuel polynomial. Then 

� � � � 
deg P C (n) = max  dim(H(C)), dim(M) − 1 .I 

Proof. Set A := ker(β) and  B := im(α). We begin by arguing as in the 
proof of [7, Proposition 3]. By the Artin-Rees lemma, there exists h >  0 so  
that, for n ≥ h, � � 

I nZ  im(β) =  In−h IhZ  im(β) . 

Since an element in the cohomology of the complex C ⊗R/In corresponds 
to an element in Y that gets mapped by β into InZ  im(β), it follows (see 
[7]) that for n ≥ h, 

A + In−hC
H(C ⊗R/I n) =  ,

B + In−hD 

where C := β−1(IhZ) and  D := IhY . Now  for  n large, 
  �  �  �A + In−hC A + In−hC A + In−hD

(2.1) PI 
C (n) =  λ

B + In−hD 
= λ

A + In−hD 
+ λ

B + In−hD 
 �   �A + In−hC U + In−hW

(2.2) = λ + λ ,
A + In−hD In−hW 

where U := A/B = H(C) and  W := (D + B)/B. We first note that by [7,  
Lemma 2], both length expressions on the right-hand sides of (2.1) and 
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(2.2) are given by polynomials. Let P1(n) denote the polynomial giving the 
lengths of (A + In−hC)/(A + In−hD), and let P2(n) denote the polynomial 
giving the lengths of (U + In−hW )/In−hW . We first calculate the degree of 
P1(n). For this, we note that, by definition, 

A + In−hC InZ  im(β)
(2.3) ∼= . 

A + In−hD In im(β) 

Thus, by the definition of M, deg(P1(n)) = dim(M) − 1 if  P1(n) is  not  
identically zero. 

We now show that if P2(n) is not identically zero the degree of P2(n) 
equals dim(U) = dim(H(C)). Since P C (n) =  P1(n) +  P2(n), this will com-I 
plete the proof of the proposition. For this, note that there exists c >  0 so  
that for n sufficiently large, 

  �  �   �U U U  IcW 
P2(n) =  λ = λ + λ ,

U  In−hW U  IcW In−h−c(U  IcW ) 

so either U  IcW = 0  or  P2(n) has degree equal to dim(U  IcW ). But since 
U/(U  IcW ) has finite length if U  IcW = 0,  then  dim(U) = dim(U  IcW ), 
which gives what we want. 

In the case I = m, we can replace M in the statement of Proposition 2.1 by 
T := im(β). This allows us to give a precise formula for P C (n) in terms of the m 

modules appearing in the complex C. Our main results in the next section 
concerning the extension and torsion functors are immediate consequences 
of the following theorem. 

Theorem 2.2. Let (R,m,k) be a local ring, and let C as above be a 
complex of finitely generated R-modules with Y = 0. Write  P C (n) for the m 

Hilbert-Samuel polynomial giving the lengths of the cohomology modules 
H(C ⊗R/mn), for  n large, and set T := im(β). If  T ⊆mZ, then  

� � � � 
deg P C (n) = max  dim(H(C)), dim(T ) − 1 .m 

Proof. By Proposition 2.1, we have to show only that dim(M) = dim(T ). 
On the one hand, since T ⊆mZ, we have  

m n−1T ⊆m nZ  T.  

Therefore, n≥1 m
n−1T/mnT ⊆M. It follows that 

 � � 
dim(T ) = dim  m n−1T/m nT ≤ dim(M). 

n≥1 
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On the other hand, by the Artin-Rees lemma, there exists an e≥ 1 so  that  
for n large, mnZ   T = mn−e(meZ   T ). As in the proof of Proposition 2.1, 
write P1(n) for the polynomial giving the lengths of Mn. Then  

P1(n) ≤ λ(T/m nT ) − λ(T/m n−eT ), 

and the degree of the polynomial giving the latter difference equals 
dim(T ) − 1. This shows that M has dimension less than or equal to the 
dimension of T and thus must have dimension equal to T , which  is  what  we  
want. 

In the following corollary, we record some observations related to the case 
that P C (n) is the zero polynomial. I 

Corollary 2.3. Retain the notation from Proposition 2.1 and Theo-
rem 2.2. 

(a) If P C (n) ≡ 0, then  H(C) = 0.I 
(b) If im(α) ⊆ mY , then  H(C) and im(β) cannot be simultaneously zero. 
(c) If im(α) ⊆ mY and im(β) ⊆ mZ, then  P C (n) ≡ 0 if and only if H(C) = 0m 

and im(β) has nonzero finite length. 

Proof. Part (a) is immediate from (2.2) in the proof of Proposition 2.1. 
For (b), suppose im(β) = 0.  Then  H(C) =  Y/ im(α). Since im(α) ⊆ mY and 
Y = 0, we cannot have H(C) = 0, by Nakayama’s lemma. 

For (c), suppose first that P C (n) ≡ 0. By (a), we have H(C) = 0.  From  m 

(2.1) and (2.3), we have mnZ   im(β) =  mn im(β), for n large. Since im(β) is  
contained in mZ, it follows that mn−1 im(β) =  mn im(β), so by Nakayama’s 
lemma, im(β) has finite length. By (b), im(β) = 0. Conversely, suppose 
that H(C) = 0  and  im(β) has finite length. Using the notation from the 
proof of Proposition 2.1, the fact that U := H(C) = 0 implies that P2(n) ≡ 0. 
Since im(β) has finite length, (2.3) and the Artin-Rees lemma imply that 
P1(n) ≡ 0. Since P C (n) =  P1(n) +  P2(n), this gives what we want. m 

Remark 2.4. Regarding Proposition 2.1, note that generally it is the 
term dim(M) − 1 that makes determining the exact degree of P C (n) for  I 
arbitrary I difficult. Indeed, whenever H(C) is zero, the degree of P C (n)I 
is equal to dim(M) − 1. (Think of the case when I is m-primary and 
P C (n) =  λ(Tori(R/In,R)).) Our success in determining the degree of P C (n)I m 

in Theorem 2.2 and the corresponding results in Section 3 is because, in 
these cases, we can calculate the dimension of M. Similarly, our success 
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6 A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 

in Section 4 with filtrations more general than the m-adic filtration is due 
strictly to the ability to calculate the dimension of M in those cases as well. 

§3. The m-adic filtration for the contravariant extension functor 

In this section we apply the results of Section 2 to give a precise formula 
for the degree of the Hilbert polynomial giving the lengths of the mod-
ules Exti (M,N/mnN) and  TorR(M,N/mnN). Our formulas below for the R i 

degrees of these polynomials (see Theorems 3.2 and 3.12) involve the dimen-
sion of the image of the ith syzygy of M or its transpose in an appropriate 
direct sum of copies of N and are immediate consequences of Theorem 2.2. 
We will show that, in those cases where the dimension of syzygies of M and 
their transposes are well behaved, our formulas either agree with or improve 
prior estimates. However, the formulas in Theorems 3.2 and 3.12 are valid 
in all cases. 

We begin by establishing some notation. Let 

φi+1 φiF: · · · → Fi+1 → Fi → Fi−1 → · · ·  

denote a minimal free resolution of M . We set  βi(M) := rank(Fi) for all 
i. Thus,  for all  i ≥ 0, βi(M) is  the  ith Betti number of M . We can  calcu-
late Exti(M,N/InN) by applying Hom(−,N/InN) to  F. Thus,  Exti(M,N/ 
InN) is the cohomology of the cochain complex Hom(F,N/InN). 

Alternately, we may first apply the functor Hom(−,N) to  the  resolution  
F to obtain the complex 

→Nβi(M) φi+1Hom(F,N): · · · →Nβi−1(M) φi → Nβi+1(M) → · · ·  , 

which we then tensor with R/In . The resulting complex HomR(F,N) ⊗ 
R/In is isomorphic to HomR(F,N/InN). Hence we may calculate Exti (M,R 
N/InN) as  the  ith cohomology of HomR(F,N) ⊗ R/In . Homology and 
cohomology of complexes of this form were studied in [7]. 

Hilbert polynomials for derived functors 
For fixed i ≥ 1, assume that the modules Exti(M,N/InN) have finite 

length for n large. It follows from [7, Corollary 4] that the lengths 
λ(Exti (M,N/InN)) are given by a rational polynomial for n sufficiently R 
large. We will write E i (n) for this polynomial. By [7, Corollary 4], we M,N,I 

have the following estimate for the degree of E i (n):M,N,I 

� � � � 
E ideg M,N,I(n) ≤max dim(Exti (M,N)),� N (I) − 1 ,R 
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where N (I) denote the analytic spread of I on N . Recall that N (I) is  the  
Krull dimension of the graded module InN/mInN . Equivalently, if n≥0 
we write S for the ring R/ann(N) and  R(IS) for the Rees ring of S with 
respect to IS, then  N (I) is the dimension of the ring R(IS)/mR(IS); that 
is, it is just the analytic spread of the image of I in the ring S. (See [7, proof 
of Proposition 3] for a proof of this fact.) Moreover, in [7] it is shown that 
equality holds in the degree estimate when the first term on the right is at 
least as large as the second term on the right. Similarly, in [7], it is shown 
that when, for i ≥ 1 fixed, the modules TorR(M,N/InN) have finite length, i 

those lengths are given by a rational polynomial in n, for  n sufficiently large. 
M,N,I We will write τ (n) for the corresponding polynomial. In [7], it is shown i 

that � � � �M,N,I deg τ (n) ≤ max dim(Tori(M,N)),� N (I) − 1 ,i 

and equality holds when the first term on the right-hand side of the inequal-
ity is at least as large as the second term on the right-hand side. 

Remark 3.1. Before stating one of the main results of this section, we 
first point out that the degree bounds above can be recovered from Propo-
sition 2.1. For the degree of E i (n), it follows from Proposition 2.1 that M,N,I 

� � � � 
deg E i (n) = max  dim(Exti (M,N)), dim(Ti) − 1M,N,I R 

for Ti = (InNβi+1(M)   im( i+1))/In im( i+1). Note that we can regard n≥0 
Ti as a module over the Rees ring R(IS) of  S := R/ann(N) with respect 
to IS. Since, by assumption, the lengths of the graded components of Ti 

are finite (see the proof of Proposition 2.1), Ti must be annihilated by some 
power of mR(IS), say, mqR(IS). Then dim(Ti) ≤ dim(R(IS)/mqR(IS)) = 

N (I), which gives what we want. The argument for the degree bound involv-
M,N,I ing τ (n) is entirely analogous. i 

We are now ready for the main result of this section. 

Theorem 3.2. Let (R,m) be a local ring, and let M and N be finitely 
generated R-modules. Fix 0 ≤ i ≤ p.d.(M). Set  Ti := im( i+1), for   i+1 as 
above. Then 

� � � � 
E ideg M,N,m(n) = max  dim(Exti(M,N)), dim(Ti) − 1 . 

Proof. If we use the fact above that Exti (M,N/mnN) is  the  ith coho-R 
nmology of the complex Hom(F,N) ⊗ R/m , then the theorem follows imme-

diately from Theorem 2.2. 
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Remark 3.3. (i) Since the resolution F is minimal, it follows from Corol-
lary 2.3 that E i (n) is identically zero if and only if Exti(M,N) = 0  and  M,N,m 
Ti has nonzero finite length. Therefore, if we adopt the conventions that the 
zero polynomial has degree −1 and the zero module has dimension −∞, 
Theorem 3.2 does give the correct value for the degree of E i (n) in  this  M,N,m 
case. 

(ii) Concerning the upper bound for the degree of E i (n) given  before  M,N,I 
Remark 3.1, when I is an m-primary ideal, in particular, when I = m, 
N (I) = dim(N). Thus, since dim(Ti) ≤ dim(N), we see that Theorem 3.2 

improves the estimate from [7] in the special case that m = I . This improve-
ment is extended to more general filtrations (but not all modules) in Sec-
tion 4. 

