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Abstract

Let R be a Noetherian ring, F := R" and M C F a submodule of rank r. Let A*(M) denote the stable
value of Ass(Fn/AT,,), for n large, where Fj, is the nth symmetric power of F; and M, is the image of the
nth symmetric power of M in F;. We provide a number of characterizations for a prime ideal to belong to
A*(M). We also show that A* (M) C A*(M), where A*(M) denotes the stable value of Ass(Fy,/Mp).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a Noetherian ring, F' a free R-module of rank » and M C F a submodule. Write
F, for the nth symmetric power of F and M, for the canonical image of the nth symmetric
power of M in F,,. When M has a rank, e.g., if R is a domain, M, is called the nth torsion-
free symmetric power of M. In [3] it was shown that the associated primes of the modules
F,/M, and F, /1\7,, are stable for large n. Here, M, denotes the integral closure of M), in F;,.
As is well known, there are corresponding results for ideals due to Brodmann and Ratliff, re-
spectively. A good reference for the ideal case is McAdam’s monograph [5]. In this paper we
give a number of characterizations for a prime to ideal belong to the stable set of primes asso-
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ciated to Ass(Fy/ M,). Let A*(M) denote this stable value. Our main result along these lines
is that for a prime P C R, P € A* (M) if and only if P is the center of a Rees valuation
of M. We also provide a number of other results concerning A*(M), including an analogue
of McAdam’s theorem invoking the analytic spread and the fact that the primes in A*(M) are
induced from any faithfully flat extension of R. Furthermore, we show the important contain-
ment A*(M) C A*(M), where A*(M) denotes the stable value of Ass(F, /M,;,). These results
are module analogues of well-known results for ideals, but are non-trivial extensions in that
there is no obvious way to induct on the rank of M to deduce our results from the ideal case.
Another problem one confronts in the module case is the following. Many of the results for ideals
reduce to the principal case via the extended Rees ring of an ideal. And while there is a notion
of Rees ring for M, there is nothing analogous to the extended Rees ring that would reduce the
general case to something like a free module or cyclic module. Nevertheless, the Rees ring of
M will play a vital role in our investigations, in that the essential prime divisors of the Rees
ring of M act as intermediaries in proofs of our characterizations, much as they do in the ideal
case.

We now describe the contents of this paper. We begin in section two by recalling a num-
ber of relevant definitions and constructions; we also give a few technical results needed for
the rest of the paper. In section three, subsection one and two, we begin by describing the
Rees valuations of M and prove a number of technical results that are used in the main re-
sults of that section. In Section 3.3 we present our characterizations for a prime P to belong
to A*(M). In Section 3.6 we use the results from Section 3.3 to prove that A*(M) is con-
tained in A*(M) and also that A*(M) is contained in A*(I,(M)), where I.(M) denotes the
ideal of r x r minors of the matrix whose columns are the generators of M. The focus in sec-
tion four is on applications to two and three dimensional local rings. For a two dimensional
Cohen—-Macaulay local ring or a three dimensional regular local ring, we show (with suitable
hypothesis on M) that if the maximal ideal belongs to A*(M), then one can give an explicit
positive integer ng, expressed in terms of invariants of R and M, such that the maximal ideal
must be in the sets Ass(F;,/M,) and Ass(Fn/ATH) for all n > ng. The results extend to mod-
ules results that are known for ideals by various authors, including Huneke, McAdam, and
Sally.

2. Preliminaries

In this section we will introduce some notational conventions and definitions as well as give
some technical results which facilitate our work in subsequent sections. Throughout R will be a
Noetherian, commutative ring. All modules will be finitely generated R-modules, unless stated
otherwise. We work with a fixed R-module M contained in a finitely generated free module
F = R". We write I,(M) to denote the ideal of r x r minors of the matrix whose columns
generate M. For most of our results we assume height(Z,(M)) > 0. In particular, this means
that if R is a domain, then rank(M) = r. There are two reasons for making this assumption.
For an ideal J C R, this is what’s required in order to have A*(J) correspond to the centers
of Rees valuations. The second reason is that it is highly desirable that the Rees ring of M and
the symmetric algebra of F' have the same quotient field. We begin by describing the powers
of the modules we are interested in. As is the case with ideals, the powers in question can be
described in terms of the graded components of a finitely generated R-algebra determined by the
module.
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2.1. The Rees ring

