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Abstract 

Let R be a local ring, I ⊆ R an ideal, and M and N fnite R-modules. In this paper we provide a number 
of results concerning the degree of the polynomial giving the lengths of the modules Exti (N/InN,M),

R 
when such a polynomial exists. Included among these results are a characterization of when this degree 
equals the Krull dimension of R, a characterization of when the degree of the polynomial associated to the 
frst non-vanishing Ext under consideration equals the grade of I on M , and calculation of the degree of 
Hilbert polynomials associated to certain iterated expressions involving the extension functor. 
© 2007 Elsevier Inc. All rights reserved. 
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1. Introduction 

In this paper we continue our investigation into the degrees of Hilbert polynomials associated 
to derived functors, in this case focusing on the extension functor. Let (R, m, k)  be a local ring 
and M , N be fnite R-modules. Let I ⊆ R be an ideal such that I + ann(M) + ann(N) is m-
primary. For a fnite length R-module A, write λ(A) for the length of A. It is shown in [6] that 

� � ��
i (n) := λ Exti N/InN,M I 
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has polynomial growth for n large. Moreover, a degree estimate for this polynomial is given in 
terms of the dimension of the Matlis dual of cohomology modules derived from an injective res-
olution of M . Here we seek to give cases where this degree and the corresponding normalized 
leading coeffcient can be explicitly computed. One of our main results, Theorem 3.2, charac-

iterizes when the degree of (n) equals d , the dimension of R. It turns out that if N is locally I 

free at primes of maximal dimension (e.g., N = R), this can only occur when i = d . This is a
satisfactory fnding since the analogous polynomial associated to the torsion functor can only 
achieve degree d when the Tor index is 0. Moreover, in the case N = R, we show that the nor-

dmalized leading coeffcient of (n) is e(I,M), the multiplicity of I on M . In [5]  Kirby gaveI 
gan early result concerning the behavior of (n), where g denotes the grade of I on M , notingI 

that the associated polynomial has degree less than or equal to g. We go further in Theorem 3.9, 
gwhere we not only give an explicit description of the lengths determining (n), but we also give I 

precise conditions for the degree to equal g. In Theorem 3.11 we exhibit several classes of ideals 
iwhere for i = d , (n) has the expected maximal degree d − 1, in light of Theorem 3.2. Recall I 

that if R is Gorenstein, then for any m-primary ideal I , R/In and Extd(Extd(R/In,R),R)  are 
isomorphic and therefore give rise to the same Hilbert polynomials. In section four we give the 
degree and leading coeffcient of Hilbert polynomials derived from similar iterated extension 
modules. In particular, we show that if I ⊆ R is an m-primary ideal in any local ring, then the 
polynomials giving the lengths of R/In and Extd(Extd(R/In,R)R)  have the same degree and 
same normalized leading coeffcient. 

2. Preliminaries 

Throughout we assume that R is a local Noetherian ring with maximal ideal m, residue 
feld k and Krull dimension d . We also assume throughout that d >  0, since in the case where 
dim(R) = 0, the Hilbert polynomials under consideration are constants (often identically zero). 
We will rely on standard facts from Hilbert–Samuel theory. Namely, that if U is a fnitely gener-
ated R-module and I ⊆ R is an ideal such that λ(U/IU) < ∞, then the lengths of the modules 
U/InU are fnite and given by a polynomial P(n)  with rational coeffcients for n large. As is 
well known, the degree of P(n)  equals the dimension of U and the normalized leading coeff-
cient of P(n), denoted e(I,U), is called the multiplicity of I on U . More generally, let {Hn}n�0 
be any family of fnite length modules with the property that there exists a rational polynomial 
Q(n) such that λ(Hn) = Q(n) for n large. Then the normalized leading coeffcient of Q(n) is 
the positive integer 

deg(Q(n))! 
lim · Q(n). 

n→∞ ndeg(Q(n)) 

For a fnitely generated R-module V and an ideal I ⊆ R, we write V (I ) for the analytic � 
spread of I on V , i.e., the Krull dimension of the graded module n�0 I

nV/mInV . It is well
known that V (I ) = R/ ann(V )(I ), the analytic spread of the image of the ideal in the ring 
R/ ann(V ). A proof of this can be found in the proof of Proposition 3 in [6]. In particular, 
V (I ) � dim(V ). 

For fnitely generated R-modules M and N and an ideal I ⊆ R, the main result in [6] shows 
that if ann(M) + ann(N) + I is m-primary, the lengths of Exti (N/InN,M) are given by a poly-
nomial in n, for  n large. For the purposes of this paper, we make the following defnition. 
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Definition 2.1. 

(a) Let M and N be fnitely generated modules over R and I ⊆ R an ideal. We shall say that M , 
N , and I satisfy the standard support condition if I + ann(M) + ann(N) is m-primary. 

i(b) If the support condition in (a) holds, we will write (n) for the polynomial giving the lengths I 

of Exti (N/InN,M) for n large. 

We will also use the following notation. 

Definition 2.2. Let j � 0 be an integer and M a fnitely generated R-module having an associated 
prime of dimension j . Let  P1, . . . ,Pr be the prime ideals in Ass(M) of dimension j and J = 
P1 ∩ · · · ∩  Pr . We defne Mj to be the set of elements in M annihilated by some power of J , i.e., 
Mj := ΓJ (M). Note that for any 1 � i � r , (Mj )Pi 

= ΓPi
(MPi

). 