M,R,m(iii) The Hilbert polynomial τ (n) giving the lengths of Tori(M,R/ i 
mn) has degree less than d for all i >  0 (see [5] or Theorem 3.12 below). This 
no longer holds for E i (n). Indeed, let R be  a local  ring  with  a prime  ideal  M,R,m 
P of maximal dimension such that RP is not Gorenstein, and set M := R/P . 
Then Exti(M,R)P = 0  for  all  i >  0, so that dim(Exti(M,R)) = d, for all 
i >  0. Thus, by Theorem 3.2, deg(E i (n)) = d, for all i >  0.M,R,m 

Corollary 3.4. Suppose that M has finite p.d., say,  p.d.(M) =  i. Then  
deg(E i (n)) = dim(Exti(M,N)).M,N,m 

Proof. This is immediate from the theorem, since in this case, Ti = 0.  

In Theorem 3.2, we may replace Ti by N in any number of situations, as 
the following corollary shows. 

Corollary 3.5. Let (R,m) be a local ring, and let M and N be finitely 
generated R-modules. Fix 0 ≤ i <  p.d.(M), and suppose that one of the fol-
lowing conditions holds: 
(a) i = 0; 
(b) there exists a prime ideal P of maximal dimension in the support of N 

so that some entry of  i+1 (say, r) does not belong to P (e.g., r is a 
nonzero divisor on N); 

(c) βi(M) > βi−1(M); 
(d) N = R, and  MP is not a free RP -module, for some prime ideal P ⊆ R 

of dimension d. 
Then 

� � � � 
E ideg M,N,m(n) = max  dim(Exti(M,N)), dim(N) − 1 . 
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Proof. For (a), we have an exact sequence 

φ10 → Hom(M,N) → Nβ0 → T0 → 0. 

By Theorem 3.2, if dim(Hom(M,N)) = dim(N), deg(E0 (n)) = dim(N),M,N,I 
which is the maximum value in question. Otherwise, the exact sequence 
above shows that T0 and N have the same dimension, so dim(T0) − 1 =  
dim(N) − 1 is the maximum value, and this gives what we want. 

For (b), since rP · NP = 0,  (Ti)P = im( i+1)P = 0.  Thus,  dim(Ti) =  
dim(N), and this gives what we want by Theorem 3.2. 

To prove (c), let P be a prime ideal of maximal dimension in the support 
of N . By Theorem 3.2, it suffices to show that either Exti(M,N)P = 0  or  
(Ti)P = 0.  If  Exti(M,N)P = 0  and  (Ti)P = 0,  then  ( i)P is surjective. But 
this cannot happen if βi(M) > βi−1(M). 

For (d), by assumption, ( i+1)P = 0,  so  (Ti)P = 0, which gives the result. 

It is clear that as long as any one of the conditions (a)–(d) of Corollary 3.5 
is met, we obtain deg(E i (n)) = dim(N) − 1 whenever the dimensionM,N,m 

of Exti(M,N)  is less than  dim(N). We list a couple of such cases in the 
following corollary. 

Corollary 3.6. Let (R,m) be a local ring, and let M and N be finitely 
generated R-modules. Fix 0 ≤ i <  p.d.(M), and suppose that one of the fol-
lowing conditions holds. 
(a) M has a rank, and dim(N) = dim(R). 
(b) M is a nonzero syzygy of k, and  dim(N) ≥ 1. 
Then deg(E i (n)) = dim(N) − 1.M,N,m 

Proof. Let P be a prime of maximal dimension in the support of N . In  
(a), P is a minimal prime of R. Therefore, by [5, Remark 2.1], in either (a) 
or (b), the image of ( i+1)P is a nonzero summand of (Fi)P . Thus,  in  each  
case, at least one entry of ( i+1)P is a unit. Therefore, in both (a) and (b), 
the conclusion of Corollary 3.5 holds; that is, 

� � � � 
deg E i (n) = max  dim(Exti(M,N)), dim(N) − 1 .M,N,m 

On the other hand, if (a) holds, it follows that dim(Exti(M,N)) < d  = 
dim(N), so the maximum value in question is dim(N) − 1. Similarly, if (b) 
holds, then dim(Exti(M,N)) = 0, so again, the maximum in question is 
dim(N) − 1, which completes the proof. 
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10 A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 

Corollary 3.7. If βi(M) =  βi−1(M), then  deg(E i (n)) ≥ dim(N) −M,N,m 
2. 

Proof. By dimension shifting, we may assume i = 1.  Then  we  have  an  
exact sequence 

nN
0 → → → → 0, 

m N N 
mn+1N mn+1N mnN 

from which we obtain 

n+1N)0 →Hom(M,m nN/m n+1N) →Hom(M,N/m 

n+1N)→Hom(M,N/m nN) → Ext1(M,m nN/m 
ρn n+1N).(3.1) → Ext1(M,N/m 

Since the resolution of M is minimal, the lengths of 

n+1N), n+1N)Hom(M,m nN/m Ext1(M,m nN/m 

are just β0(M) · L(n) and  β1(M) · L(n), respectively, where L(n) is  the  
polynomial giving the minimal number of generators of mnN for n large. 
Using the fact that β1(M) =  β0(M), it follows that 

E 1 (n + 1)  ≥ E 0 (n + 1)  −E0 (n).M,N,m M,N,m M,N,m 

By Corollary 3.5, E0 (n) has degree greater than or equal to dim(N) −1,M,N,m 
and this gives what we want. 

Remark 3.8. Let R be a two-dimensional local ring of depth one, and 
suppose that a ∈ R is a parameter such that (0 : (0 : a)) = (a). Then for 
M := R/(a) and  i = 1,  we  have  that  E1 (n) is a nonzero constant. In par-M,R,m 

ticular, this gives an example where β0(M) =  β1(M) and deg(E1 (n)) = M,R,m 
dim(R) − 2, that is, an example where the lower bound in Corollary 3.7 is 
attained. To see this, let 

φ2 ·a· · · →Rr →R →R →M → 0 

be the start of a minimal resolution of M . Note that the image of  2 is 
just (0 : a). To calculate Ext1(M,R), we look at the dual of the resolution, 
thereby getting the complex 

·a φt 

0 →R →R →2 Rr → · · ·  . 
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Note that ker( t ) = (0 :  (0 :  a)), so by our assumption, Ext1(M,R) = 0.  2 
On the other hand, clearly a belongs to the annihilator of T := im( t ), so 2 
dim(T ) ≤ 1. Since the depth of R is one, T cannot be zero-dimensional. 
Thus, dim(T ) = 1,  so  by  Theorem  3.2,  E1 (n) is a nonzero constant. M,R,m 

To find a concrete example with the stated properties, it suffices to find 
a one-dimensional local ring (S,n) with  a  parameter  a satisfying (0 : (0 : 
aS)) = (a). Indeed, given such an S and a, let  R := S[X](n,X), where  X 
is an indeterminate over S. Then  R and a meet the requirements stated 
above. Finally, to find such an S, we use the following example shown to us 
by Craig Huneke. 

Example 3.9. Let k be a field, and let x, y, z, u, and  v be indeterminates. 
Let S denote the power series ring k[[x, y, z, u, v]] modulo the ideal I , where  

2 2 2 2I is the ideal generated by x , xz, z  , xu, zv,u  , v  , zu  + xv + uv, yu, yv, yx− 
zu, yz − xv. Then  S is a one-dimensional local ring with parameter ideal yS 
satisfying (0 : (0 : yS)) = yS. 

For a deeper analysis of this situation, the interested reader should consult 
[4]. 

Corollaries 3.6 and 3.7 together with Theorem 3.2 yield some information 
on the dimension of syzygies over an arbitrary local ring. In Section 5, we 
record some of the consequences that our work has for the dimension of 
syzygies. 

In our last corollary of this section concerning the contravariant extension 
functor, we record what happens when N = R is a Cohen-Macaulay local 
ring with a canonical module. 

Corollary 3.10. Suppose that R is a Cohen-Macaulay local ring with 
canonical module ω. Assume that 0 ≤ i <  p.d.(ω). Then,  

(a) deg(E i (n)) = max{dim(Exti(ω,R)), dim(R) − 1}, and  ω,R,m 

(b) deg(E i (n)) = dim(R) − 1, if  R is generically Gorenstein. ω,R,m 

Moreover, if i = 0, then  deg(E 0 (n)) = dim(R).ω,R,m 

Proof. We consider (a) and (b) together. Suppose there exists a mini-
mal prime P ⊆ R such that RP is not Gorenstein. Then ωP is not a free 
R-module, so (a) holds by Corollary 3.5(d). Otherwise, R is generically 
Gorenstein, so (b) holds by Corollary 3.6(a). 

Now suppose that i = 0,  and  let  P ⊆ R be a prime of maximal dimen-
sion. Then Hom(ω,R)P = 0, so dim(Hom(ω,R)) = d, and the result follows 
from (a). 
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12 A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 

Remark 3.11. Returning to the setup at the beginning of this section, let 
M,N,mτ (n) denote the polynomial giving the lengths of Tori(M,N/mnN),i 

for n large. Then Tori(M,N/mnN) is  the  ith homology in the complex 
M,N,m(F⊗N)⊗R/mn, so Theorem 2.2 yields a formula for the degree of τ (n)i 

analogous to the one obtained in Theorem 3.2 for E i (n). When N = R,M,N,m 
several special cases were given in [5]. Note that one can then list several 
corollaries to Theorem 3.12 analogous to those above. 

Theorem 3.12. Let (R,m) be a local ring, and let M and N be finite 
M,N,mR-modules. Fix 0 ≤ i ≤ p.d.(M), and  let  τ (n) denote the Hilbert poly-i 

nomial giving the lengths of the modules Tori(M,N/mnN) for n large. Let 
Ci denote the image of the induced map  i ⊗ 1N : Fi ⊗N → Fi−1 ⊗N . Then  

� � � �M,N,mdeg τ (n) = max  dim(Tori(M,N)), dim(Ci) − 1 .i 

In particular, if N = R and i ≥ 1, then  

� � � �M,N,mdeg τ (n) = dim  ΩR
i (M) − 1.i 

Proof. For the first statement, we just apply Theorem 2.2 to the ith spot 
of the complex F ⊗N , where, as before,  F denotes the minimal resolution 
of M . The second statement follows immediately from the first. 

Remark 3.13. (i) Assume that N = R and i ≥ 1. Then the theorem 
M,N,mabove shows that the degree of τ (n) is simply the dimension of the i 

ith syzygy of M minus one. On the other hand, for N = R and i ≥ 1, the 
degree of E i (n) is determined by both the dimension of the module M,N,m 

Exti(M,R) and the dimension of Ti, which in this case is the dimension of 
the (i+ 1)st syzygy of M . Suppose that M and R are such that Exti(M,R) 
has dimension less than or equal to d − 1 (e.g., R is generically Gorenstein 
or M has a rank). Then the degree of E i (n) is  less  than  or  equal  to  M,R,m 
d − 1. Now, since either the ith or the (i + 1)st syzygy of M must have 

M,R,mdimension equal to the dimension of R, it follows that either τ (n) or  i 
E i (n) has maximal degree dim(R) − 1. Of course, as above, very minor M,R,m 
assumptions on M will also guarantee that both polynomials have maximal 
degree. However, as pointed out in Question 5.1, for R and M arbitrary, 
it is not known whether the dimensions of the syzygies of M ultimately 
stabilize, so one cannot make a definitive statement regarding the degrees 

M,R,mof E i (n) and  τ (n), even for i sufficiently large. M,R,m i 
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(ii) In [3], it is shown that for i >  0, 

� �M,R,mdepth(R) − 1 ≤ deg τ (n) ≤ dim(R) − 1.i 

M,R,mBy Theorem 3.12, we have deg(τ (n)) = dim(Ωi (M)) − 1. Now on the i R 
one hand, depth(R) = depth(Fi) ≤ dim(Ωi (M)), while on the other hand, R 
dim(Ωi (M)) ≤ dim(R), so our result improves the upper and lower bounds R 

M,R,mfor the degree of τ (n) given in [3]. Furthermore, if M has a rank and i 
M,R,mN = R, it is shown in [5] that deg(τ (n)) = dim(R) − 1. Since in this i 

case, R, M , and  Ωi (M) all have the same dimension, Theorem 3.12 recovers R 
this result as well. 