Fix a basis ej,...,e, of F, and let 7 = R[t1,...,t.] with t{, ..., indeterminates over R
corresponding to the basis elements chosen. Note that F is just the symmetric algebra of F.
Let A = (a;;) be an r x m matrix whose columns (with respect to the given basis) generate M.
For 1 < j <m, let Aj = leaijei be the jth column of A, and let C; = ?Zlaijti be the
linear form in JF corresponding to A j- By abuse of terminology we define the Rees ring of M
(with respect to the embedding of M into F') to be the subring of F generated over R by these
linear forms. This will be denoted R (M), or simply R(M) or R if there is no question as to
which modules we are referring to. Thus we have R = R[Cy, ..., C,,] € F. While there has
been common agreement as to what the Rees algebra of a module M should be when R is a
domain and M is torsion-free, there has not been a rigorous effort to describe a Rees algebra
for arbitrary M until the recent paper [1]. Thus, while, strictly speaking, our ring R(M) is not
always the Rees algebra of M as described in [1], it agrees with it in a number of important cases
(e.g., when M has a rank). The point in [1] is that a true Rees algebra should not depend upon the
embedding of M into F (or even require such an embedding), while we are interested in primes
associated to powers of M that may depend upon the embedding, just as associated primes of an
ideal (or its powers) depend on the embedding of the ideal into the ring.

The nth graded component of R will be denoted M,,. When M has a rank, i.e., there exists
[ > 0 such that for all P € Ass(R), Mp is a free Rp-module of rank /, then M, is easily seen
to be the nth symmetric power of M, modulo its R-torsion. Thus, in this case, R(M) is just
the symmetric algebra of M modulo its R-torsion. In any case, R(M) is certainly the image of
the symmetric algebra of M in the symmetric algebra of F. Hence M, is a submodule of Fj,,
where F}, is the nth graded component of F, which is a free module of rank "':ifl . Thus M,

is the submodule of F,, = R (i generated over R by the column vectors of A,, where the
columns of A,, are obtained by fixing an ordering on the monomials of degree n in ¢1, ..., t, and
reading off the coefficients of the monomials of degree » in all n-fold products of C1, ..., Cp,.
To illustrate this construction, let M be the submodule of F = R? generated by the columns of

a a
A= 11 12
azr a2

Then C| = ay1t; + az1tp and Cy = ajaty + axtr. Therefore,
2 2.2 2.2
Cl =anh +2a11a2]t1t2+a21t2,

2 2
C1Cy =ayranty + (anaxn +azain)tity + azraxnt;,

2 2 .2 2 .2
Cy = apyt] + 2apant1tr + aynt)

are the 2-fold products of C| and C;. Thus M> is the submodule of F, = R3 generated by the
columns of

2 2
ai arpann aj,
Ay = | 2anaz anaxn +axapn  2appaxn

2 2
as; azian2 ay,
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To continue describing our notation, let f : R — S be a homomorphism of Noetherian rings.
Let h : R™ — F be the homomorphism corresponding to the matrix A whose image is M. Then
the extension of M to S, denoted M S, is the image of themap h®r S : R"Qr S —> FQrS = S".
This is the submodule of S” generated by columns of the matrix A after applying f to the
entries. Thus if Cy, ..., Cy, are the linear forms in F corresponding to the generators of M and
C,,...,C,, are the linear forms in F ®g § after applying f to the coefficients, then R(M S) =
S[C,,...,C,]. Hence M, S = (MS), for all n > 1. It also follows from the functorial properties
of the tensor product that if g : § — T is another homomorphism with 7 a Noetherian ring, then
MT = (MS)T. The contraction of M, S to F,, denoted M, S N F,, is the set of elements f of
F,, such that the image of f in F,,S = F,, g S is in M,,S. We will use this extension-contraction
notation heavily throughout this paper. Here are some special cases we will often encounter. If
JCRisanidealand S=R/J then MS=(M + JF)/JF C F/JF and we have

R

R _
Rrs(MS)=—=[Cy,...,Cp] & ——,
FS( ) i [ 1 m] JFNR
where C; is the linear form in F corresponding to the ith column of A and C; is the linear form
in (R/J)[t,...,ts] obtained from C; by reducing the coefficients modulo J.If P C R is a prime
ideal and S = Rp,then MRp =M ® Rp = Mp C Fp by flatness. Furthermore,

R(MRp) = Rp[Cl. ..., Cul = R(M) ®g Rp.

If (R, m) is local and S = R is the m-adic completion of R, then MR=M C Fas Risa
faithfully flat extension of R, and

R(MR) = R[C,...,Ch]l =R(M) g R.