We will make use of the following facts about Ext modules and injective resolutions. These 
facts will be used in the sequel with little or no further comment. First, suppose M is a fnite 
R-module and S is a Gorenstein local mapping onto R. If  j := depth(S) − depth(M), then j is 
the largest index for which Extj (M,S) = 0 (see [1, 8.1.8 and 8.1.9]). Now, let E be a minimal S 

injective resolution of M . The  j th Bass number μj := μj (m,M)  of M with respect to m is 
dimk(Extj (k,M)), so that μj is just the number of times the injective hull of k appears as a 
summand of the j th injective module in E . It is well known that μj = 0, for j <  depth(M) and 
μj = 0 for  j = depth(M). Now suppose that N is a fnitely generated R-module and I is an ideal 
such that N , M and I satisfy our standard support condition. In [6, p. 84], it is shown that 

� � � � 
Hom N/InN,E = Hom N/InN,Γm(E) , (2.1) 

where Γm(−) is the local cohomology functor. In particular, this means that Extj (N/InN,M) 

is the j th cohomology of the complex Hom(N/InN,Γm(E)). In other words, 

� � � � �� 
Extj N/InN,M = Hj Hom N/InN,Γm(E) . (2.2) 

Finally, for a complex of R-modules C, we will denote the Matlis dual of C by C∨ . 
Before starting, we need a lemma which will help us to estimate or calculate the normalized 

ileading coeffcient of (n). This lemma leads to an improved statement regarding the degree I 

estimate given in [6, Corollary 7]. Suppose that U,V,W are submodules of a common fnitely 
generated R-module with W ⊆ V . Let  I ⊆ R be an ideal such that the modules Ln := (U + 
InV )/InW have fnite length for n large. Then, it follows from Lemma 2 in [6] that these lengths 
are given by a polynomial in n for n large. We will use this fact in the lemma below. 

Lemma 2.3. Suppose that U,V,W are submodules of a fnitely generated R-module with 
W ⊆ V . Let I ⊆ R be an ideal such that the modules Ln := (U + InV )/InW have fnite length 
for n large. Let P(n)  denote the corresponding Hilbert polynomial, i.e., P(n)  = λ(Ln), for  n 

large. 

(i) If dim(U) � V (I ) − 1, then the degree of P(n)  equals dim(U) and the normalized leading 
coeffcient of P(n)  is at least e(I,U). 

(ii) If dim(U) � V (I ), then the normalized leading coeffcient of P(n)  equals e(I,U). 
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Proof. Consider the canonical short exact sequence where π is the sum map 

U ∩ InV U + InW InV π0 → → ⊕ −→ Ln → 0. 
U ∩ InW InW InW 

Note that all of the terms in this sequence have fnite length, so it follows that for n large, �� � � � � �� � � 
P(n)  = λ U + InW /InW + λ InV/InW − λ U ∩ InV /U ∩ InW . (2.3) 

The second and third terms in this equation are given by polynomials, since the graded modules � � � � 
InV/InW and U ∩ InV /U ∩ InW 

n�0 n�0 

are fnitely generated over the Rees ring of R with respect to I . Moreover, the dimensions of 
these modules are bounded by V (I ). Thus the degrees of the polynomials giving the second and 
third terms in Eq. (2.3) are bounded by V (I ) − 1. Now, since � � �� � � 

λ InV/InW − λ U ∩ InV /U ∩ InW � 0 

the degree and normalized leading coeffcient of P(n)  are at least the degree and normalized 
leading coeffcient of the polynomial giving the lengths of (U + InW)/InW , provided this poly-
nomial has degree at least V (I ) − 1. Write Q(n) for this latter polynomial. We claim that the 
degree and normalized leading coeffcient of the polynomial of Q(n) are dim(U) and e(I,U) 

respectively. If we show this, then the conclusions of the lemma will follow. 
Using Artin–Rees, write 

� � � � � � 
U + InW /InW ∼= U/ U ∩ InW = U/In−t U ∩ I tW , 

for some t � 0 and all n � t . This shows that e(I,U) is defned, and that the claim is true if 
dim U = 0. Assuming dim U >  0, write 

�� � � � � �� �� � � �� 
λ U + InW /InW = λ U/ U ∩ I tW + λ U ∩ I tW /In−t U ∩ I tW . 

Thus, the degree of Q(n) is the dimension of U ∩ I tW and the normalized leading coeffcient of 
Q(n) is e(I,U ∩ I tW), assuming dim(U ∩ I tW) > 0. But now, since the quotient U/U ∩ I tW 

has fnite length, the modules U and U ∩ I tW have the same support. Thus, dim(U ∩ I tW)  = 
dim(U) > 0. In particular, for a prime P ⊆ R, P is a prime of maximal dimension in the support 
of U ∩ I tW if and only if P is a prime of maximal dimension in the support of U . If we now
apply the associativity formula, we get that the multiplicity of I on both U and U ∩ I tW is the 
same: 

� � � � � 
e I,U ∩ I tW = λ U ∩ I tW e(I,R/P ) 

P 

dim P =dim(U∩I tW)  � 
= λ(UP )e(I,R/P ) 

dim P =dim U 

= e(I,U), 

which completes the proof of the lemma. � 
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Remark 2.4. Before continuing, wish to give an application of Lemma 2.3 by improving [6, 
iCorollary 7]. While an estimate for the degree of (n) was given in [6], there were no statements I 

regarding criteria for equality in that degree estimate nor were there any statements concerning 
ithe normalized leading coeffcient of (n). The following proposition, used throughout thisI 

paper, remedies this. 

Proposition 2.5. Let R be a local ring, I ⊆ R an ideal and let M and N be fnitely generated 
R-modules. Assume that our standard support condition holds. Let E be a minimal injective 
resolution of M . Then 

� �  � � � �∨�� �
ideg (n) � max dim Hi Hom N,Γm(E) ,� N (I ) − 1 .I 

Furthermore, 

(i) The inequality in the estimate above becomes an equality whenever the dimension of 
Hi (Hom(N,Γm(E))∨) is greater than or equal to N(I) − 1. 

(ii) If dim(Hi (Hom(N,Γm(E))∨)) is greater than or equal to N(I)−1, the normalized leading 
icoeffcient of (n) is at least e(I,Hi (Hom(N,Γm(E))∨)).I 

(iii) If dim(Hi (Hom(N,Γm(E))∨)) is greater than or equal to N(I), then the normalized lead-
iing coeffcient of (n) equals e(I, Hi (Hom(N,Γm(E))∨)).I 

Proof. The displayed inequality has already been given in [6, Corollary 7]. For the remaining 
parts of the proposition, we just need to translate between the notation in [6] and the notation 
of the lemma. First note that Eq. (10) in [6] shows that the Matlis dual of Exti (N/InN,M) is 
isomorphic to the ith homology of the complex C ⊗ R/In , where C := Hom(N,Γm(E))∨ is a 
complex whose modules are fnite direct sums of N . The proof of [6], Proposition 3(a) shows 
that the homology of a complex of the form C ⊗ R/In can be written as 