§4. More general filtrations 

We now turn to giving an analogue of the main results in [5] for Exti(M, 
N/InN). In [5], the second and fourth authors considered the Hilbert poly-
nomial giving the lengths of Tori(M,R/In). In that paper, various assump-

M,N,I tions were made on I and M which forced τ (n) to have maximal degree i 
(I) − 1. Roughly speaking, the assumptions on M were made so that the 
ith syzygy has maximal dimension. The assumptions on the filtrations given 
in [5] were made in order to replicate some of the properties satisfied by the 
m-adic filtration. The reason for this is now clear in light of Theorem 3.12. 
Likewise, we may use some of the ideas underlying Theorem 3.2 to give the 
corresponding results for E i (n) for similar I and M .M,N,I 

Before presenting our main results, we state a proposition which is sim-
ply a restatement of Proposition 2.1 in the context of the contravariant 
extension functor. For the sake of consistent notation with Section 3, we set 
Ti := im( i+1), and we set 

� 
Ti := (InNβi+1(M)   Ti)/InTi. 

n≥0 

Note that, in our present context, Ti is just M from Proposition 2.1. 

Proposition 4.1. Let (R,m) be a local ring, and suppose that M and 
N are finitely generated R-modules. Fix 0 ≤ i ≤ p.d.(M), and  let  I ⊆ R be 
an ideal. Assume that, for all large n, the  lengths of  Exti(M,N/InN) are 
nonzero and finite. Then 

� � � � 
E ideg M,N,I(n) = max  dim(Exti(M,N)), dim(Ti) − 1 . 
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14 A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 

We now give an analogue of Theorem 3.2 for ideals divisible by m. 

Theorem 4.2. Let (R,m) be a local ring, and suppose that M and N 
are finitely generated R-modules. Let I be an ideal divisible by m, that is, 
I = mC, for  some  ideal  C ⊆ R. Fix  0 ≤ i ≤ p.d.(M), and suppose that the 
lengths of Exti(M,N/InN) are nonzero and finite for n large. Then, 

� � � � 
deg E i (n) = max  dim(Exti(M,N)),� (I) − 1 ,M,N,I Ti 

where as before, Ti := im( i+1). 

Proof. By Proposition 4.1, it suffices to prove dim(Ti) =  Ti (I). Consider 
n−1Cnthe filtration J whose terms are Jn := m , n ≥ 1. Note that Jn+1 = IJn 

for all n ≥ 1. Then J is an I-good filtration, so by [5, Proposition 2.2], the 
graded module Ti/mJn has dimension Ti (I). Now, on the one n≥0 Jn Ti 

hand, since F is a minimal resolution, JnTi ⊆ InNβi+1(M)  Ti. Thus,  
� 

JnTi/mJnTi ⊆ Ti, 
n≥0 

from which it follows that Ti has dimension at least Ti (I). On the other 
hand, set S := R/ann(Ti). Then Ti is a finitely generated module over the 
Rees algebra R(IS) of  S with respect to IS  whose graded components have 
finite length. Thus, there exists r >  0 such that mrR(IS) annihilates Ti. 
Therefore, 

� � 
dim(Ti) ≤ dim R(IS)/m rR(IS) = S(I) =  Ti (I). 

Thus, dim(Ti) =  Ti (I), which gives what we want. 

Remark 4.3. For I = mC and ITi = 0,  the  value  of  Ti (I) can vary any-
where between zero and dim(Ti), and the latter can be as large as dim(R). 
However, if we set S := R/ann(Ti) and assume that height(IS) > 0, then 

Ti (I) achieves its maximum value of dim(Ti). To see this, after a change in 
notation, it suffices to see that if height(I) > 0, then (I) =  d = dim(R). For 
this, recall that since height(C) > 0, the Hilbert-Samuel polynomial giving 

s+1the lengths of the modules Crms/Crm for r, s large is a polynomial of 
total degree d−1 in  r and s with nonnegative leading coefficients. For large 
n, we set  n := r = s. It follows that the polynomial giving the lengths of 
(Cm)n/m(Cm)n = In/mIn has degree d − 1. Therefore, (I) =  d. 

If N = R, we have an immediate corollary for ideals divisible by m. 
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Corollary 4.4. Let R be a local ring, and let M be a finitely generated 
R-module. Assume that R is unmixed and equidimensional. Assume further 
that either M has a rank or R is generically Gorenstein. Let I = mC be an 
ideal of R such that height(I) > 0. Then,  deg(E i (n)) = d − 1.M,R,I 

Proof. If M has a rank or R is generically Gorenstein, dim(Exti(M,R)) ≤ 
d−1. Thus, by Theorem 4.2 and its proof, it suffices to show that Ti (I) =  d. 
Consider the (i+1)st syzygy of M , Ki := im( i+1). Since Ki and Ti have the 
same support, we just have to show that Ki (I) =  d. Let  P be any prime 
minimal in the support of Ki. Since  R is unmixed and equidimensional, 
S := R/P has dimension d. Since height(I) > 0, height(IS) > 0. By the 
remark above, S(I) =  d. Since  Ki (I) is the maximum value over all such 
S, it follows that Ki (I) =  d, which is what we want. 

Our final goal is to state a theorem that is a variant for the contravariant 
extension functor of the main results in [5]. It gives a number of cases where 
the degree of E i (n) is  d− 1. First, we require a definition and a lemma.M,N,I 
In the lemma, we maintain the notation established throughout this paper. 

Definition 4.5. Let M be a finitely generated R-module; M is said to 
test finite projective dimension if, for all finitely generated modules N , N 
has finite projective dimension if and only if for some i >  0, TorR(M,N) = 0.  i 

While the residue field k obviously satisfies this condition—and this is 
the case one is often interested in—it follows from [1, Corollary 3.3] that 
R/J satisfies the condition for any integrally closed m-primary ideal J . Of  
course, if M tests finite projective dimension, then so does any syzygy of M . 

Lemma 4.6. Let N be a finitely generated R-module such that NP = 0, 
for every minimal prime P . Let  M be a finitely generated R-module such 
that either M has a rank or M is free of constant rank on the punctured 
spectrum of R and M tests finite projective dimension. Assume further that 
i <  p.d.(M). Then for  i+1 as in Section 3 and Ti := im( i+1), the annihi-
lator of Ti is nilpotent. 

Proof. Set Ki := im( i+1). Then (Ki)P = 0 for all minimal primes P ⊆ R. 
When M has a rank, this follows from [5, Remark 2.1]. If M is free of 
constant rank on the punctured spectrum of R and M tests finite projective 
dimension, this was shown for finite length M in [5, proof of Theorem 3.3, 
first paragraph], but for the reader’s convenience, we repeat the argument 
in this slightly more general case. First, note that if depth(R) > 0, then M 
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has a rank, and we are in the previous case. Suppose that depth(R) = 0.  
By hypothesis, Ki is also free of constant rank on the punctured spectrum 
of R. If this locally constant rank were zero, then Ki would have finite 
length. But then by Corollary 2.3(c), Tori(R/mn,M) = 0 for large n. By  

nthe hypothesis on M , R/m has finite projective dimension, which cannot 
be when depth(R) = 0.  Thus  Ki does not have finite length and thus must 
be nonzero when localized at any nonmaximal prime ideal. In particular, 
(Ki)P is nonzero for each minimal prime P . Thus, in both cases, the map 
( i+1)P is nonzero for each such P , and so its transpose ( i

t 
+1)P is also 

nonzero. Since the FP is split exact for all minimal primes P , the  complex  
Hom(F,N)P is also split exact, and since NP is nonzero for each minimal 
prime P , it follows that (Ti)P is not zero for each minimal prime P . Thus,  
the annihilator of Ti is nilpotent. 

Theorem 4.7. Let (R,m) be a local ring of dimension d, and  let  I ⊆ R 
be an ideal having analytic spread d. Let  N and M be finitely generated 
R-modules such that λ(Exti(M,N/InN)) is finite for n large. Here, 0 < i <  
p.d.(M). Assume that M has a rank (possibly zero) or that M is free of 
constant rank on the punctured spectrum of R and M tests finite projective 
dimension. Assume further that NP is nonzero for every minimal prime P . 
Suppose that one of the following conditions is satisfied: 

(i) I = mC for some ideal C ⊆ R; 
(ii) (mInN :N m) =  InN , for  large  n; 
(iii) (In :R m) �⊆ In, for  some  n, and  R is quasi unmixed. 

Then deg(E i (n)) = d − 1.M,N,I 

Proof. We first note that either assumption on M yields dim(Exti(M, 
N)) ≤ d − 1. Thus, by Proposition 4.1, we must show that dim(Ti) =  d. 
The proof of this for each of the stated conditions follows closely the proofs 
given for [5, Theorems 3.3 and 3.4]. We will try to give a convincing account 
without repeating all of the details from [5]. A crucial point in each case is 
that the annihilator of Ti is nilpotent, by Lemma 4.6. 

Now suppose that I = mC, for some ideal C. From the  proof of Theo-
rem 4.2, we know that dim(Ti) =  Ti (I). By Lemma 4.6, Ti has a nilpotent 
annihilator. Thus Ti (I) =  (I) =  d, which gives what we want. 

Suppose that (mInN :N m) =  InN for large n. Replacing I by It for t 
sufficiently large allows us to show, just as in [5, proof of Theorem 3.3, 
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paragraph 3], that for all n, we have an equality of socles, 

Soc(Ti) = Soc(In−1Ti/I
nTi). 

Since Ti has a nilpotent annihilator, d = (I) =  Ti (I), and the same proof 
used in [5, paragraph 4, page 3079] shows that the module Soc(In−1Ti/n≥0 
InTi) has dimension d. This in turn implies that Ti also has dimension d, 
which is what we want. 

Finally, suppose that (In : m) �⊆ In for some n, and suppose that R 
is quasi unmixed. Again, since the resolution F is a minimal resolution, 
(In : m)Ti ⊆ InNu  Ti. Thus,  

� 
(In : m)Ti/I

nTi ⊆ Ti. 
n≥0 

Since the annihilator of Ti is nilpotent, the same proof used in [5, proof of 
Theorem 3.4, paragraphs 3 and 4] shows that the module (In : m)Ti/n≥0 
InTi has dimension d. Therefore, Ti also has dimension d, and  the proof  is  
complete. 

Remark 4.8. One should note that no assumption is made about the 
nonvanishing of the extension modules Exti(M,N/InN) in  the  theorem.  
Thus, in particular, the theorem shows that, for ideals and modules as in 
the theorem, Exti(M,N/InN) is not zero. A similar remark applies to the 
corresponding torsion modules. 

Remark 4.9. Since N is not injective, one does not automatically obtain 
the analogue of results for Exti+1(M,InN) from Exti(M,N/InN) by  dimen-
sion shifting. However, for the question we are interested in, if we assume 
that the modules Exti(M,N), Exti(M,N/InN), and Exti+1(M,InN) all  
have finite length for large n, the answer follows readily. Indeed, for all 
n ≥ 1, the short exact sequence 

0 → InN →N →N/InN → 0 

gives rise to the long exact sequence 

Exti(M,N) → Exti(M,N/InN) → Exti+1(M,InN) → Exti+1(M,N). 

It quickly follows that the polynomials giving the lengths of Exti(M,N/ 
InN) and  Exti+1(M,InN) differ only by a constant and, consequently, have 
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the same degree, assuming both lengths are not zero. We use this for the 
corollaries below. 

In [6, page 763], it is asked whether, for fixed i, the polynomial giving the 
ith Betti number of I nN has degree N (I) − 1, provided it is not identically 
zero. One of the purposes of [5] was to show that the answer is yes in a 
number of cases. Similarly, by taking M = k in Theorem 4.7, we can now 
note that for fixed i the polynomial giving the ith Bass number of InN is 
given by a polynomial of degree d − 1 =  N (I) − 1 in essentially the same 
cases. 