A local ring (R, m) is said to be quasi-unmixed if dim(Ié/q) = dim(R) for every minimal
prime ideal g € Spec(I%). Aring R is said to be locally quasi-unmixed if R, is quasi-unmixed
for all p € Spec(R). If A C B are domains then we will denote the transcendence degree of B
over A by trdeg, (B). It is well known that if A is a Noetherian domain, B is an extension ring
of A which is a domain, and P € Spec(B), then with p = P N A we have

height(P) + trdegA/p(B/P) < height(p) + trdeg 4 (B) 2.1.1)

(see for instance [4, Theorem 15.5]). If a domain A satisfies the condition that the inequality
in (2.1.1) is an equality for every finitely generated extension domain B of A, then A is said to
satisfy the dimension formula. A Noetherian domain A satisfies the dimension formula if and
only if A is locally quasi-unmixed [9, Theorem 3.6]. Therefore if A is a complete local domain
then A satisfies the dimension formula, as complete local domains are clearly quasi-unmixed.

Remark 2.1.1. If R is a domain and M is a rank r submodule of F = R", then for any non-zero
maximal minor § of M, Rs = Fs. Thus the quotient field of R is the same as that of 7. Hence
trdegr R =r.

The next proposition is quite useful for reducing to the case that R is a domain. It follows
easily in standard fashion from the fact that R(M) is a subring of a polynomial ring over R.
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Proposition 2.1.2. The map ¢ : Spec(R) — Spec(R) defined by ¢ (p) = pF N'R is injective and
order preserving. This map induces a bijection between the minimal prime ideals of R and the
minimal prime ideals of R. The same is true for the associated prime ideals of R and R.

It is worth pointing out that Proposition 2.1.2 holds if we replace R with R[ti_l] for some
1 <i < r using the correspondence p — pJF [tfl] N R[zfl]. The proof is the same, noting
that F/| [ti_l] is the localization of F at the multiplicatively closed set generated by #;, and that

extensions of prime or primary ideals of R to F [tfl] are prime or primary and do not contain ¢;.
Proposition 2.1.2 above and [13], Proposition 2.2 together yield:

Proposition 2.1.3. Let d = dim R and M be a submodule of F = R". Then

R M F
dim’R =max dim — +rank l

p

p € Ass(R) .

Furthermore, if M has rank r then dimR =d 4+ r =d + height(R4). Here Ry = 72| My, is
the irrelevant homogeneous ideal of R.

2.2. Integral closure

We now consider the integral closure of M in F, and more generally, the integral closure of
M, in F,. For this, we take the integral closure of R in F. This is a graded subring of F (see
for instance [14, Theorem 11]). Define the integral closure of M, in F,, denoted M, to be the
nth graded component of this ring, which is a submodule of F,. If R is a domain then Rees, in
[11], defines the integral closure M, in F, to be the set of elements x in F, such that x € M,V
for all discrete valuation rings V between R and its fraction field. If R is not a domain Rees
defines the integral closure of M, in F to be the set of elements x of F, such that the image of
x in F,/qF, is in (M, 4+ q F,)/q F, for all minimal prime ideals ¢ of R. Our definition agrees
with the definition of the integral closure of a module given by Rees by Theorem 1.3 of [11] and
Proposition 2.2.2 below. Note that x € F, is in M,, if and only if x satisfies an equation of the
form

x4+ myxt! +o4+m_1x+m=0
with m; € My,;, where the sums and products occur in F.

Remark 2.2.1. Let J be the ideal of F generated by Cy, ..., Cy,,, with Cy, ..., Cy, the linear
forms in F corresponding to the generators of M. By degree considerations, for x € F},, we have
x € M, ifandonlyif x € J", and x € M, if and only if x € J". With these comments and those
in the paragraph above, the proof of the next proposition is straight-forward.

Proposition 2.2.2. Let R be a Noetherian ring and M a submodule of F = R". Then for all
n>0,x € F, isin M, if and only if X, the image of x in F,/qF,, isin (M, +qF,)/qF,) for
every minimal prime ideal q of R.

The following lemma generalizes Lemma 3.15 from [5], which says that the integral closure
of an ideal I of R is equal to the contraction to R of the integral closure of the extension of I to
a faithfully flat extension of R.
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Lemma 2.2.3. Let R be a Noetherian ring and M a submodule of F = R". Let T be a Noetherian
faithfully flat extension of R. Then M,T N F,, = M,,. Moreover if P € Ass(F,,/M,) then there
exists Q € Ass(F,T/M,T) such that Q "R = P.