� � K + In−n0 K̃ 
Hi C ⊗ R/In = , 

L + In−n0 C 

with L ⊆ K and C ⊆ K̃ . This quotient can be written as (U + In−n0 V )/In−n0 W , where U := 
K/L is the ith homology of C, V := (K̃ + L)/L is a subquotient of a direct sum of fnitely many 
copies of N and W := (C + L)/L (see [6, p. 81, lines 8 and 9]). We now have the form required 

iby Lemma 2.3; in other words, for n large, (n) gives the lengths of (U + In−n0 V )/In−n0 W .I 

Once we observe that V (I ) � N(I), the remaining statements in the proposition will follow 
immediately from the lemma. However, V (I ) = R/ ann(V )(I ) and N(I) = R/ ann(N)(I ). Since 
V is a subquotient of a fnite direct sum of N , ann(N) ⊆ ann(V ), so  R/ ann(V )(I ) is less than or 
equal to R/ ann(N)(I ), which gives what we want. � 

i3. Degree and leading coefficient of (n)I 

iIn this section we present our results concerning the degree and leading coeffcient of (n).I 

Because the estimate in Proposition 2.5 involves two terms, and equality holds in this estimate 
when the frst of these terms dominates, our best results, with I as general as possible, occur 
when the degree in question equals d or d − 1. For completely different reasons we are able to 

gshow deg(� (n)) � g, for  g := gradeI (M), and give a criterion for equality. 
I 
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�iWe begin with the case that the degree of (n) equals d . We isolate a crucial part of the I 

argument for this case in the following lemma. 

Lemma 3.1. Let R be a complete local ring of dimension d , I ⊆ R an ideal and M , N fnite 
R-modules such that I,M,N satisfy our standard support condition. Let E denote a minimal 
injective resolution of M . Then the following are equivalent: 

(a) dim(Hi (Γm(E)∨ ⊗R N)) = d . 
(b) i � d and dim(Exti−d(N,M)) = d . 

Proof. By Cohen’s structure theorem, there exists a Gorenstein local ring (S, n) of dimension d 

that maps onto R. Thus, by local duality and the permanence of local cohomology, we have 

Hj ∨ Hj ∨ 
m(M) = n(M) = Extd−j

(M,S), S 

for 0 � j � d . 
Let P ⊆ R be any prime of dimension d and let Q ⊆ S be its pre-image in S. We frst note that 

since the modules in the complex Γm(E) are fnite sums of the injective hull of k, the modules in 
Γm(E)∨ are fnitely generated free R-modules. Moreover, by construction, we have for all i � 0, 
Hi (Γm(E)∨) = Extd−i (M,S) (where we take Extd−i (M,S) = 0, for i > d). Thus, S S 

� �∨Hi Γm(E)
P 

= ExtS
d−i (M,S)P = Extd−i (M,S)Q = 0,S 

for all 0 � i < d , since SQ is self-injective. Thus, the complex (Γm(E)∨)P is split exact in 
degrees i for 0 � i < d . Thus, (Γm(E)∨ ⊗ N)P is split exact in degrees i, for  0  � i < d . On
the one hand, this immediately shows that Hi (Γm(E)∨ ⊗ N) has dimension less than d for all 
0 � i < d . On the other hand, if we split off the terms up to degree d from (Γm(E)∨)P , then we 

∨Pobtain a free resolution of HomS(M,S)P over RP . Note that this latter module is just MP , 
∨Pwhere MP denotes the Matlis dual of MP over RP . To see this, frst observe HomS(M,S) = 

HomR(M,HomS(R,S)), since S maps onto R; at the same time, HomS(R,S)Q = HomS(R,S)P 

is the injective hull of RP , since SQ is Gorenstein. Putting these together yields HomS(M,S)P = 
MP 

∨P . Now, using exactness of Matlis duality, we have for i � d that 

� � �� � � � � 
Hi Γm(E)∨ ⊗ N = Hi Γm(E)∨ ⊗ NP = TorRP M

∨P ,NP . 
P P i−d P 

Since the Matlis dual over RP of the latter Tor module is Exti−d(NP ,MP ), we have that, RP 

�� � �� � �� � � 
λ Hi Γm(E)∨ ⊗R N = λ Exti−d(N,M) 

P R P 

for all primes P ⊆ R of dimension d . Thus for i � d , dim(Hi (Γm(E)∨ ⊗R N)) = d if and only 
if dim(Exti−d(N,M)) = d . This completes the proof of the lemma. � 

Theorem 3.2. Let R be a local ring, I ⊆ R an ideal and M , N fnite R-modules such that 
I,M,N satisfy our standard support condition. Then, the following are equivalent: 

(a) deg(� i (n)) = d .I 

(b) i � d and dim(Exti−d(N,M)) = d . 
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Moreover, if (a) and (b) hold, then 

e(I, Exti−d(N,M)) i (n) = nd + lower degree terms.I d! 
Proof. We frst note that we are free to pass to the completion R̂ of R and assume that R is 
complete. 

Now, let E be a minimal injective resolution of M over R. It follows from Proposition 2.5 that 

� �  � � � �
ideg (n) � max dim Hi Hom N,Γm(E) 

�∨ 
,� N(I ) − 1I 

which by Hom-tensor duality gives � �  � � �
ideg (n) � max dim Hi Γm(E)∨ ⊗R N ,� N(I ) − 1 . (3.1)I 

It also follows from Proposition 2.5 that equality holds in this degree estimate if the frst term on 
the right is at least as large as the second. Thus, since N(I) � d , deg(� i (n)) = d if and only if I 

dim(Hi (Γm(E)∨ ⊗R N)) = d . Thus, (a) and (b) are equivalent by Lemma 3.1. 
Assume now that (a) and (b) are satisfed. Our standard support condition implies that 

λ(Extj (N,M)/I Extj (N,M)) is fnite, so e(I, Extj (N,M)) is defned for all j � 0. By Propo-
isition 2.5, the normalized leading coeffcient of (n) is e(I, Hi (Γm(E)∨ ⊗ N)). Using  theI 

associativity formula, we have the set of equalities 
� � � �� � � � � � �∨ e I,Hi Γm(E)∨ ⊗R N = λ Hi Γm (E) ⊗R N e(I,R/P ) 

P 

dim P =d � � � = λ Exti−d(N,M)P e(I,R/P ) 

dim P =d � � = e I,Exti−d(N,M) , 

which completes the proof of the theorem. � 

Example 3.3. Suppose that R has a prime P of dimension d such that RP is not Gorenstein. 
Let M := R, N := R/P and I be any m-primary ideal. Then it follows that for all i � d , 
Exti−d(N,M)P = 0, so Exti−d(N,M) has dimension d . Thus, by Theorem 3.2, deg(� i (n)) = d ,I 

for all i � d . On the other hand, Theorem 3.2 also shows that deg(� i (n)) < d , for all i < d .I 

We now collect some corollaries of both the proof and the statement of the theorem. Included 
among these results are the case N is locally free at all primes of maximal dimension. Note that 
this case occurs if N = R, N is a syzygy of a module that is free at primes of maximal dimension, 
or if N is a module with a rank (i.e., NP is free of constant rank at each associated prime P of R). 