Corollary 4.10. Let (R, m) be a local ring of dimension d, and  let  N be 
a finitely generated R-module such that NP = 0, for all minimal primes P . 
Assume that I ⊆ R satisfies (I) =  d and any one of the conditions (i)– 
(iii) from Theorem 4.7. Then for any i >  0 with i less than the projective 
dimension of k, the  ith Bass numbers of N/InN and InN are given by 
polynomials of degree d − 1. 

The following instance of Corollary 4.10 deserves special attention. 

Corollary 4.11. Let (R, m) be a quasi-unmixed local ring, and let I be 
an integrally closed m-primary ideal. Then for any i >  0 with i less than the 
projective dimension of k, the  ith Bass numbers of R/In and In are given 
by polynomials of degree d − 1. 

§5. Appendix 

As mentioned in Section 3, our results concerning the degree of E i (n)M,N,m 
are closely related to the dimension of the corresponding syzygies associated 
with M . As a consequence, we can shed some light on the following inter-
esting question. 

Question 5.1. Let (R, m) be a local ring, and let M be a finitely gen-
erated R-module. Is the dimension of the nth syzygy Ωn (M) stable  for  nR 
sufficiently large? 

In the following remark, we record a few easy observations concerning 
Question 5.1. 

Remark 5.2. (i) If R is unmixed and equidimensional, then clearly all 
syzygies have dimension equal to dim(R). 
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(ii) If the dimension of syzygies is ultimately constant, then that constant 
value must equal dim(R). This follows since given two consecutive syzygies, 
one of them must have dimension equal to dim(R). 

(iii) If βi(M) > βi−1(M), then dim(Ωi+1(M)) = dim(R). This is because, R 
for any prime ideal P , ( i)P cannot be injective. Thus, in fact, Ωi+1(M)P = 0R 
for all P , so in this case  Ωi+1(M) has nilpotent annihilator. It follows that 
if the Betti numbers of M are eventually increasing, then Question 5.1 has 
a positive answer for M . 

(iv) If βi(M) < βi−1(M), then dim(Ωi−1(M)) = dim(R). This is because, 
for any prime ideal P , ( i)P cannot be surjective. Thus, in fact, Ωi−1(M)P = 
0 for all P , so in this case, Ωi−1(M) has nilpotent annihilator. 

Proposition 5.3. Let (R,m) be a local ring of dimension d, and  let  M 
be a finitely generated R-module. Let Ωi+1(M) be an (i + 1)st syzygy of MR 
with 1 ≤ i <  p.d.(M). Assume that βi(M) =  βi−1(M). Then  

� � 
max dim(Exti(M,R)), dim(Ωi+1(M)) − 1 ≥ d − 2.R 

In particular, if dim(R) ≥ 2 and M is free of constant rank on the punctured 
spectrum of R, then, in fact, dim(Ωi+1(M)) = d.R 

Proof. We may assume that Ωi+1(M) = im( i+1). By Theorem 3.2, R 
� � � � 
E ideg M,R,m(n) = max  dim(Exti(M,R)), dim(Ti) − 1 , 

where Ti now denotes the image of the transpose of  i+1 in Rβi+1(M). On  
the other hand, dim(Ti) = dim(Ωi+1(M)), since for any prime P the matrix R 
( i+1)P is the zero matrix if and only if its transpose is the zero matrix. 
Therefore, 

� � �� 
deg E i (n) = max  dim(Exti(M,R)), dim(Ωi+1(M)) − 1 .M,R,m R 

The first statement in the corollary now follows from Corollaries 3.5(c) 
and 3.7. 

To prove the second statement, we note that dim(Exti(M,R)) = 0 since 
M is free on the punctured spectrum. Therefore, if d ≥ 3, the maximum 
value above is dim(Ωi+1(M)) − 1. If d = 2, the maximum value is againR 
dim(Ωi+1(M)) − 1. For this, it is enough to show that the dimension ofR 
Ωi+1(M) is positive. Assume, by way of contradiction, that dim(Ωi+1(M)) = R R 
0. Consider the exact sequence 

0 → Ωi+1(M) → Rβi(M) φ1→ Rβi−1(M) → Ωi−1(M) → 0,R R 
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where βi(M) =  βi−1(M). Since Ωi+1(M) has finite length and Ωi−1(M)R R 
is free of constant rank on the punctured spectrum, it follows from the 
sequence above that Ωi−1(M) also has finite length. Thus, the det( i) gener-R 
ates an m-primary ideal, so dim(R) ≤ 1, which is a contradiction. Therefore, 
dim(Ωi+1(M)) is strictly positive and hence R 

� � � � 
Ωi+1dim (M) − 1 = max  dim(Exti(M, R)), dim(Ωi+1(M)) − 1 ≥ d − 2,R R 

where the inequality follows from the first statement. Thus, dim(Ωi+1(M)) ≥R 
d − 1. To improve this, note that for any prime ideal P = m, Ωi+1(M)P isR 
a free  RP -module of rank independent of P . If this rank were zero, then 
Ωi+1(M) would have finite length. But since dim(Ωi+1(M)) ≥ 1, this cannot R R 
be. Thus, the constant rank of each Ωi+1(M)P is not zero, so Ωi+1(M)P isR R 
not zero for all nonmaximal primes P . In particular, dim(Ωi+1(M)) = d.R 

The following example shown to us by Hamid Rahmati shows that we 
cannot relax the hypothesis dim(R) ≥ 2 in the second statement of Proposi-
tion 5.3. 

2
Example 5.4. Let R := k[[x, y]]/(x , xy). Let M := R/(y), so that M 

is a finite-length R-module. Consider the start of a free resolution of the 
R-module M 

0 → xR → R → 
·y 
R → M → 0. 

Since x is a socle element, the second syzygy of M also has finite length, 
and so dim(Ω2 (M)) < dim(R).R 

Proposition 5.5. Let (R, m) be a local ring, and let M be a finitely 
generated R-module. 
(a) If M has nondecreasing Betti numbers, then M has at most one syzygy 

Ωj (M) with finite length. Moreover, 1 ≤ j ≤ d.R 
(b) If the Betti numbers of M are eventually nondecreasing, then M has 

only finitely many syzygies with finite length. 

Proof. For (a), suppose that M has nondecreasing Betti numbers and 
that M := ΩR

j (M) is a syzygy of finite length. Then M is free of con-
stant rank zero on the punctured spectrum of R, so by Proposition 5.3, 
dim(Ωi+1(M )) = d, for all i ≥ 1. Thus, dim(Ωs (M)) = d, for all s ≥ j + 2.  R R 
On the other hand, the exact sequence 

0 → Ωj+1(M) → Fj → Ωj (M) → 0R R 
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shows that dim(Ωj+1(M)) = d, so  dim(Ωs (M)) = d, for all s≥ j + 1. Note R R 

that this argument now precludes the possibility of Ωi (M) having finiteR 

length for some i < j, so  M has at most one syzygy of finite length. To 
see that j ≤ d, suppose, to the contrary, that j > d. Since  Ωj (M)P = 0,  R 
for all prime ideals P = m, p.d.(MP ) <∞, for all primes P = m. It follows 
from this that Ωd−1(M) is free on the punctured spectrum of R. Note that R 

since Ωj (M) has finite length and since j > d, working backward fromR 

Ωj (M) we see that Ωd−1(M) must also have constant rank on the punctured R R 

spectrum. If we now apply Proposition 5.3 to Ωd−1(M), it follows thatR 

dim(Ωj (M)) = d, and this is a contradiction. Thus, j ≤ d, as required. This R 
finishes the proof of Proposition 5.5(a). 

Finally, Proposition 5.5(b) follows immediately from the proof of the first 
statement in Proposition 5.5(a). 

Remark 5.6. It is clear from Proposition 5.5 that Question 5.1 is related 
to a more important question, namely, whether every finitely generated 
module over an arbitrary local ring has the property that its Betti num-
bers are eventually nondecreasing. Suppose that this latter property were 
true for all local rings. Replacing the module M by one of its large syzy-
gies, one could assume that the Betti numbers of M were nondecreasing. If 
Ωi (M) were a syzygy of dimension less than d, then we could localize at R 
prime P minimal in its support. By Proposition 5.3 and Proposition 5.5, 
dim(Ωs (M)P ) = dim(RP ), for all s≥ i+1.  Thus,  if  R were equidimensional, R 
then Ωs (M) would have dimension d, for all s≥ i+ 1,  and  the  dimension  R 
of the syzygies of M would stabilize. 
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	formula (see Proposition 2.1) for the degree of the Hilbert polynomial associated to general cohomology or homology modules, which specializes to our main results in Section 3 when the ideal in question is m and the cohomology is determined by either the contravariant extension functor (Theorem 3.2) or the torsion functor (Theorem 3.12). For example, the following theorem is a direct consequence of our main result in Section 3. Here we write E(n)
	-
	i 

	M,N,m for the Hilbert polynomial giving λ(Ext(N, M/mM)), for n large.
	i 
	n

	R 
	Theorem 1.1. Let (R, m, k) be a local Noetherian ring, and let M and N be two ﬁnitely generated R-modules such that M has a rank and dim(N)= dim(R).Then deg(E(n)) = dim(N) − 1.
	i 

	M,N,m 
	As we show below, thedegreeof E(n) is partially controlled by the 
	i 

	M,N,m dimension of Ω(M), the ith syzygy of M. Consequently, as an application
	i 

	R 
	of our degree formula, we obtain the following proposition, which yields some information about the dimension of the syzygies of ﬁnite-length modules. In Proposition 1.2, we use p.d.(M) to denote the projective dimension of M. 
	Proposition 1.2. Let (R, m, k) be a local ring, and let M be a ﬁnitely generated R-module, free of constant rank on the punctured spectrum of R. Assume that dim(R) ≥ 2, that the Betti numbers of M are nondecreasing, and that i< p.d.(M).Then dim(Ω(M)) = d.
	i+1

	R 
	Our second purpose, especially regarding Section 3, is to lay the groundwork for results concerning indecomposable modules in [2], where knowledge of the relative growth of the Hilbert polynomials of large syzygies of the residue ﬁeld k is required. In particular, Theorem 1.1 above plays a crucial role in [2]. 
	-

	Finally, in Section 4, we address our third purpose, to show that the results of Section 3 can, in many cases, be extended to more general ﬁltrations to give results for the extension functor parallel to those given in [5] for the torsion functor. 
	-

	§2. General cohomology 
	Throughout, (R, m, k) denotes a Noetherian local ring of Krull dimension d, and all modules are ﬁnitely generated R-modules. In this section we prove a general result about the Hilbert polynomial associated to an ideal and the cohomology (or homology) of a complex. We start by letting 
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	be a complex of ﬁnitely generated R-modules with Y = 0. We assume that I ⊆R is an ideal such that the homology modules H(C⊗R/I) associated to C⊗R/I have ﬁnite length for n large. By [7, Proposition 3], the lengths of the modules H(C⊗R/I ) are given by a polynomial P (n)for n large. The 
	n
	n 
	n
	C 

	I 
	following proposition strengthens [7, Proposition 3], in that we replace the degree estimate there by an equality. In the statement of this proposition we set 
	. 
	.. 
	M:= IZ ∩im(β) /Iim(β). 
	n
	n 

	n≥0 
	Note that Mis a ﬁnitely generated graded module over the Rees algebra of R with respect to I, so that if its graded components have ﬁnite length as R-modules, then these lengths are ultimately given by a rational polynomial of degree dim(M) −1. 
	Proposition 2.1. Let (R, m, k) be a local ring, and let C as above be a complex of ﬁnitely generated R-modules with Y =0.Let I ⊆R be an ideal such that the lengths of the cohomology modules H(C⊗R/I) are nonzero and ﬁnite for n large, and let P (n) denote the corresponding Hilbert-
	n
	C 