Proof. Note that the Rees ring of MT is R =R Q® T, sothat M,,T = (MT),.Let F =F QT
and F,, = F, ® T, which is the degree n component of F . Let J be as before. Restating Re-
mark 2.2.1 gives

J'NF,=M, and J'"F NF,=(MT),.
Thus we have
(MT),NF,= J'"F NF, NF,= J'F NF NF,.

By the ideal case this last module is J*F N F,, = M,,. The second statement now follows along
similar lines, since associated primes of contracted modules or ideals lift over an extension of
Noetherian rings. O

2.3. Free summands

In this section we deal with a technical matter encountered upon localization. Even if we
begin with a local ring (R, m) and a module M C m F, if we localize at some prime Q different
from m, it is often the case that My  QFp. In this case a free Rp summand splits from My,
and we want to discuss the effect this has on the objects under consideration. So we assume for
this section that (R, m) is a Noetherian local ring and that M  mF. Then there exists a free
submodule G of M, a free submodule H of F of rank ¢, and a submodule N of M such that
M=G®NCG®H=F and N C mH. Furthermore, given an element f € F\(M +mF),
we may choose H so that f is part of a basis for H. With this set-up, the following proposition
is straightforward.

Proposition 2.3.1. In the situation of described above, there exists a new set of variables
X1, ..., Xr for F such that

RrEM) =Ru(N) X415 - X/ ]

with Xi41, ..., X, indeterminates over Ry (N). Furthermore, Ry (N) is generated over R by
linear forms in the indeterminates x1, ..., x; with coefficients in m.

Maintaining the notation above, let G = R[x;41, ..., x,] = Sym(G). Then Proposition 2.3.1
says that Rp(M) =Ry (N) ® G. On the module level, this says that

+i-1

n i
My=  (Npa®Gnx N

n—i

i=0 i=0
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n+l—1
where [ = rank(G) = r — ¢. Note that Ny = R so that G,, = NO( =
example, if rank(F') = 5, rank(G) = 3, and rank(H ) = 2 then

is the nth summand. For

My=ZN;®(N®NSN)®G, and M3=N;®N; O N° @ Gs.

Now we also have that

RrM) =RuN)[x41, ... % ] =Ru(N)[xr41, ... %]

Intersecting with F and comparing homogeneous components we see that

n
i+l—1

M, = N, (is
i=0

Clearly the above direct sum decompositions are embedded into similar decompositions relating
F,, G, and H,. Thus we obtain

n—1 i+—1 n—1 i+—1
F, H,_; (75 H,_; (G

>~
Nyp—i

(2.3.2)

"i=0
2.4. Reductions and analytic spread

Let N € M be a submodule. One says that N is a reduction of M (in F) if N = M or equiv-
alently if R(M) is integral over R(NN). By the Artin—Rees lemma, this integrality is equivalent
to saying that N - M,, = M4 forn 0. A reduction N of M is a minimal reduction of M if it
does not properly contain any other reduction of M. A detailed study of reductions was initiated
by Rees in [11]. An easy, yet important fact is that free modules do not admit proper reductions.
The following lemma gives the case that we will need.

Lemma 2.4.1. Let R be a Noetherian ring. Let M F = R". Then M is not a reduction of F.

Proof. Assume by way of contradiction that M is a reduction of F. By localizing at a prime
in the support of F/M, we may assume that (R, m) is local. By our discussion in the previous
section, we may write

M=G®&NCGHPH=F
with H and G free R-modules and N € m H. By Proposition 2.3.1,
RF(M) :RH(N)[XI+17 s v-xr]'

Note, that ¢ > 0 since M = F. Now, by our hypothesis, F is integral over R (M). Therefore,
x1 is integral over Rr(M). Thus, in the notation of Remark 2.2.1, x; is integral over the ideal
J in F. In particular, some power of x| belongs to J. But this is a contradiction, since N €
mH . Indeed, this latter condition implies that for every f € J, every coefficient of a monomial
involving x| belongs to m, and this precludes any power of x; belonging to J. O
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Corollary 2.4.2. For all n > 1, the supports of the modules F, /M, and F, /M, are the same and
independent of n > 1.