Corollary 3.4. Let R be a local ring, I ⊆ R an ideal and M , N fnite R-modules such that 
I,M,N satisfy our standard support condition. Assume further that N is free of rank r >  0 at 
all minimal primes of R of dimension d . Then, the following are equivalent: 

(a) deg(� i (n)) = d .I 

(b) i = d and there exists P ∈ Spec(R) such that ann(M) + ann(N) ⊆ P and dim(R/P ) = d . 
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Moreover, if (a) and (b) hold and ann(M) + I is m-primary, then 

d r · e(I,M) 
(n) = nd + lower degree terms.I d! 

Proof. The equivalence of (a) and (b) follows immediately from the theorem. For the second 
statement, note that e(I,M) is defned, since ann(M) + I is m-primary. By Theorem 3.2, the 

dnormalized leading coeffcient of (n) is e(I,Hom(N,M)). The associativity formula and the I 

fact that NP is free of rank r at primes of maximal dimension yields 

� � � � � 
e I, Hom(N,M) = λ Hom(N,M)P e(I,R/P ) 

dim P =d � 
= r · λ(MP )e(I,R/P ) 

dim P =d 

= r · e(I,M). � 

In the next two corollaries we take N = R. We consider this to be an important case, since 
the local cohomology module Hi (M) is the direct limit of the modules Exti (R/In,M). We noteI 

also that the degree statement in part (b) of Corollary 3.5 was already known when the ring R is 
Cohen–Macaulay (see [5] or [6]). 

Corollary 3.5. Suppose R is a local ring, M a fnitely generated R-module, N = R and I an 
ideal such that ann(M) + I is m-primary. 

(a) If dim(M) < d , then for all i, deg(� i (n)) � d − 1.I 

(b) If I is an m-primary ideal and M = R, then 

d e(I ) 
(n) = nd + lower terms.I d! 

Proof. Immediate from Theorem 3.2. � 

Corollary 3.6. Suppose R is a local ring, M a fnitely generated R-module, N = R and I an ideal 
such that ann(M) + I is m-primary. Write δ := dim(M). If  �(I ) � δ, then deg(� i (n)) � δ − 1I 

δfor i = δ and deg(� δ(n)) = δ. In the latter case, the normalized leading coeffcient of (n) isI I 

e(I,M). 

Proof. The proof follows exactly along the lines of the proof of Theorem 3.2, only, after com-
pleting, we take S to be a Gorenstein local ring of dimension δ mapping onto R/ ann(M). � 

In the next proposition, we give a condition which guarantees that d−1(n) has degree d − 1.I 

Proposition 3.7. Let R be a local ring and I ⊆ R an ideal. Assume that M and N are fnite 
R-modules such that I,M,N satisfy our standard support condition. Suppose there exists P in 
AssR(M) ∩ Supp(N) such that dim(R/P ) = d − 1. Then deg(�d−1(n)) = d − 1 and the normal-I 

ized leading coeffcient of d−1(n) is at least e(I,Hom(N,Md−1)).
I 

https://dim(M).If
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Proof. Using basic properties of completion, it is not hard to reduce to the case that R is com-
plete. As before, let S be a Gorenstein local ring of dimension d mapping onto R. Now, by
Proposition 2.5 and hom-tensor duality, the degree of d−1(n) is bounded by I  � � �� � 

max dim Hd−1 Γm(E)∨ ⊗ N ,� N(I ) − 1 , 

with equality holding when the maximum occurs with the frst term. Since N(I) is bounded 
above by d , it follows that deg(�d−1(n)) = d − 1, whenever I � � �� 

dim Hd−1 Γm(E)∨ ⊗ N = d − 1. (3.2) 

Note that by Proposition 2.5 and Lemma 3.1, the module Hd−1(Γm(E)∨ ⊗ N) has dimension 
less than or equal to d − 1. On the other hand, local duality implies that 

� � �∨� 
Hd−iHd−i Γm E = (M)∨ = Exti (M,S), m S 

for 0 � i � d . Now, since P corresponds to a height one prime in S, Γm(E∨)P is split exact in 
degrees less than d − 1. Using right exactness, it follows from this that 

� � � � � � ��∨ ∨Hd−1 Γm(E) ⊗ N = Hd−1 Γm(E) ⊗ NP = ExtS 
1 (M,S)P ⊗R NP .

P P 

Since NP = 0, if we show that Ext1 (M,S)P is non-zero, then Eq. (3.2) holds. But this follows S 

since S is Gorenstein. Indeed, if Q is the prime in S corresponding to P , then height(Q) = 1. 
Thus 

depth(SQ) − depth(MQ) = 1 − 0 = 1, 

so Ext1 (M,S)Q = Ext1 (M,S)P does not vanish, which gives what we want. It now follows thatS S 
d−1(n) has degree d − 1. Moreover, this same calculation shows that a prime Q of dimension I 

d − 1 belongs to the support of Hd−1(Γm(E)∨ ⊗R N) if and only if Q belongs to Ass(M) ∩ 
Supp(N). 