	I 
	Samuel polynomial. Then 
	... . 
	deg P (n) =max dim(H(C)), dim(M) −1 .
	C 

	I 
	Proof. Set A := ker(β)and B := im(α). We begin by arguing as in the proof of [7, Proposition 3]. By the Artin-Rees lemma, there exists h> 0so that, for n ≥h, 
	.. 
	I Z ∩im(β)= IIZ ∩im(β) . 
	n
	n−h 
	h

	Since an element in the cohomology of the complex C⊗R/Icorresponds 
	n 

	to an element in Y that gets mapped by β into IZ ∩im(β), it follows (see 
	n

	[7]) that for n ≥h, A + ICH(C⊗R/I )= ,
	n−h
	n

	B + In−hD 
	B + In−hD 

	where C := β(IZ)and D := IY .Now for n large, 
	−1
	h
	h

	  . . .
	A + ICA + ICA + ID
	n−h
	n−h
	n−h

	(2.1) P(n)= λ= λ+ λ
	I 
	C
	B + I
	n−h
	D 
	A + I
	n−h
	D 
	B + I
	n−h
	D 

	 .  .
	A + ICU + IW
	n−h
	n−h

	(2.2) = λ + λ,
	In−hW 
	A + In−hD

	where U := A/B =H(C)and W := (D + B)/B.Weﬁrstnotethatby[7, Lemma 2], both length expressions on the right-hand sides of (2.1) and 
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	(2.2) are given by polynomials. Let P(n) denote the polynomial giving the lengths of (A + IC)/(A + ID), and let P(n) denote the polynomial giving the lengths of (U + IW)/IW. We ﬁrst calculate the degree of P(n). For this, we note that, by deﬁnition, 
	1
	n−h
	n−h
	2
	n−h
	n−h
	1

	A + ICIZ ∩im(β)
	n−h
	n

	(2.3) = . 
	∼

	Iim(β) 
	A + I
	n−h
	D
	n 

	Thus, by the deﬁnition of M,deg(P(n)) = dim(M) −1if P(n)is not identically zero. 
	1
	1

	We now show that if P(n) is not identically zero the degree of P(n) equals dim(U)=dim(H(C)). Since P (n)= P(n)+ P(n), this will com-
	2
	2
	C 
	1
	2

	I 
	plete the proof of the proposition. For this, note that there exists c> 0so that for n suﬃciently large, 
	  . .  .
	U UU ∩IW 
	c

	P(n)= λ = λ + λ,
	2

	U ∩IcW
	U ∩In−hW
	In−h−c(U ∩IcW) 

	so either U ∩IW =0 or P(n) has degree equal to dim(U ∩IW). But since U/(U ∩IW) has ﬁnite length if U ∩IW =0, then dim(U)=dim(U ∩IW), which gives what we want. 
	c
	2
	c
	c
	c
	c

	In the case I = m, we can replace Min the statement of Proposition 2.1 by T := im(β). This allows us to give a precise formula for P (n) in terms of the 
	C 

	m 
	modules appearing in the complex C. Our main results in the next section concerning the extension and torsion functors are immediate consequences of the following theorem. 
	Theorem 2.2. Let (R,m,k) be a local ring, and let C as above be a complex of ﬁnitely generated R-modules with Y =0.Write P (n) for the 
	C 

	m 
	Hilbert-Samuel polynomial giving the lengths of the cohomology modules H(C⊗R/m),for n large, and set T T ⊆mZ,then 
	n
	:= im(β).If 

	... . 
	deg P (n) =max dim(H(C)), dim(T) −1 .
	C 

	m 
	Proof. By Proposition 2.1, we have to show only that dim(M)=dim(T). On the one hand, since T ⊆mZ,wehave 
	m T ⊆m Z ∩T. 
	n−1
	n

	Therefore, mT/mT ⊆M. It follows that 
	n≥1 
	n−1
	n

	 . 
	. 
	dim(T)=dim m T/m T ≤dim(M). 
	n−1
	n

	n≥1 
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	On the other hand, by the Artin-Rees lemma, there exists an e≥ 1so that for n large, mZ ∩ T = m(mZ ∩ T). As in the proof of Proposition 2.1, write P(n) for the polynomial giving the lengths of Mn.Then 
	n
	n−e
	e
	1

	P(n) ≤ λ(T/m T) − λ(T/m T), 
	1
	n
	n−e

	and the degree of the polynomial giving the latter diﬀerence equals dim(T) − 1. This shows that M has dimension less than or equal to the dimension of T and thus must have dimension equal to T,which is what we want. 
	In the following corollary, we record some observations related to the case that P (n) is the zero polynomial. 
	C 

	I 
	Corollary 2.3. Retain the notation from Proposition 2.1 and Theorem 2.2. 
	-

	(a) If P (n) ≡ 0,then H(C)=0.
	C 

	I 
	(b) 
	(b) 
	(b) 
	If im(α) ⊆ mY ,then H(C) and im(β) cannot be simultaneously zero. 

	(c) 
	(c) 
	If im(α) ⊆ mY and im(β) ⊆ mZ,then P (n) ≡ 0 if and only if H(C)=0
	C 



	m 
	and im(β) has nonzero ﬁnite length. 
	Proof. Part (a) is immediate from (2.2) in the proof of Proposition 2.1. For (b), suppose im(β)=0. Then H(C)= Y/im(α). Since im(α) ⊆ mY and Y = 0, we cannot have H(C) = 0, by Nakayama’s lemma. 
	For (c), suppose ﬁrst that P (n) ≡ 0. By (a), we have H(C)=0. From 
	C 

	m 
	(2.1) and (2.3), we have mZ ∩ im(β)= mim(β), for n large. Since im(β)is contained in mZ, it follows that mim(β)= mim(β), so by Nakayama’s lemma, im(β) has ﬁnite length. By (b), im(β) = 0. Conversely, suppose that H(C)=0 and im(β) has ﬁnite length. Using the notation from the proof of Proposition 2.1, the fact that U := H(C) = 0 implies that P(n) ≡ 0. Since im(β) has ﬁnite length, (2.3) and the Artin-Rees lemma imply that P(n) ≡ 0. Since P (n)= P(n)+ P(n), this gives what we want. 
	n
	n 
	n−1 
	n 
	2
	1
	C 
	1
	2

	m 
	Remark 2.4. Regarding Proposition 2.1, note that generally it is the term dim(M) − 1 that makes determining the exact degree of P (n)for 
	C 

	I 
	arbitrary I diﬃcult. Indeed, whenever H(C) is zero, the degree of P (n)
	C 

	I 
	is equal to dim(M) − 1. (Think of the case when I is m-primary and P (n)= λ(Tori(R/I,R)).) Our success in determining the degree of P (n)
	C 
	n
	C 

	I m 
	in Theorem 2.2 and the corresponding results in Section 3 is because, in these cases, we can calculate the dimension of M. Similarly, our success 
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	in Section 4 with ﬁltrations more general than the m-adic ﬁltration is due strictly to the ability to calculate the dimension of M in those cases as well. 
	§3. The m-adic ﬁltration for the contravariant extension functor 
	In this section we apply the results of Section 2 to give a precise formula for the degree of the Hilbert polynomial giving the lengths of the modules Ext(M,N/mN)and Tor(M,N/mN). Our formulas below for the 
	-
	i 
	n
	R
	n

	Ri 
	degrees of these polynomials (see Theorems 3.2 and 3.12) involve the dimension of the image of the ith syzygy of M or its transpose in an appropriate direct sum of copies of N and are immediate consequences of Theorem 2.2. We will show that, in those cases where the dimension of syzygies of M and their transposes are well behaved, our formulas either agree with or improve prior estimates. However, the formulas in Theorems 3.2 and 3.12 are valid in all cases. 
	-

	We begin by establishing some notation. Let 
	φi+1 φi
	F: ···→Fi+1 → Fi →Fi−1 →··· 
	denote a minimal free resolution of M.Weset βi(M):=rank(Fi) for all i.Thus, forall i ≥0, βi(M)is the ith Betti number of M.Wecan calculate Ext(M,N/IN) by applying Hom(−,N/IN)to F.Thus, Ext(M,N/ IN) is the cohomology of the cochain complex Hom(F,N/IN). 
	-
	i
	n
	n
	i
	n
	n

	Alternately, we may ﬁrst apply the functor Hom(−,N)to the resolution F to obtain the complex 
	β(M) 
	→
	N
	i
	φi+1

	Hom(F,N): ···→NN→··· , 
	β
	i−1
	(M) 
	φ
	i 
	→ 
	β
	i+1
	(M) 

	which we then tensor with R/I. The resulting complex HomR(F,N) ⊗ R/Iis isomorphic to HomR(F,N/IN). Hence we may calculate Ext(M,
	n 
	n 
	n
	i 

	R N/IN)as the ith cohomology of HomR(F,N) ⊗ R/I. Homology and cohomology of complexes of this form were studied in [7]. 
	n
	n 

	Hilbert polynomials for derived functors 
	For ﬁxed i ≥ 1, assume that the modules Ext(M,N/IN) have ﬁnite length for n large. It follows from [7, Corollary 4] that the lengths λ(Ext(M,N/IN)) are given by a rational polynomial for n suﬃciently 
	i
	n
	i 
	n

	R 
	large. We will write E(n) for this polynomial. By [7, Corollary 4], we 
	i 

	M,N,I 
	have the following estimate for the degree of E(n):
	i 

	M,N,I 
	... . 
	E
	E
	i

	deg (n) ≤max dim(Ext(M,N)), N (I) −1 ,
	M,N,I
	i 

	R 
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	where N (I) denote the analytic spread of I on N. Recall that N (I)is the Krull dimension of the graded module IN/mIN. Equivalently, if 
	n
	n

	n≥0 
	we write S for the ring R/ann(N)and R(IS) for the Rees ring of S with respect to IS,then N (I) is the dimension of the ring R(IS)/mR(IS); that is, it is just the analytic spread of the image of I in the ring S. (See [7, proof of Proposition 3] for a proof of this fact.) Moreover, in [7] it is shown that equality holds in the degree estimate when the ﬁrst term on the right is at least as large as the second term on the right. Similarly, in [7], it is shown that when, for i ≥ 1 ﬁxed, the modules Tor(M,N/IN) h
	R
	n

	i 
	those lengths are given by a rational polynomial in n,for n suﬃciently large. 
	M,N,I 
	We will write τ (n) for the corresponding polynomial. In [7], it is shown 
	i 
	that 
	... .
	M,N,I 
	deg τ (n) ≤ max dim(Tori(M,N)), N (I) − 1 ,
	i 
	and equality holds when the ﬁrst term on the right-hand side of the inequality is at least as large as the second term on the right-hand side. 
	-

	Remark 3.1. Before stating one of the main results of this section, we ﬁrst point out that the degree bounds above can be recovered from Proposition 2.1. For the degree of E(n), it follows from Proposition 2.1 that 
	-
	i 

	M,N,I 
	... . 
	deg E(n) =max dim(Ext(M,N)), dim(Ti) − 1
	i 
	i 

	M,N,I R 
	for Ti =(IN∩ im())/Iim(). Note that we can regard 
	n
	β
	i+1
	(M) 
	φi+1
	n 
	φi+1

	n≥0 
	Ti as a module over the Rees ring R(IS)of S := R/ann(N) with respect to IS. Since, by assumption, the lengths of the graded components of Ti are ﬁnite (see the proof of Proposition 2.1), Ti must be annihilated by some power of mR(IS), say, mR(IS). Then dim(Ti) ≤ dim(R(IS)/mR(IS)) = N (I), which gives what we want. The argument for the degree bound involv-
	q
	q

	M,N,I 
	ing τ (n) is entirely analogous. 
	i 
	We are now ready for the main result of this section. 
	Theorem 3.2. Let (R,m) be a local ring, and let M and N be ﬁnitely generated R-modules. Fix 0 ≤ i ≤ p.d.(M).Set Ti := im(),for as above. Then 
	φi+1
	φi+1 