Proof. Let P C R be a prime ideal. Clearly, if (F/M)p =0, then (F,,/M,)p = (F,/M,)p =0
for all n. Suppose now that (F,/M,)p = 0, for some n > 1. Then, (F,+1)p = (M, F1)p C
(M1 F,)p, so Mp is a reduction of Fp. By the previous lemma, Mp = Fp. Similarly, one can
show that if (F,) p = (M,,) p for some n, then Mp is a reduction of Fp,so Mp = Fp. O

Let (R, m) be a local Noetherian ring and M a submodule of F = R". The ring R/mR is
called the fiber ring of M. The analytic spread of M is defined to be the dimension of the fiber
ring, and will be denoted /(M). Elements ay, ..., as € F are said to be analytically independent
in M if whenever f(Xy,...,Xs) € R[X1,..., X;] is a homogeneous form of degree n such
that f(ay,...,as) € mM,, then all coefficients of f are in m. We say that ai,...,as € F are
analytically independent if whenever f (X1, ..., X5) € R[X1, ..., X;] is ahomogeneous form of
degree n such that f(ay,...,as) =0, then all coefficients of f are in m. It is straightforward to
verify that ay, ..., a, € F are analytically independent if and only if ay, ..., a, are analytically
independent in the submodule of F that they generate. Note that it follows from this, that if
M C F is generated by m analytically independent elements then M, is minimally generated
by the monomials of degree n in the generators of M, in other words (M) = "jn’ﬁl for all
n>l1.

The next proposition summarizes the basic facts concerning minimal reductions for modules.
The statements and proofs are entirely analogous to the ideal case. See the discussion in [13]
preceding Proposition 2.3 for details.

Proposition 2.4.3. Let (R, m) be local with infinite residue field, and suppose that M C F = R".
Then there exists a minimal reduction of M. Furthermore, if N is a reduction of M then the
following hold:

(1) N is a minimal reduction of M if and only if W(N) =1(M).
(i1) If N is a minimal reduction of M, then the elements of a minimal generating set for N are
analytically independent.
(iii) If M is generated by analytically independent elements, then mR(M) is a prime ideal.

Using the previous proposition, one easily proves the following lemma.

Lemma 2.4.4. Let (R, m) be a local ring, let M C F = R", and let P € Spec(R). Then [(M) >
I(Mp).

We now state some bounds on the analytic spread of M which are given in [13, Proposi-
tion 2.3].

Proposition 2.4.5. Let M be a submodule of F = R".

(i) IfdimR >0, then (M) <dimR +r — 1.
(ii) Ifheight(I,(M)) >0, thenr <I(M) <dimR+r — 1.
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Proposition 2.4.6. Let (R, m) be a local Noetherian ring and M C F = R". For any minimal
prime ideal q of R, l(%) < I(M) and if dim R > 0, then equality holds for some minimal
prime ideal q.

2.5. Two extreme cases

In this subsection we want to record two extreme cases for a prime P C R to be in A*(M) or
A*(M) as well as record an observation that will often allow us to assume that the depth of R is
positive.

Proposition 2.5.1. Let P C R be a prime ideal such that Mp = Fp.

(1) If P € Ass(R), then P € A*(M). o
(ii) If P is minimal in the support of F/M, then P € A*(M) N A*(M).

Proof. We may assume that R is a local ring with maximal ideal P. If P € Ass(R), write P =
(0 :g ¢), for some ¢ € R. As in Section 2.3, we write F = H ® G and M = N & G, where
N C PH. Then as noted in Section 2.3, H,/N, € F,/M, for all n. Take ng so that ¢ ¢ P",
for n > ng. Then for n > ng and any basis vector v € Hy,, ¢ - v ¢ N, since N, € P"H,. Since
P - (c-v) =0, we must have P € Ass(H,,/N,). Thus, P € A*(M). Now assume P is minimal
in the support of F/M. Then since Mp = Fp, the quotients (F,,/M,)p and (F,/M,)p have
non-zero finite length for all n, by Corollary 2.4.2. Thus, P € A*(M)NA*(M). O

Proposition 2.5.2. Let L C R be a nilpotent ideal and set S := R/L. Then for a prime ideal
PC R, PeA*(M)ifand only if PS € A*(MS).

Proof. First note that the discussion in Section 2.1 yields (MS),, = M,,S and (FS), = F,S.
Suppose h € F,, is such that its image in F, S is integral over M, S. If we let J denote the ideal
in F generated by the linear forms in F determined by the generators of M, it follows from
Remark 2.2.1 that the image of / in F ® S is integral over the ideal (J” + LF)/LF. Here, h
denotes the form of degree n in F corresponding to 4. Since L is a nilpotent ideal, it follows that
h is integral over J". Thus, # is integral over M,. We also have LF, C M, so it follows that
M, S is the integral closure of M, S in F,S. The proposition follows immediately from this and a
standard isomorphism theorem. 0O