For the statement involving multiplicity, note that by Proposition 2.5, the normalized leading 
d−1coeffcient of (n) is at least e(I, Hd−1(Γm(E)∨ ⊗ N)). Let  P in Ass(M) ∩ Supp(N) have I 

dimension d − 1 and let Q ⊆ S be the corresponding prime. Since SQ maps onto RP , A∨Q = 
A∨P , for any RP -module A. Thus, 

∨Q ∨P ∨PExt1 (M,S)P = Ext1 (M,S)Q = H0 (MQ) = H0 (MP ) = (Md−1) .S S Q P P 

Finally, note that it follows from the calculation below that Hom(N,Md−1) = 0 and moreover, 
it follows easily from our standard support condition that m is the only prime ideal containing 
I + ann(Hom(N,M)). Thus, I + ann(Hom(N,Md−1)) is m-primary, so e(I,Hom(N,Md−1)) 

is defned. Therefore, along similar lines as in the proof of Theorem 3.2, we have 

� � � �� � � � �∨ e I,Hd−1 Γm(E)∨ ⊗R N = λ Hd−1 Γm(E) ⊗ NP e(I,R/P ) 
P 

dim P =d−1 � � � = λ Ext1 (M,S)P ⊗ NP e(I,R/P ) S 
dim P =d−1 
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� � �∨P= λ (Md−1) ⊗ NP e(I,R/P ) P 

dim P =d−1 � � � = λ Hom(N,Md−1)P e(I,R/P ) 

dim P =d−1 � � = e I, Hom(N,Md−1) . 

Thus, the normalized leading coeffcient is at least e(I, Hom(N,Md−1)), which is what we 
want. � 

Corollary 3.8. Let I ⊆ R be an ideal and M be a fnitely generated R-module such that 
ann(M)+I is m-primary. Assume that M has an associated prime P of dimension d −1 and take 
N = R. Then, deg(�d−1(n)) = d −1 and its normalized leading coeffcient is at least e(I,Md−1). 
In particular, if M = R and I is an m-primary ideal, then d−1(n) has degree d − 1 and its nor-I 

malized leading coeffcient is at least e(I,Rd−1). 

We now consider the Hilbert function of Extg(R/In,M), where M is a module such that the 
grade of I on M is g. As is well known, these modules are the frst non-vanishing extension 
modules of the form Exti (R/In,M). In [5, Theorem 2.4], Kirby showed that the lengths of 
the modules Extg(R/In,M)  are ultimately given by a polynomial of degree less than or equal 
to g. Kirby’s proof used his version of Hilbert theory for Artinian modules. In the following 
theorem, we frst give an explicit expression for the lengths of Extg(R/In,M), from which it 

gimmediately follows that (n) has degree less than or equal to g. We then determine a necessary I 

and suffcient condition for equality to hold and, in case equality holds, determine the normalized 
gleading coeffcient of (n).I 

Theorem 3.9. Let M be a fnitely generated R-module and I ⊆ R be an ideal such that I + 
ann(M) is m-primary. Assume N = R and let δ := dim(M). Set g := gradeI (M) and let S be a 
Gorenstein local ring of dimension δ mapping onto R/ˆ ann(M)ˆ . Then: 

g 
( ˆ ( ˆ(i) For all large n, (n) = λ(Extδ−g 
M,S)/In Extδ−g 

M,S)).I S S 
g 

( ˆ(ii) The degree of (n) is at most g and its normalized leading coeffcient is e(I, Extδ−g 
M,S)).I S 

g(iii) The degree of (n) equals g if and only if there exists a prime ideal P in Ass(M) such that I 

dim(R/P ) = g. 
g(iv) If the conditions in (iii) hold, the normalized leading coeffcient of (n) is e(I,Mg).I 

Proof. Once again, we may complete. Note that since ann(M) + I is m-primary, g := 
gradeI (M) = depth(M). Consider E , the minimal injective resolution of M . Then, 

� � � � �� � � �� 
Extg R/In,M = Hg Hom R/In,E = Hg Hom R/In,Γm(E) , 

the latter equality following from our support condition. Taking Matlis duals, we have 

� �∨ � � ��∨Extg R/In,M = Hg Hom R/In,Γm(E) � � = Hg Γm(E)∨ ⊗ R/In 
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�� � � = Hg · · · → Rμg+1(m,M) → Rμg(m,M) → 0 ⊗ R/In 

= Hg 
m(M)∨ ⊗ R/In 

= Hg 
n(M)∨ ⊗ R/In 

= Extdim S−g
(M,S) ⊗ R/In.S 

Note, the equalities follow since I + ann(M) is m-primary, by exactness of Matlis dual together 
with adjointness, since μg−1(m,M)  = 0, by right exactness of ⊗, permanence of local coho-

gmology, and local duality. Thus (n) has the required form, so (i) holds. It also follows thatI 
g gdeg(� (n)) = dim(Extδ−g

(M,S)) and that the normalized leading coeffcient of (n) equalsI S I 

e(IS, Extδ−g
(M,S)). In particular, the second part of (ii) holds. S 

gFor the frst part of (ii) regarding the degree of (n), i.e., dim(Extδ−g
(M,S)), we are free to I S 

work with primes in S. If  Q is a prime of S of dimension greater than g (and hence height less 
than δ − g), then Extδ−g

(M,S)Q = 0, since SQ has injective dimension less than δ − g. ThisS 
gshows that Extδ−g

(M,S) has dimension less than or equal to g, and thus gives deg(� (n)) � g,S I 

so the frst statement in (ii) holds. 
Concerning the possibility of equality holding, let Q ⊆ S be a prime ideal with dimension g. 

Then height(Q) = δ −g, so depth(SQ) = δ −g. Thus, since S is Gorenstein, Extδ−g
(M,S)Q = 0S 

gif and only if depth(MQ) = 0, i.e., if and only if Q ∈ Ass(M). Thus, deg(� (n)) = g if and only I 

if there exists a prime Q of dimension g belonging to Ass(M), so (iii) holds. 
gFinally, for part (iv), suppose deg(� (n)) = g. To calculate the normalized leading coeffcient I 

gof (n), we proceed as before via the associativity formula to getI 

� � � � � 
I, Extδ−g(M,S) = λ Extδ−g(M,S)P e(I,R/P ) 

dim(R/P )=g � � � = λ HP 
0 (M)P e(I,R/P ) 

dim(R/P )=g � � � = λ (Mg)P e(I,R/P ) 

dim(R/P )=g 

= e(I,Mg), 

and the proof is complete. � 

Corollary 3.10. Assume that N = R and ann(M) + I is m-primary. If M is Cohen–Macaulay 
and dim(M) = δ, then deg(� δ(n)) = δ and the normalized leading coeffcient of δ(n) is e(I,M). 