	... . 
	E
	E
	i

	deg (n) =max dim(Ext(M,N)), dim(Ti) − 1 . 
	M,N,m
	i

	Proof. If we use the fact above that Ext(M,N/mN)is the ith coho-
	i 
	n

	R 
	n
	mology of the complex Hom(F,N) ⊗ R/m , then the theorem follows immediately from Theorem 2.2. 
	-
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	A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 
	Remark 3.3. (i) Since the resolution F is minimal, it follows from Corollary 2.3 that E(n) is identically zero if and only if Ext(M,N)=0 and 
	-
	i 
	i

	M,N,m 
	Ti has nonzero ﬁnite length. Therefore, if we adopt the conventions that the zero polynomial has degree −1 and the zero module has dimension −∞, Theorem 3.2 does give the correct value for the degree of E(n)in this 
	i 

	M,N,m 
	case. 
	(ii) Concerning the upper bound for the degree of E(n)given before 
	i 

	M,N,I 
	Remark 3.1, when I is an m-primary ideal, in particular, when I = m, 
	N (I)=dim(N). Thus, since dim(Ti) ≤ dim(N), we see that Theorem 3.2 improves the estimate from [7] in the special case that m = I.Thisimprovement is extended to more general ﬁltrations (but not all modules) in Section 4. 
	-
	-

	M,R,m
	(iii) The Hilbert polynomial τ (n) giving the lengths of Tori(M,R/ 
	i 
	m) has degree less than d for all i> 0 (see [5] or Theorem 3.12 below). This no longer holds for E(n). Indeed, let R be alocal ring with aprime ideal 
	n
	i 

	M,R,m 
	P of maximal dimension such that RP is not Gorenstein, and set M := R/P. Then Ext(M,R)P =0 for all i> 0, so that dim(Ext(M,R)) = d, for all 
	i
	i

	i> 0. Thus, by Theorem 3.2, deg(E(n)) = d, for all i> 0.
	i 

	M,R,m 
	Corollary 3.4. Suppose that M has ﬁnite p.d.,say, p.d.(M)= i.Then deg(E(n)) = dim(Ext(M,N)).
	i 
	i

	M,N,m Proof. This is immediate from the theorem, since in this case, Ti =0. 
	In Theorem 3.2, we may replace Ti by N in any number of situations, as the following corollary shows. 
	Corollary 3.5. Let (R,m) be a local ring, and let M and N be ﬁnitely generated R-modules. Fix 0 ≤ i< p.d.(M), and suppose that one of the following conditions holds: 
	-

	(a) i =0; 
	(b) there exists a prime ideal P of maximal dimension in the support of N so that some entry of φi+1 (say, r) does not belong to P (e.g., r is a nonzero divisor on N); 
	(c) βi(M) >βi−1(M); 
	(d) N = R,and MP is not a free RP -module, for some prime ideal P ⊆ R 
	of dimension d. Then 
	... . 
	E
	E
	i

	deg (n) =max dim(Ext(M,N)), dim(N) − 1 . 
	M,N,m
	i
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	Proof. For (a), we have an exact sequence 
	φ
	φ
	1

	0 → Hom(M,N) → NT→ 0. 
	β
	0 
	→ 
	0 

	By Theorem 3.2, if dim(Hom(M,N)) = dim(N), deg(E(n)) = dim(N),
	0 

	M,N,I 
	which is the maximum value in question. Otherwise, the exact sequence above shows that Tand N have the same dimension, so dim(T) − 1= dim(N) − 1 is the maximum value, and this gives what we want. 
	0 
	0

	For (b), since rP · NP =0, (Ti)P =im()P =0. Thus, dim(Ti)= dim(N), and this gives what we want by Theorem 3.2. 
	φi+1

	To prove (c), let P be a prime ideal of maximal dimension in the support of N. By Theorem 3.2, it suﬃces to show that either Ext(M,N)P =0 or (Ti)P =0. If Ext(M,N)P =0 and (Ti)P =0, then ()P is surjective. But this cannot happen if βi(M) >βi−1(M). 
	i
	i
	φi

	For (d), by assumption, (φi+1)P =0, so (Ti)P = 0, which gives the result. 
	It is clear that as long as any one of the conditions (a)–(d) of Corollary 3.5 is met, we obtain deg(E(n)) = dim(N) − 1 whenever the dimension
	i 

	M,N,m of Ext(M,N) islessthan dim(N). We list a couple of such cases in the following corollary. 
	i

	Corollary 3.6. Let (R,m) be a local ring, and let M and N be ﬁnitely generated R-modules. Fix 0 ≤ i< p.d.(M), and suppose that one of the following conditions holds. 
	-

	(a) M has a rank, and dim(N)=dim(R). 
	(b) M is a nonzero syzygy of k,and dim(N) ≥ 1. 
	Then deg(E(n)) = dim(N) − 1.
	i 

	M,N,m 
	Proof. Let P be a prime of maximal dimension in the support of N.In (a), P is a minimal prime of R. Therefore, by [5, Remark 2.1], in either (a) or (b), the image of (φi+1)P is a nonzero summand of (Fi)P .Thus, in each case, at least one entry of (φi+1)P is a unit. Therefore, in both (a) and (b), the conclusion of Corollary 3.5 holds; that is, 
	... . 
	deg E(n) =max dim(Ext(M,N)), dim(N) − 1 .
	i 
	i

	M,N,m 
	On the other hand, if (a) holds, it follows that dim(Ext(M,N)) <d = dim(N), so the maximum value in question is dim(N) − 1. Similarly, if (b) holds, then dim(Ext(M,N)) = 0, so again, the maximum in question is dim(N) − 1, which completes the proof. 
	i
	i
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	A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 
	Corollary 3.7. If βi(M)= βi−1(M),then deg(E(n)) ≥dim(N) −
	i 

	M,N,m 
	2. 
	Proof. By dimension shifting, we may assume i =1. Then we have an exact sequence 
	nN0 → → →→0, 
	m NN 
	m
	m
	n+1
	N m
	n+1
	N 

	mnN 
	from which we obtain 
	n+1
	N)

	0 →Hom(M,m N/m N) →Hom(M,N/m 
	n
	n+1

	n+1
	N)

	→Hom(M,N/m N) →Ext(M,m N/m 
	n
	1
	n

	ρn 
	n+1
	N).

	(3.1) →Ext(M,N/m 
	1

	Since the resolution of M is minimal, the lengths of 
	n+1n+1
	N), 
	N)

	Hom(M,m N/m Ext(M,m N/m 
	n
	1
	n

	are just β(M) · L(n)and β(M) · L(n), respectively, where L(n)is the polynomial giving the minimal number of generators of mN for n large. Using the fact that β(M)= β(M), it follows that 
	0
	1
	n
	1
	0

	E(n +1) ≥E(n +1) −E(n).
	1 
	0 
	0 

	M,N,m M,N,m M,N,m 
	By Corollary 3.5, E(n) has degree greater than or equal to dim(N) −1,
	0 

	M,N,m 
	and this gives what we want. 
	Remark 3.8. Let R be a two-dimensional local ring of depth one, and suppose that a ∈R is a parameter such that (0 : (0 : a)) = (a). Then for M := R/(a)and i =1, we have that E(n) is a nonzero constant. In par-
	1 

	M,R,m 
	ticular, this gives an example where β(M)= β(M) and deg(E(n)) = 
	0
	1
	1 

	M,R,m 
	dim(R) −2, that is, an example where the lower bound in Corollary 3.7 is attained. To see this, let 
	φ·a
	2 

	···→R→R →R →M →0 
	r 

	be the start of a minimal resolution of M. Note that the image of φis just (0 : a). To calculate Ext(M,R), we look at the dual of the resolution, thereby getting the complex 
	2 
	1

	·aφ
	t 

	0 →R →R →R→··· . 
	2 
	r 

	Downloaded from . University of Kansas Libraries, on 03 Jun 2018 at 21:43:13, subject to the Cambridge Core terms of use, available at . 
	https://www.cambridge.org/core
	https://www.cambridge.org/core/terms
	https://doi.org/10.1215/00277630-2009-005 

	Note that ker(φ)=(0: (0: a)), so by our assumption, Ext(M,R)=0. 
	t 
	1

	2 
	On the other hand, clearly a belongs to the annihilator of T := im(φ), so 
	t 

	2 
	dim(T) ≤ 1. Since the depth of R is one, T cannot be zero-dimensional. Thus, dim(T)=1, so by Theorem 3.2, E(n) is a nonzero constant. 
	1 

	M,R,m 
	To ﬁnd a concrete example with the stated properties, it suﬃces to ﬁnd a one-dimensional local ring (S,n)with a parameter a satisfying (0 : (0 : aS)) = (a). Indeed, given such an S and a,let R := S[X],where X is an indeterminate over S.Then R and a meet the requirements stated above. Finally, to ﬁnd such an S, we use the following example shown to us by Craig Huneke. 
	(n,X)

	Example 3.9. Let k be a ﬁeld, and let x,y,z,u,and v be indeterminates. Let S denote the power series ring k[[x,y,z,u,v]] modulo the ideal I,where 
	22 22
	I is the ideal generated by x ,xz,z ,xu,zv,u ,v ,zu + xv + uv,yu,yv,yx− zu,yz − xv.Then S is a one-dimensional local ring with parameter ideal yS satisfying (0 : (0 : yS)) = yS. 
	For a deeper analysis of this situation, the interested reader should consult [4]. 
	Corollaries 3.6 and 3.7 together with Theorem 3.2 yield some information on the dimension of syzygies over an arbitrary local ring. In Section 5, we record some of the consequences that our work has for the dimension of syzygies. 
	In our last corollary of this section concerning the contravariant extension functor, we record what happens when N = R is a Cohen-Macaulay local ring with a canonical module. 
	Corollary 3.10. Suppose that R is a Cohen-Macaulay local ring with canonical module ω. Assume that 0 ≤ i< p.d.(ω).Then, 
	(a) deg(E(n)) = max{dim(Ext(ω,R)), dim(R) − 1},and 
	i 
	i

	ω,R,m 
	(b) deg(E(n)) = dim(R) − 1,if R is generically Gorenstein. 
	i 

	ω,R,m 
	Moreover, if i =0,then deg(E (n)) = dim(R).
	0 

	ω,R,m 
	Proof. We consider (a) and (b) together. Suppose there exists a minimal prime P ⊆ R such that RP is not Gorenstein. Then ωP is not a free R-module, so (a) holds by Corollary 3.5(d). Otherwise, R is generically Gorenstein, so (b) holds by Corollary 3.6(a). 
	-

	Now suppose that i =0, and let P ⊆ R be a prime of maximal dimension. Then Hom(ω,R)P = 0, so dim(Hom(ω,R)) = d, and the result follows from (a). 
	-
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	A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 
	Remark 3.11. Returning to the setup at the beginning of this section, let 
	M,N,m
	τ (n) denote the polynomial giving the lengths of Tori(M,N/mN),
	n

	i 
	for n large. Then Tori(M,N/mN)is the ith homology in the complex 
	n

	M,N,m
	(F⊗N)⊗R/m, so Theorem 2.2 yields a formula for the degree of τ (n)
	n

	i 
	analogous to the one obtained in Theorem 3.2 for E(n). When N = R,
	i 

	M,N,m 
	several special cases were given in [5]. Note that one can then list several corollaries to Theorem 3.12 analogous to those above. 
	Theorem 3.12. Let (R,m) be a local ring, and let M and N be ﬁnite 
	M,N,m
	R-modules. Fix 0 ≤i ≤p.d.(M),and let τ (n) denote the Hilbert poly
	-

	i 
	nomial giving the lengths of the modules Tori(M,N/mN) for n large. Let Ci denote the image of the induced map : Fi ⊗N →Fi−1 ⊗N.Then 
	n
	φi ⊗1N 

	... .
	M,N,m
	deg τ (n) =max dim(Tori(M,N)), dim(Ci) −1 .
	i 
	In particular, if N = R and i ≥1,then 
	. ...
	M,N,m
	deg τ (n) =dim Ω(M) −1.
	R
	i 

	i 
	Proof. For the ﬁrst statement, we just apply Theorem 2.2 to the ith spot of the complex F ⊗N,where,asbefore, F denotes the minimal resolution of M. The second statement follows immediately from the ﬁrst. 
	Remark 3.13. (i) Assume that N = R and i ≥1. Then the theorem 
	M,N,m
	above shows that the degree of τ (n) is simply the dimension of the 
	i 
	ith syzygy of M minus one. On the other hand, for N = R and i ≥1, the degree of E(n) is determined by both the dimension of the module 
	i 