3. Characterizations of asymptotic prime divisors

In this section we offer our main results that characterize the stable set of prime ideals as-
sociated to F;/ M, for n large. Following McAdam in the case of ideals (see [5]), we refer to
this finite set of prime ideals as the asymptotic prime divisors of M. Strictly speaking, this set of
prime ideals depends upon the embedding of M in F, so a proper notation might reference F as
well, but we opt to follow the convention already established for ideals. The existence of a finite
set of asymptotic prime divisors for M is given by a theorem of Katz and Naude from [3]. This
theorem says that if M is a submodule of F = R" then Ass(F,,/M,) = Ass(F,+1/M,+1) and
Ass(F,,/]\Tn) = Ass(Fy+1/M,41) foralln 0. Their proof shows that the sets Ass(F,,/M,) are
increasing for n 0 and the sets Ass(F,/M,) are increasing for all n > 0. Let A*(M) denote
the stable value of Ass(F,/M,), and A*(M) denote the stable value of Ass(F,/M,,).
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3.1. Rees valuations

In this subsection we will define the Rees valuations of M and mention Rees’ result that
these finitely many discrete valuations determine M,, for all n. Leading up to this we discuss the
essential valuations of R(M). The initial part of this discussion has some overlap with section
one in [11], but we include it because we have modified a number of things for our specific
purposes.

For the time being, we assume that R is an integral domain with quotient field K and that
M is a rank r submodule of F = R". Write R := Rr(M) and let }C be the quotient field of R,
so that K is also the quotient field of F = R[ty, ..., #,]. Note that the integral closure of R in
KC, R, is a Krull domain [8, 33.10]. This means that there exists a defining family {V}}yea of
discrete valuation rings of C such that R = rea Vasand, forall 0= f € R, V5 =V, for only
finitely many A. As is well known, {7_273 | P € Spec(R), height(P) = 1} satisfies these conditions
and is contained in any other defining family {}),}. For this reason, the discrete valuation rings
{R5 | P € Spec(R), height(P) = 1} are called the essential valuations of R.

There is a finite subset of essential valuations of R that will be distinguished in the following.
They are non-trivial in that they do not contain F. They are the discrete valuations introduced by
Rees in [11] and determine the integral closure of R in F and thus determine M, for all n.

Lemma 3.1.1. Let V be a discrete valuation ring between R and its quotient field. Then MV =
FYV ifand only if I, (M)V = V.

Proof. Since V is a principle ideal domain and MV C FV = V", we have that MV is a free V-
module and there exists a basis fi, ..., f, of FV suchthat MV = [_, y% f;V, where y € V is
a uniformizing parameter for V and «; > 0 for 1 <i <r. Now I,(M)V = I, (M) is the zeroth
Fitting ideal of F'V/MV with respect to the standard basis of F')). On the other hand, y Y
is the zeroth Fitting ideal of F'V/ MV with respect to the basis f1, ..., fr of FV. Since the Fitting
ideals are invariants of FV/MYV, we must have I,(M)V =y i=1%)) Now clearly I, (M)V =V
ifand only if ; > O forsome 1 < j <rifandonly if MV =FV. O

Definition 3.1.2. Observe that there are only a finite number of essential valuations V of R such
that I, (M))V = V. Hence, by Lemma 3.1.1, there are only a finite number of essential valuations
VY of R such that MV = FV, say Vi,..., V. Set V; :=V; N K. We call Vi,..., V; the Rees
valuations of M.

The following observation plays a crucial role in any study of Rees valuations and is implicit
in [11], section one. We state and prove it here for the convenience of the reader.

Observation 3.1.3. Let R be a Noetherian domain, let K be the fraction field of R, and let M C
F = R” be such that rank M =r. Let (V, n) be a Rees valuation of M and let V be an essential
valuation of R = R(M) such that MV = FV and VN K =V. Set W := R(MV),rmv). Then
W = V. Thus, the Rees valuations of M are in one-to-one correspondence with the essential
valuations V of R such that MV = FV.

Proof. First note that since MV is a free V-module, R(M V) is an integrally closed polynomial
ring. Thus, nR(M V) is a height one prime ideal, so W is a discrete valuation domain. Since
nR(MV) S my NR(MYV), if we show that my NR(MV) has height one, then nR(MV) =
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my NR(MV), so that W C V, and thus W = ). Now, suppose V = Rp, with P a height one
prime in R. Write U := R\P. Then, R C R(MV) C Ry. Thus [my NR(MV)]y = my. This
implies that height(my N R(MV)) = 1, which is what we want. O

The next proposition is a collection of facts most of which are due to Rees [11]. Some modi-
fications of the statements and additions have been made to serve the purposes of this paper. In
particular, we have added condition (iv) involving tfl.