Proof. Since M is Cohen–Macaulay, δ = depth(M), so it follows immediately from the pre-
vious theorem that deg(� δ(n)) = δ. Moreover, since M is Cohen–Macaulay, M is unmixed, so 

δMδ = M . Thus, e(I,M) is the normalized leading coeffcient of (n). �I 

iIn our next result, we use Matlis duality to give a version for (n) of Theorems 3.3 and 3.4 I 

from [4]. Note that J denotes the integral closure of an ideal J . 
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Theorem 3.11. Assume that R is analytically irreducible. Let I be an ideal having analytic 
spread d , let  M be a fnite R-module such that ann(M) + I is m-primary, and take N = R. 
Assume further that one of the following conditions hold. 

(i) I = mK for some ideal K ⊆ R. 
(ii) (mIn : m) = In, large  n. 

(iii) (In : m) ⊆ In for some n and R is quasi-unmixed. 

Then, for gradeI (M) < i � i.d.(M), i = d , deg(� i (n)) = d − 1.I 

Proof. We may complete and assume R = R̂. Also note that by our support hypothesis, 
gradeI (M) = depth(M), so that Exti (R/In,M)  = 0, for i <  depth(M). 

Now assume depth(M) = i = d . Consider a minimal injective resolution of M 

δ0 δ1 δi−1 δi → Q1 → ·· ·  δi−2 − → Qi+1 → ·· ·  (3.3)0 → M → Q0 − − −−→ Qi−1 −→ Qi − . 

By dimension shifting, it follows that Exti (R/In,M)  = Ext1(R/In,C), where C is the (i − 1)st 
cosyzygy of M . Let  L := H0 (C) be the largest Artinian submodule of C. Then L = 0, sincem 
i � depth(M) (and since by [3, Theorem 1.1], once a prime gives rise to a non-zero Bass number 
at some stage in the minimal injective resolution of M , it has non-zero Bass number at all further 
non-zero stages in the resolution). We have the exact sequence 

� � � � � � 
0 → Hom R/In,L  → Hom R/In,C  → Hom R/In,C/L � � � � → Ext1 R/In,L  → Ext1 R/In,C  . 

iNow, by Proposition 2.5 and Corollary 3.4 above, the degree of (n), which is the degree of I 

the polynomial giving the lengths of Ext1(R/In,C), is less than or equal to d − 1. We now note 
that our support hypothesis implies that Hom(R/In,C/L)  = 0. Indeed, suppose c ∈ C is such 
that In · c ⊆ L. For any x ∈ ann(M), Mx = 0, so by minimality of (3.3), Cx = 0. Thus, there 
exists a q >  0 such that (ann(M))q · c = 0. Since I + ann(M) is m-primary, it follows that for 

pp suffciently large, m · c ⊆ L, from which it follows that c ∈ L. Thus, Hom(R/In,C/L)  = 0, 
as claimed. It follows that if we show that the degree of the polynomial giving the lengths of 
Ext1(R/In,L)  is d − 1, then deg(� i (n)) = d − 1, which is what we want. But the lengths of I 

the Ext1(R/In,L)  are the same as the lengths of their Matlis duals which are Tor1(R/In,L∨), 
where L∨ is a fnitely generated R-module. Since R is a domain, L∨ clearly has a rank. The 
result now follows from Theorems 3.3 and 3.4 in [4]. � 

Remark 3.12. The main point about Theorem 3.11 is the following. By Corollary 3.4, we know 
that for i in the indicated range, deg(� i (n)) � d − 1. The conditions (i)–(iii) stated in Theo-I 

rem 3.11 guarantee that deg(� i (n)) does not drop below d − 1.I 

4. Iterated applications 

In this section we consider functions giving lengths of iterated expressions of the form 
Extj (Exti (N/InN,M),M ), for fnitely generated R-modules N , M , and M and I ⊆ R an 
ideal such that I,M,N satisfy our standard support condition. Note that when R is Gorenstein 
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and M = M = N = R, then one has that R/In is isomorphic to Extd(Extd(R/In,R),R), so the  
two length functions are actually the same. Using the results from [6], it is not hard to show that, 
in the presence of our usual support condition, the lengths of Extj (Exti (N/InN,M),M ) are 
given by a polynomial in n, for  n large. Our work below will characterize when this polynomial 
has degree d and show that its normalized leading coeffcient can be expressed in terms of the 
multiplicity of the ideal on an iterated Ext module derived from N , M and M . In particular, 
we obtain as a corollary that for any local ring R and any m-primary ideal I ⊆ R, the degree 
and normalized leading coeffcients for the Hilbert polynomials giving the lengths λ(R/In) and 
λ(Extd(Extd(R/In,R),R))  remain the same. 

Remark 4.1. We start with a lemma that is similar in spirit to Lemma 2.3. We set some notation 
for the lemma. Suppose, just as in Lemma 2.3, I ⊆ R is an ideal and U,V,W are submodules of 
a common fnitely generated R-module so that W ⊆ V . For  n >  0, set Ln := (U + InV )/InW . 
Let C be a co-chain complex of fnitely generated free R-modules and assume that the lengths 
of the cohomology modules Hj (Ln ⊗ C) are fnite for j >  0. Then by [6, Proposition 3(b)] the 
lengths of these cohomology modules in are given by a rational polynomial for n large. We write 
Qj(n) for this polynomial. 

Lemma 4.2. Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. Let Ln,C, and Qj(n) 

be as in Remark 4.1. The following statements are equivalent: 

(a) deg(Qj (n)) = d . 
(b) Hj (C ⊗ U) has dimension d . 