	M,N,m Ext(M,R) and the dimension of Ti, which in this case is the dimension of the (i+ 1)st syzygy of M. Suppose that M and R are such that Ext(M,R) has dimension less than or equal to d −1 (e.g., R is generically Gorenstein or M has a rank). Then the degree of E(n)is less than or equal to 
	i
	i
	i 

	M,R,m 
	d −1. Now, since either the ith or the (i + 1)st syzygy of M must have 
	M,R,m
	dimension equal to the dimension of R, it follows that either τ (n)or 
	i 
	E(n) has maximal degree dim(R) −1. Of course, as above, very minor 
	i 

	M,R,m 
	assumptions on M will also guarantee that both polynomials have maximal degree. However, as pointed out in Question 5.1, for R and M arbitrary, it is not known whether the dimensions of the syzygies of M ultimately stabilize, so one cannot make a deﬁnitive statement regarding the degrees 
	M,R,m
	of E(n)and τ (n), even for i suﬃciently large. 
	i 

	M,R,m i 
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	(ii) In [3], it is shown that for i> 0, 
	..
	M,R,m
	depth(R) − 1 ≤ deg τ (n) ≤ dim(R) − 1.
	i 
	M,R,m
	By Theorem 3.12, we have deg(τ (n)) = dim(Ω(M)) − 1. Now on the 
	i 

	iR one hand, depth(R) = depth(Fi) ≤ dim(Ω(M)), while on the other hand, 
	i 

	R 
	dim(Ω(M)) ≤ dim(R), so our result improves the upper and lower bounds 
	i 

	R 
	R 
	M,R,m

	for the degree of τ (n) given in [3]. Furthermore, if M has a rank and 
	i 
	M,R,m
	N = R, it is shown in [5] that deg(τ (n)) = dim(R) − 1. Since in this 
	i case, R, M,and Ω(M) all have the same dimension, Theorem 3.12 recovers 
	i 

	R 
	this result as well. 
	§4. More general ﬁltrations 
	We now turn to giving an analogue of the main results in [5] for Ext(M, N/IN). In [5], the second and fourth authors considered the Hilbert polynomial giving the lengths of Tori(M,R/I). In that paper, various assump-
	i
	n
	-
	n

	M,N,I 
	tions were made on I and M which forced τ (n) to have maximal degree 
	i 
	(I) − 1. Roughly speaking, the assumptions on M were made so that the ith syzygy has maximal dimension. The assumptions on the ﬁltrations given in [5] were made in order to replicate some of the properties satisﬁed by the m-adic ﬁltration. The reason for this is now clear in light of Theorem 3.12. Likewise, we may use some of the ideas underlying Theorem 3.2 to give the corresponding results for E(n) for similar I and M.
	i 

	M,N,I 
	Before presenting our main results, we state a proposition which is simply a restatement of Proposition 2.1 in the context of the contravariant extension functor. For the sake of consistent notation with Section 3, we set Ti := im(), and we set 
	-
	φi+1

	. 
	Ti := (IN∩ Ti)/ITi. 
	n
	β
	i+1
	(M) 
	n

	n≥0 
	Note that, in our present context, Ti is just M from Proposition 2.1. 
	Proposition 4.1. Let (R,m) be a local ring, and suppose that M and N are ﬁnitely generated R-modules. Fix 0 ≤ i ≤ p.d.(M),and let I ⊆ R be an ideal. Assume that, for all large n,the lengthsof Ext(M,N/IN) are nonzero and ﬁnite. Then 
	i
	n

	... . 
	E
	E
	i

	deg (n) =max dim(Ext(M,N)), dim(Ti) − 1 . 
	M,N,I
	i
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	A. CRABBE, D. KATZ, J. STRIULI, AND E. THEODORESCU 
	We now give an analogue of Theorem 3.2 for ideals divisible by m. 
	Theorem 4.2. Let (R,m) be a local ring, and suppose that M and N are ﬁnitely generated R-modules. Let I be an ideal divisible by m, that is, I = mC,for some ideal C ⊆R.Fix 0 ≤i ≤p.d.(M), and suppose that the lengths of Ext(M,N/IN) are nonzero and ﬁnite for n large. Then, 
	i
	n

	... . 
	deg E(n) =max dim(Ext(M,N)), (I) −1 ,
	i 
	i

	M,N,I Ti 
	where as before, Ti := im(). 
	φi+1

	Proof. By Proposition 4.1, it suﬃces to prove dim(Ti)= T(I). Consider n−1n
	i 
	C

	the ﬁltration J whose terms are Jn := m , n ≥1. Note that Jn+1 = IJn for all n ≥1. Then J is an I-good ﬁltration, so by [5, Proposition 2.2], the graded module Ti/mJn has dimension T(I). Now, on the one 
	i 

	n≥0 n i hand, since F is a minimal resolution, JnTi ⊆IN∩Ti.Thus, 
	J
	T
	n
	β
	i+1
	(M) 

	. 
	JnTi/mJnTi ⊆Ti, n≥0 
	from which it follows that Ti has dimension at least T(I). On the other hand, set S := R/ann(Ti). Then Ti is a ﬁnitely generated module over the Rees algebra R(IS)of S with respect to IS whose graded components have ﬁnite length. Thus, there exists r> 0 such that mR(IS) annihilates Ti. Therefore, 
	i 
	r

	.. 
	dim(Ti) ≤dim R(IS)/m R(IS)= S(I)= T(I). 
	r
	i 

	Thus, dim(Ti)= T(I), which gives what we want. 
	i 

	Remark 4.3. For I = mC and ITi =0, the value of T(I) can vary anywhere between zero and dim(Ti), and the latter can be as large as dim(R). However, if we set S := R/ann(Ti) and assume that height(IS) > 0, then 
	i 
	-

	T(I) achieves its maximum value of dim(Ti). To see this, after a change in notation, it suﬃces to see that if height(I) > 0, then (I)= d =dim(R). For this, recall that since height(C) > 0, the Hilbert-Samuel polynomial giving 
	i 

	s+1
	the lengths of the modules Cm/Cm for r,s large is a polynomial of total degree d−1in r and s with nonnegative leading coeﬃcients. For large n,weset n := r = s. It follows that the polynomial giving the lengths of (Cm)/m(Cm)= I/mIhas degree d −1. Therefore, (I)= d. 
	r
	s
	r
	n
	n 
	n
	n 

	If N = R, we have an immediate corollary for ideals divisible by m. 
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	Corollary 4.4. Let R be a local ring, and let M be a ﬁnitely generated R-module. Assume that R is unmixed and equidimensional. Assume further that either M has a rank or R is generically Gorenstein. Let I = mC be an ideal of R such that height(I) > 0.Then, deg(E(n)) = d − 1.
	i 

	M,R,I 
	Proof. If M has a rank or R is generically Gorenstein, dim(Ext(M,R)) ≤ d−1. Thus, by Theorem 4.2 and its proof, it suﬃces to show that T(I)= d. Consider the (i+1)st syzygy of M, Ki := im(φi+1). Since Ki and Ti have the same support, we just have to show that K(I)= d.Let P be any prime minimal in the support of Ki.Since R is unmixed and equidimensional, S := R/P has dimension d. Since height(I) > 0, height(IS) > 0. By the remark above, S(I)= d.Since K(I) is the maximum value over all such S, it follows that 
	i
	i 
	i 
	i 
	i 

	Our ﬁnal goal is to state a theorem that is a variant for the contravariant extension functor of the main results in [5]. It gives a number of cases where the degree of E(n)is d− 1. First, we require a deﬁnition and a lemma.
	i 

	M,N,I 
	In the lemma, we maintain the notation established throughout this paper. 
	Definition 4.5. Let M be a ﬁnitely generated R-module; M is said to test ﬁnite projective dimension if, for all ﬁnitely generated modules N, N has ﬁnite projective dimension if and only if for some i> 0, Tor(M,N)=0. 
	R

	i 
	While the residue ﬁeld k obviously satisﬁes this condition—and this is the case one is often interested in—it follows from [1, Corollary 3.3] that R/J satisﬁes the condition for any integrally closed m-primary ideal J.Of course, if M tests ﬁnite projective dimension, then so does any syzygy of M. 
	Lemma 4.6. Let N be a ﬁnitely generated R-module such that NP =0, for every minimal prime P.Let M be a ﬁnitely generated R-module such that either M has a rank or M is free of constant rank on the punctured spectrum of R and M tests ﬁnite projective dimension. Assume further that i< p.d.(M). Then for as in Section 3 and Ti := im(), the annihilator of Ti is nilpotent. 
	φi+1 
	φi+1
	-

	Proof. Set Ki := im(φi+1). Then (Ki)P = 0 for all minimal primes P ⊆ R. When M has a rank, this follows from [5, Remark 2.1]. If M is free of constant rank on the punctured spectrum of R and M tests ﬁnite projective dimension, this was shown for ﬁnite length M in [5, proof of Theorem 3.3, ﬁrst paragraph], but for the reader’s convenience, we repeat the argument in this slightly more general case. First, note that if depth(R) > 0, then M 
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	has a rank, and we are in the previous case. Suppose that depth(R)=0. By hypothesis, Ki is also free of constant rank on the punctured spectrum of R. If this locally constant rank were zero, then Ki would have ﬁnite length. But then by Corollary 2.3(c), Tori(R/m,M) = 0 for large n.By 
	n

	n
	the hypothesis on M, R/m has ﬁnite projective dimension, which cannot be when depth(R)=0. Thus Ki does not have ﬁnite length and thus must be nonzero when localized at any nonmaximal prime ideal. In particular, (Ki)P is nonzero for each minimal prime P. Thus, in both cases, the map (φi+1)P is nonzero for each such P, and so its transpose (φ)P is also nonzero. Since the FP is split exact for all minimal primes P,the complex Hom(F,N)P is also split exact, and since NP is nonzero for each minimal prime P, it f
	i
	t 
	+1

	Theorem 4.7. Let (R,m) be a local ring of dimension d,and let I ⊆ R be an ideal having analytic spread d.Let N and M be ﬁnitely generated R-modules such that λ(Ext(M,N/IN)) is ﬁnite for n large. Here, 0 <i< p.d.(M). Assume that M has a rank (possibly zero) or that M is free of constant rank on the punctured spectrum of R and M tests ﬁnite projective dimension. Assume further that NP is nonzero for every minimal prime P. Suppose that one of the following conditions is satisﬁed: 
	i
	n

	(i) 
	(i) 
	(i) 
	I = mC for some ideal C ⊆ R; 

	(ii) 
	(ii) 
	(mIN :N m)= IN,for large n; 
	n
	n



	(iii) (I:R m) ⊆ ,for some n,and R is quasi unmixed. Then deg(E(n)) = d − 1.
	n 
	I
	n
	i 

	M,N,I 
	Proof. We ﬁrst note that either assumption on M yields dim(Ext(M, N)) ≤ d − 1. Thus, by Proposition 4.1, we must show that dim(Ti)= d. The proof of this for each of the stated conditions follows closely the proofs given for [5, Theorems 3.3 and 3.4]. We will try to give a convincing account without repeating all of the details from [5]. A crucial point in each case is that the annihilator of Ti is nilpotent, by Lemma 4.6. 
	i

	Now suppose that I = mC, for some ideal C.Fromthe proofofTheorem 4.2, we know that dim(Ti)= T(I). By Lemma 4.6, Ti has a nilpotent annihilator. Thus T(I)= (I)= d, which gives what we want. 
	-
	i 
	i 

	Suppose that (mIN :N m)= IN for large n. Replacing I by Ifor t suﬃciently large allows us to show, just as in [5, proof of Theorem 3.3, 
	n
	n
	t 
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	paragraph 3], that for all n, we have an equality of socles, 
	Soc(Ti)=Soc(ITi/ITi). 
	n−1
	n