Proposition 3.1.4. In the notation above, let V be a discrete valuation ring between R and its
quotient field. Then the following are equivalent:

(1) V is an essential valuation of R and I, (M)V = V.

(i) V is an essential valuation of R and there exists i such that t; ¢ V.
(i) V is an essential valuation of R which is not an essential valuation of F.
(iv) V is an essential valuation of R[tf]] and tfl V=V, for some 1 <i<r.

Proof. For (i) implies (ii), assume that I.(M)V =V and set (V,n) := )V N K. By Obser-
vation 3.1.3, V = R(MV),rmv). If each t; were in V, then we would have R(MV) C
VIt ..., tr] S R(MV),rmv). For any height one prime Q € R(M V) not equal to nR(MV),
oNvV=0,so

Vin,....t: 1S Kl[n, ...t SR(MV)g.

It follows from this that R(MV) = V[t#1,...,t], so MV = FV, contrary to our assumption.
Thus, t; ¢ R, for some i.

The implication (ii) implies (iii) is obvious. For (iii) implies (iv), first note that #; ¢ V' for
some i, and hence ti_l €V and ti_IV =V . Indeed, if all #; belong to V, then RCR[t,....1r] C
V. Since V is an essential valuation of R there exists P in Spec(R) such that 7_273 =Y. Then we
have

Rp S R, ..., ORIty ty] S V.

.....

Thus, R = RI11s s )y m kit
tion of R[t1,...,t:]. Thus, t; ¢ V for some i. We now have R C R[t;]] C V. Thus 7_373 -

R[ti_l]mvmm C V. But now this implies that R[ti_l]

valuation of R[ti_1 ].
Finally, let V be as in (iv). We first show that V is an essential valuation of R. Suppose
QcC R[ti_l] is a height one prime such that R[ti_l]g =Y. Set P := QNR. Then, since ti_l €9,

the transcendence degree of R[ti_l] /Q over R/P is zero. Thus, by [5, Lemma 3.1], 9 N R has
height one. It follows immediately from this that 7_2Qm—z =V, so V is an essential valuation
of R. To finish, we must show that I,(M)V = V. Let § € I,(M). Then §t; e RCV as § €
ann(F /M) = ann(F1/Ry1). As tfl € my, this implies that § = ((Sti)tlfl € my. Thus I,(M)V C
my, as desired. O

1= V. This contradicts that V' is not an essential valua-

— =V, so that V is an essential
mVﬁR[li ]

We now state the general definition of Rees valuation.
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Definition 3.1.5. Let R be a Noetherian ring and let M be a submodule of F = R" and assume
height(Z,(M)) > 0. Let {q1,...,q,} be the minimal prime ideals of R. For i =1, ..., u, set
S; :== R/q; and let {Vij}?":1 be the Rees valuations of M S;. We will call the collection {V;;} the
Rees valuations of M. Note that if for some 1 <i <u, MS; = FS;, then we eliminate S; from
consideration.

The next theorem is essentially Theorem 1.7 in [11], though our notation is somewhat differ-
ent. We record its statement for ease of reference. Recall our convention that M, V;; N F,, means
the set of elements in F;, that map to M, V;; as a submodule of F,, ® V;;.

Theorem 3.1.6 (Rees). Let R be a Noetherian ring and M be a submodule of F = R". Suppose
height(/, (M)) > 0 and let {V;;} as above denote the Rees valuations of M. Then for all n > 1,
M, = ;'4=1( ;l:] (MnVij N Fp)).

The last proposition in this subsection allows us to find a special linear form in R(M). This

proposition will be used in a crucial way in the proofs of Theorem 3.3.3, Proposition 3.3.5, and
Theorem 3.6.2.

Proposition 3.1.7. Let R be a Noetherian domain and M be a rank r submodule of F = R". Let
V be an essential valuation of R such that MY = FV. Set P :=my N'R and P :=my N R.
Then there exists a linear combination f of t1, ..., t, with coefficients in P such that f € R and

féepr.

Proof. We first reduce to the case that (R, P) is local. Note V is also an essential valuation
of R(Mp) as the elements of R\ P are units in V [4, Theorem 12.1]. Clearly MpV = MV =
FV = FpV. Hence our conditions pass to the local situation. Now assume the result is true for a
local ring. Let g = f: 1(ai/si)t; be an element of R(Mp) with coefficients in P Rp such that
g ¢ PR(Mp)=my NR(Mp). Since s; ¢ P we may clear denominators to assume s; = 1 for
all i, while preserving the desired properties of g. Then clearly a; € P and f = [_,a;it; ¢ P.
So f is the desired element.