Proof. We start by tensoring the short exact sequence 

InV U + InV 
0 → → Ln → → 0, 

I nW InV 

with C to get the long exact sequence 

· · · → Hj I nV ⊗ C → Hj (Ln ⊗ C)
InW 

U + InV InV → Hj+1→ Hj ⊗ C ⊗ C → ·· ·  
InV InW 

(cf. [6, Proposition 3]). 
We claim that in order to determine the coeffcient of degree d of Qj(n), and in par-

ticular, to determine if that coeffcient is non-zero, we only need to consider the same for 
Hj ({(U + InV )/InV }⊗ C). Indeed, the degree of the Hilbert polynomial which gives the length 
of Hj ((InV/InW) ⊗ C) is less than d , for all j since 

� � �� � � � � 
Hj I nV/InW ⊗ C = Hj I nV/InW ⊗ C 

n�0 n�0 

is a fnite graded module over the Rees ring of I . 
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In order to determine when the length of Hj (((U + InV )/InV )  ⊗ C) is eventually given by a 
polynomial of degree d (and to determine its leading coeffcient) we will ultimately appeal to [6, 
Proposition 3(c)]. More precisely, we claim that in order to see that the degree of the polynomial 
in question is d , it is enough to check that Hj (C ⊗ U) has dimension d . Indeed, following the 
spirit of Lemma 2.3, we have the isomorphisms 

U + InV U U∼ ∼= = , 
I nV U ∩ InV In−t (U ∩ I tV )  

for t large enough and n � t . This leads to the short exact sequence 

U ∩ I tV U U 
0 → → → → 0. 

I n−t (U ∩ I tV )  In−t (U ∩ I tV )  U ∩ I tV 

Tensoring this sequence with C and using the resulting long exact sequence in homology, we see 
that the polynomials giving the lengths of the modules 

�  � � �� �  � � � ��� 
Hj C ⊗ U + InV /InV and Hj C ⊗ U ∩ I tV /In−t U ∩ I tV 

simultaneously have degree d , because U/(U ∩ I tV )  has length independent of n. Furthermore, 
since UP = (U ∩ I tV )P for all primes P = m, it follows that Hj (C ⊗ U) has dimension d if and 
only if Hj (C ⊗ (U ∩ I tV ))  has dimension d . But, the polynomial giving the lengths of 

� � � � �� � 
Hj U ∩ I tV /In−t U ∩ I tV ⊗ C 

has degree equal to d if and only if Hj (C ⊗ (U ∩ I tV ))  has dimension d , by [6, Proposition 3(c)]. 
Thus the polynomial Qj(n) has degree d if and only if Hj (C ⊗ U) has dimension d . � 

Theorem 4.3. Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. Let N , M , and M 

be fnitely generated R-modules such that I,N,M satisfy our standard support condition. Fix 
i, j � 0. 

(i) The function λ(Extj (Exti (N/InN,M),M )) is given by a rational polynomial Q(n), for  n 

large. 
(ii) The following are equivalent: 

(a) deg(Q(n)) = d . 
(b) i, j � d and dim(Extj−d(Exti−d(N,M),M )) = d . 

(iii) If (a) and (b) hold in (ii), then the normalized leading coeffcient of Q(n) equals 
e(I, Extj−d(Exti−d(N,M),M )). 

Proof. We may assume that R is complete. As before, let S be a Gorenstein local ring of dimen-
sion d mapping onto R. Now, let  E and E respectively denote the minimal injective resolutions 
of M and M . Set D := Γm(E )∨ . Thus, just as in the proof of Lemma 3.1, for any prime P of 
dimension d , DP is split exact in degrees less than d and if we truncate DP at the d th spot, we 
get an RP -free resolution of HomS(M ,S)P . Set C := Hom(D,R). Therefore, 

C: · · · → Rμj−1(m,M ) → Rμj (m,M ) → Rμj+1(m,M ) → ·· · . 
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Now, we have 

� � � � � � � � �� 
Extj Exti N/InN,M ,M = Hj Hom Exti N/InN,M ,E � � � � �� = Hj Hom Exti N/InN,M ,Γm(E ) � � �∨ � = Hj Exti N/InN,M ⊗ C . 

As noted in Remark 2.2, it follows from [6] that, for some n0, 

� �∨ U + InV 
Exti N/In+n0 N,M = for n 0, 

I nW 

where U = Hi (Γm(E)∨ ⊗ N). By [6, Proposition 3(b)], the homology modules in the complex 
C ⊗ {(U + InV )/InW } have polynomial growth. Thus, Q(n) exists, which gives (i). 

To prove (ii), we proceed in three steps. For the frst step, we show that if i < d , then 
deg(Q(n)) < d . To see this, frst note that by Theorem 3.2, the polynomial giving the lengths 
of Exti (N/InN,M)∨ has degree less than d , if  i < d . Since the homology modules in 
Exti (N/InN,M)∨ ⊗ C are subquotients of fnite sums of Exti (N/InN,M)∨ , it follows that 
deg(Q(n)) < d for i < d , which is what we want. We now assume i � d . 

For our second step, we show that if j < d , then deg(Q(n)) < d . By Lemma 4.2, we must 
show that Hj (C ⊗ U) has dimension less than d . Let  P be a prime of dimension d . Using exact-
ness of the localization and the Matlis duality functor ∨P locally in codimension zero, 

� � � � � � 
λ Hj (C ⊗ U)P = λ Hj (CP ⊗RP 

UP ) = λ Hj (CP ⊗RP 
UP )∨P . (4.1) 

Since C = Hom(D,R), Hom(C,L)  = D ⊗ L, for any R-module L. Thus, using Hom-tensor du-
ality over RP , we have  (CP ⊗RP 

UP )∨P =DP ⊗RP 
UP 

∨P . Since DP is split exact in degrees less 
than d , it follows that dim(Hj (C ⊗ U)) < d , for  j < d . Thus, we now have that deg(Q(n)) < d , 
if j < d , which is what we want. 