	Since Ti has a nilpotent annihilator, d =(I)= T(I), and the same proof used in [5, paragraph 4, page 3079] shows that the module Soc(ITi/
	i 
	n−1

	n≥0 
	ITi) has dimension d. This in turn implies that Ti also has dimension d, which is what we want. 
	n

	Finally, suppose that (I: m) ⊆for some n, and suppose that R is quasi unmixed. Again, since the resolution F is a minimal resolution, (I: m)Ti ⊆IN∩Ti.Thus, 
	n 
	I
	n 
	n 
	n
	u 

	. 
	(I: m)Ti/ITi ⊆Ti. n≥0 
	n 
	n

	Since the annihilator of Ti is nilpotent, the same proof used in [5, proof of Theorem 3.4, paragraphs 3 and 4] shows that the module (I: m)Ti/
	n 

	n≥0 
	ITi has dimension d. Therefore, Ti also has dimension d,and theproof is complete. 
	n

	Remark 4.8. One should note that no assumption is made about the nonvanishing of the extension modules Ext(M,N/IN)in the theorem. Thus, in particular, the theorem shows that, for ideals and modules as in the theorem, Ext(M,N/IN) is not zero. A similar remark applies to the corresponding torsion modules. 
	i
	n
	i
	n

	Remark 4.9. Since N is not injective, one does not automatically obtain the analogue of results for Ext(M,IN)fromExt(M,N/IN)by dimension shifting. However, for the question we are interested in, if we assume that the modules Ext(M,N), Ext(M,N/IN), and Ext(M,IN)all have ﬁnite length for large n, the answer follows readily. Indeed, for all n ≥1, the short exact sequence 
	i+1
	n
	i
	n
	-
	i
	i
	n
	i+1
	n

	0 →IN →N →N/IN →0 
	n
	n

	gives rise to the long exact sequence 
	Ext(M,N) →Ext(M,N/IN) →Ext(M,IN) →Ext(M,N). 
	i
	i
	n
	i+1
	n
	i+1

	It quickly follows that the polynomials giving the lengths of Ext(M,N/ IN)and Ext(M,IN) diﬀer only by a constant and, consequently, have 
	i
	n
	i+1
	n
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	the same degree, assuming both lengths are not zero. We use this for the corollaries below. 
	In [6, page 763], it is asked whether, for ﬁxed i, the polynomial giving the ith Betti number of I N has degree N (I) − 1, provided it is not identically zero. One of the purposes of [5] was to show that the answer is yes in a number of cases. Similarly, by taking M = k in Theorem 4.7, we can now note that for ﬁxed i the polynomial giving the ith Bass number of IN is given by a polynomial of degree d − 1= N (I) − 1 in essentially the same cases. 
	n
	n

	Corollary 4.10. Let (R, m) be a local ring of dimension d,and let N be a ﬁnitely generated R-module such that NP =0, for all minimal primes P . Assume that I ⊆ R satisﬁes (I)= d and any one of the conditions (i)– 
	(iii) from Theorem 4.7. Then for any i> 0 with i less than the projective dimension of k,the ith Bass numbers of N/IN and IN are given by polynomials of degree d − 1. 
	n
	n

	The following instance of Corollary 4.10 deserves special attention. 
	Corollary 4.11. Let (R, m) be a quasi-unmixed local ring, and let I be an integrally closed m-primary ideal. Then for any i> 0 with i less than the projective dimension of k,the ith Bass numbers of R/Iand Iare given by polynomials of degree d − 1. 
	n 
	n 

	§5. Appendix 
	As mentioned in Section 3, our results concerning the degree of E(n)
	i 

	M,N,m 
	are closely related to the dimension of the corresponding syzygies associated with M. As a consequence, we can shed some light on the following interesting question. 
	-

	Question 5.1. Let (R, m) be a local ring, and let M be a ﬁnitely generated R-module. Is the dimension of the nth syzygy Ω(M)stable for n
	-
	n 

	R 
	suﬃciently large? 
	In the following remark, we record a few easy observations concerning Question 5.1. 
	Remark 5.2. (i) If R is unmixed and equidimensional, then clearly all syzygies have dimension equal to dim(R). 
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	(ii) If the dimension of syzygies is ultimately constant, then that constant value must equal dim(R). This follows since given two consecutive syzygies, one of them must have dimension equal to dim(R). 
	(iii) If βi(M) >βi−1(M), then dim(Ω(M)) = dim(R). This is because, 
	i+1

	R 
	for any prime ideal P,(φi)P cannot be injective. Thus, in fact, Ω(M)P =0
	i+1

	R 
	for all P,sointhiscase Ω(M) has nilpotent annihilator. It follows that if the Betti numbers of M are eventually increasing, then Question 5.1 has a positive answer for M. 
	i+1

	(iv) If βi(M) <βi−1(M), then dim(Ω(M)) = dim(R). This is because, for any prime ideal P,(φi)P cannot be surjective. Thus, in fact, Ω(M)P = 0 for all P, so in this case, Ω(M) has nilpotent annihilator. 
	i−1
	i−1
	i−1

	Proposition 5.3. Let (R,m) be a local ring of dimension d,and let M be a ﬁnitely generated R-module. Let Ω(M) be an (i +1)st syzygy of M
	i+1

	R 
	with 1 ≤ i< p.d.(M). Assume that βi(M)= βi−1(M).Then 
	.. 
	max dim(Ext(M,R)), dim(Ω(M)) − 1 ≥ d − 2.
	i
	i+1

	R 
	In particular, if dim(R) ≥ 2 and M is free of constant rank on the punctured spectrum of R, then, in fact, dim(Ω(M)) = d.
	i+1

	R 
	Proof. We may assume that Ω(M)=im(φi+1). By Theorem 3.2, 
	i+1

	R 
	... . 
	E
	E
	i

	deg (n) =max dim(Ext(M,R)), dim(Ti) − 1 , 
	M,R,m
	i

	where Ti now denotes the image of the transpose of φi+1 in the other hand, dim(Ti)=dim(Ω(M)), since for any prime P the matrix 
	R.On 
	β
	i+1
	(M)

	i+1

	R 
	(φi+1)P is the zero matrix if and only if its transpose is the zero matrix. Therefore, 
	.. .
	.. .
	. 

	deg E(n) =max dim(Ext(M,R)), dim(Ω(M)) − 1 .
	i 
	i
	i+1

	M,R,m R 
	The ﬁrst statement in the corollary now follows from Corollaries 3.5(c) and 3.7. 
	To prove the second statement, we note that dim(Ext(M,R))=0 since M is free on the punctured spectrum. Therefore, if d ≥ 3, the maximum value above is dim(Ω(M)) − 1. If d = 2, the maximum value is again
	i
	i+1

	R 
	dim(Ω(M)) − 1. For this, it is enough to show that the dimension of
	i+1

	R 
	i+1
	Ω

	(M) is positive. Assume, by way of contradiction, that dim(Ω(M)) = 
	i+1

	RR 
	0. Consider the exact sequence 
	i+1βi(M) 
	0 → Ω
	(M) → R
	φ
	1

	βi−1(M) i−1
	→ R
	→ Ω

	(M) → 0,
	RR 
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	where βi(M)= βi−1(M). Since Ω(M) has ﬁnite length and Ω(M)
	i+1
	i−1

	RR 
	is free of constant rank on the punctured spectrum, it follows from the sequence above that Ω(M) also has ﬁnite length. Thus, the det(φi) gener-
	i−1

	R 
	ates an m-primary ideal, so dim(R) ≤ 1, which is a contradiction. Therefore, dim(Ω(M)) is strictly positive and hence 
	i+1

	R 
	... . 
	i+1
	Ω

	dim (M) − 1=max dim(Ext(M, R)), dim(Ω(M)) − 1 ≥ d − 2,
	i
	i+1

	RR 
	where the inequality follows from the ﬁrst statement. Thus, dim(Ω(M)) ≥
	i+1

	R 
	d − 1. To improve this, note that for any prime ideal P = m,Ω(M)P is
	i+1

	R afree RP -module of rank independent of P . If this rank were zero, then i+1
	Ω

	(M) would have ﬁnite length. But since dim(Ω(M)) ≥ 1, this cannot 
	i+1

	RR be. Thus, the constant rank of each Ω(M)P is not zero, so Ω(M)P is
	i+1
	i+1

	RR 
	not zero for all nonmaximal primes P . In particular, dim(Ω(M)) = d.
	i+1

	R 
	The following example shown to us by Hamid Rahmati shows that we cannot relax the hypothesis dim(R) ≥ 2 in the second statement of Proposition 5.3. 
	-

	2
	Example 5.4. Let R := k[[x, y]]/(x ,xy). Let M := R/(y), so that M is a ﬁnite-length R-module. Consider the start of a free resolution of the R-module M 
	0 → xR → R → R → M → 0. 
	·y 

	Since x is a socle element, the second syzygy of M also has ﬁnite length, and so dim(Ω(M)) < dim(R).
	2 

	R 
	Proposition 5.5. Let (R, m) be a local ring, and let M be a ﬁnitely generated R-module. 
	(a) If M has nondecreasing Betti numbers, then M has at most one syzygy Ω(M) with ﬁnite length. Moreover, 1 ≤ j ≤ d.
	j 

	R 
	(b) If the Betti numbers of M are eventually nondecreasing, then M has only ﬁnitely many syzygies with ﬁnite length. 
	Proof. For (a), suppose that M has nondecreasing Betti numbers and that M := Ω(M) is a syzygy of ﬁnite length. Then M is free of constant rank zero on the punctured spectrum of R, so by Proposition 5.3, dim(Ω(M )) = d, for all i ≥ 1. Thus, dim(Ω(M)) = d, for all s ≥ j +2. 
	R
	j 
	-
	i+1
	s 

	RR 
	On the other hand, the exact sequence 
	j+1
	0 → Ω

	(M) → Fj → Ω(M) → 0
	j 

	RR 
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	shows that dim(Ω(M)) = d,so dim(Ω(M)) = d, for all s≥ j+ 1. Note 
	j+1
	s 

	RR 
	that this argument now precludes the possibility of Ω(M) having ﬁnite
	i 

	R 
	length for some i<j,so M has at most one syzygy of ﬁnite length. To see that j≤ d, suppose, to the contrary, that j>d.Since Ω(M)P =0, 
	j 

	R 
	for all prime ideals P= m,p.d.(MP ) <∞, for all primes P= m. It follows from this that Ω(M) is free on the punctured spectrum of R. Note that 
	d−1

	R since Ω(M) has ﬁnite length and since j>d, working backward from
	j 

	R Ω(M) we see that Ω(M) must also have constant rank on the punctured 
	j 
	d−1

	RR 
	spectrum. If we now apply Proposition 5.3 to Ω(M), it follows that
	d−1

	R 
	dim(Ω(M)) = d, and this is a contradiction. Thus, j≤ d, as required. This 
	j 

	R 
	ﬁnishes the proof of Proposition 5.5(a). 
	Finally, Proposition 5.5(b) follows immediately from the proof of the ﬁrst statement in Proposition 5.5(a). 
	Remark 5.6. It is clear from Proposition 5.5 that Question 5.1 is related to a more important question, namely, whether every ﬁnitely generated module over an arbitrary local ring has the property that its Betti numbers are eventually nondecreasing. Suppose that this latter property were true for all local rings. Replacing the module M by one of its large syzygies, one could assume that the Betti numbers of M were nondecreasing. If Ω(M) were a syzygy of dimension less than d, then we could localize at 
	-
	-
	i 

	R 
	prime P minimal in its support. By Proposition 5.3 and Proposition 5.5, dim(Ω(M)P )=dim(RP ), for all s≥ i+1. Thus, if Rwere equidimensional, 
	s 

	R 
	then Ω(M) would have dimension d, for all s≥ i+1, and the dimension 
	s 

	R 
	of the syzygies of M would stabilize. 
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