For our fnal step in the proof of (ii), we assume j � d , i � d and prove that deg(Q(n)) = d if 
and only if dim(Extj−d(Exti−d(N,M),M )) = d . Using what we have just observed about the 
relation between C and D, we may extend Eq. (4.1) to get for any P of dimension d 

� � � � �� 
λ Hj (C ⊗ U)P = λ Hj DP ⊗RP 

UP 
∨P . (4.2) 

Recall from the proof of Lemma 3.1 that UP 
∨P = (Exti−d(N,M))P andR 

� � �� �∨P ∨P= TorRP 
�∨P ,UP , for j � d.Hj DP ⊗RP

UP j−d MP 

Thus, extending Eq. (4.2), we have 

� � � �� �� 
Hj ∨Pλ (C ⊗ U)P = λ TorRP 

�∨P ,UP (4.3)j−d MP � � ��∨P= λ Extj−d 
U ,MP (4.4)RP P � � �� = λ Extj−d Exti−d(NP ,MP ),MP (4.5)RP RP � � � � = λ Extj−d Exti−d(N,M),M . (4.6)
R R P 
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Here we have used the invariance of length under Matlis duality as well as the duality between 
Tor and Ext. We now have that a prime ideal of maximal dimension belongs to the support of 
Hj (C ⊗ U) if and only if it belongs to the support of Extj−d(Exti−d(N,M),M ). Therefore, 
dim(Hj (C ⊗ U)) = d if and only if dim(Extj−d(Exti−d(N,M),M )) = d . Thus, deg(Q(n)) = d 

if and only if dim(Extj−d(Exti−d(N,M),M )) = d , which is what we wanted to show. Part (ii) 
of the theorem now follows immediately by combining the three steps. 

Finally for (iii), assume that deg(Q(n)) = d . From Lemma 4.2 and its proof we have 
dim(Hj (C ⊗ U)) = dim(Hj (C ⊗ (U ∩ I tV ))) = d . In fact, as noted in the proof of Lemma 4.2, 
Q((n)) and the polynomial giving the lengths of the modules 

�  � � � ��� 
Hj C ⊗ U ∩ I tV /In−t U ∩ I tV 

differ by a polynomial of degree less than d . By [6, Proposition 3(c)], 

�  � � � ��� 
Hj C ⊗ U ∩ I tV /In−t U ∩ I tV 

has the form (A + InB)/InC, with C ⊆ B and A = Hj (C ⊗ (U ∩ I tV )). Thus, by Lemma 2.3, 
the normalized leading coeffcient of Q(n) is e(I ; Hj (C ⊗ (U ∩ I tV ))). Using Eq. (4.6) above 
in the associativity formula gives 

� � � � ��� � � � �� � 
e I ; Hj C ⊗ U ∩ I tV = e(I ;R/P )λ Hj C ⊗ U ∩ I tV 

P 

dim P =d � � � = e(I ;R/P )λ Hj (C ⊗ U)P 

dim P =d � � � � � = e(I ;R/P )λ Extj−d Exti−d(N,M),M R R P 

dim P =d � � �� = e I ; Extj−d Exti−d(N,M),M , 

which completes the proof. � 

Remark 4.4. Recall that a module C is said to be semi-dualizing if the natural map from R 

to HomR(C,C) is an isomorphism and Exti (C,C) = 0, for all i >  0. For more information on 
semi-dualizing modules, see [2], where examples are given of semi-dualizing modules that are 
not dualizing modules (see, [2, p. 1874]). 

The more general frst part of the following corollary answers a question posed to the second 
author by S. Sather-Wagstaff, while the second part of the following corollary generalizes what 
is obvious in the case that R is Gorenstein. Both parts follow immediately from Theorem 4.3. 

Corollary 4.5. Let (R,m, k)  be a local ring of dimension d . Let C be a semi-dualizing module 
and I ⊆ R an m-primary ideal. Then for all large n, we have 

� � � � �� e(I ) 
λ Extd Extd R/In,C  ,C  = · nd + lower degree terms. 

d! 
In particular, the Hilbert polynomials for R/In and Extd(Extd(R/In,R),R)  have the same de-
gree and same normalized leading coeffcient. 
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We close this section by giving a version of Theorem 3.9 for an iterated Ext in degree g, where 
g := gradeI (M). Denote E2(−) := E ◦ E, where the functor E := Extg(−,M). We will use the 
following notation in the proposition below. Let S be a Gorenstein local ring of dimension δ 
mapping onto R/ˆ ann( ˆ ( ˆM) and set C := Extδ−g 

M,S), where δ := dim(M). Set T2(C) := C ⊗C.S 

Proposition 4.6. Let M be a fnite R-module of dimension δ, depth g and let I be an ideal such 
that I + ann M is m-primary. Then with the notation introduced in the paragraph above, 

(i) E2(R/In) ∼= Hom(C,E(R/In)∨) ∼= Hom(C,C/InC). 
(ii) The polynomial Q2(n) which agrees with λ(E2(R/In)) for n large has degree dim(C) and 

normalized leading coeffcient e(I, Hom(C,C)). 
(iii) deg(Q2(n)) � g and equality holds if and only if Ass(M) contains a prime of dimension g. 
(iv) If Ass(M) contains a prime of dimension g, the normalized leading coeffcient of Q2(n) is 

e(I, Hom(Mg,Mg)). 

Proof. Again, we may assume R is complete. To prove (i), we begin by noting that it follows 
from the proof of Theorem 3.9 that E(R/In)∨ is isomorphic to C ⊗ R/In . Thus the second 
expression in (i) for E2(R/In) follows immediately from the frst. The frst expression for 
E2(R/In) follows along the lines of the proof of Theorem 3.9. Following the same argument 
as in the proof of Theorem 3.9, with R/In replaced by E(R/In), we get that 

� �∨ � � � �2E R/In = Extδ−g
(M,S) ⊗ E R/In = C ⊗ E R/In ,S 

which, by Matlis duality, gives (i). 
For (ii), by direct computation from a fnite presentation of C we get 

� � � � 
Hom C,C/InC = U + In−n0 V /In−n0 W, 

for some n0 and n � n0, where U := Hom(C,C) and W ⊆ V are two fnite R-modules contained 
in a direct sum of fnitely many copies of C. Thus, 

dim(V ) � dim(C) = dim(U) 

and it follows from this that V (I ) � dim(U). By Lemma 2.3, the degree of Q2(n) is dim(U) = 
dim(C) and its normalized leading coeffcient is 

� � 
e(I,U) = e I,Hom(C,C) , 

so (ii) holds. 
For (iii) we note that in the proof of Theorem 3.9 it is shown that dim(C) � g and equality 

holds if and only if M has an associated prime of dimension g. Thus (iii) follows from (ii). 
Finally, to see (iv), suppose Ass(M) contains a prime of dimension g, i.e., dim(C) = g. As in  

the proof of Theorem 3.9, for any prime P of dimension g, we have that CP = (Mg)P , so by the  
associativity formula 

� � � � 
e I,Hom(C,C) = e I, Hom(Mg,Mg) 

and the proof is now complete. � 
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