Now assume (R, P) is local. In this case, by our comments in Section 2.3, we may write
M=N®GCH®®G=F with H and G free submodules of F of ranks 0 < ¢ < r and
r — t respectively, and N € P H. Then, maintaining the notation of Proposition 2.3.1, R =
Ru(N)[xi+1, ..., xr], a polynomial ring over Ry (N). Set Py :=P N Ry (N). Suppose the
conclusion of the proposition fails. Then Ry (N)4+ C Py, i.e., Py is an irrelevant ideal.

Now, as before, let (V,n) :=V N K, so that R(MV),grwmv) = V. Note that we also
have R(IMV) =Ruy(NV)[Xt+1,...,xr]. Since Py =nRpyy(NV) N'Ry(N), it follows that
Ruv(NV)L CnRpyy(NV),and this is a contradiction. Indeed, R gy (N V) is a polynomial ring
in variables corresponding to linear forms in a minimal generating set for NV, so in fact none
of these linear forms can belong to n Ry (N V). This contradiction completes the proof of the
proposition. 0O

3.2. Uniformly associated prime ideals
This subsection is entirely technical and consists of several lemmas and propositions that play

a key role in our main results in Section 3.3. These results are based upon a number of known
results, which we have refined in order to save extra information. This extra information will
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then tell us that a prime ideal associated to certain families of ideals can be written uniformly as
a colon into members of the family through a single fixed element.

Lemma 3.2.1. Let R be a Noetherian ring, P € Spec(R), and I, K C R be ideals with I € K.
If there exists c € Rp such that PRp = JRp g, c for all ideals J of R with [ C J C K, then
there exists d € R such that P = /J :r d for any ideal J of Rwith I C J C K.

Proof. First choose k such that PXRp C IRp :Rp . Then (P¥Rp)c C IRp. Write ¢ = b/t
with b € R and ¢t € R\ P. Then there exists s € R\ P such that Pkbs C I. Thus Pk C (I :g
bs) C (J :gp bs) € (K :g bs). Now let y € (K :g bs). Then (y/1)(b/t)s € K Rp. This implies
that (y/1)c € KRp as s is a unit in Rp. Thus y/1 € PRp and so y € P. So we have P¥ C
(I :g bs) € (J :gp bs) € (K :g bs) C P. Therefore P = /I :gd =+/J :gd = /K :gd with
d=bs. O

The following lemma is essentially Lemma 3.12 of [5]. McAdam shows that for P as in the
lemma below, for large m, P is associated to every ideal J between I and its integral closure.
We are merely saving some information from McAdam’s proof. Namely, not only are we showing
that P is associated to a collection of ideals J determined by /™, but that uniformly, P is the
radical of (J : x) and x depends only on /.

Lemma 3.2.2. Let R be a Noetherian ring, I C R an ideal, and q € Spec(R) a minimal prime
ideal. If P € Spec(R) is minimal over I + q, then there exists an n > 1 such that for any m > n,
there exists x € R such that for any ideal J with I C J C I" we have P = \/J :g x. Therefore
P € Ass(R/J) for all such J.

Proof. By Lemma 3.2.1, and noting that I Rp = I" Rp, we may localize at P to assume that
(R, P) is local. In this case, as P is minimal over I + ¢, there exists k > 1 such that Pkcy +q.
As ¢ is minimal, there exists x ¢ ¢ such that g”x = 0 for all large n. Now Lemma 3.11 of [5]
says that 5 I" is equal to the nilradical of R. Since x ¢ g, x is also not in the nilradical of R.
Hence if we choose n large enough we have that x ¢ I". Let m > n and assume ["™ C J C ™.
Now P¥"k C (I +¢)¥ C I 4+ g™, so that P> x C ["x +g™x =I"x C I". Thusas x ¢ I"
and P is maximal, we have

Pk C Mipx C(Jigx)C IM:gx CP.

Thus P=+/J :gx. O

We record the next lemma for ease of reference.
Lemma 3.2.3. Let R = 2 R, be a graded Noetherian ring, and let J be a homogeneous
ideal of R. Let c = }_, c; be any element of R, with ¢; € R;. Then /J : ¢ is a homogeneous
ideal and \/J ‘g c = a(J R = T_ VT rai
Lemma 3.2.4. Let R= °2 ) R, be a graded Noetherian ring. Let P € Spec(R) be a homoge-
neous prime ideal, and let I, K C R be homogeneous ideals with I C K. If there exists c € R

such that P = \/J :g c for all homogeneous ideals J with I C J C K, then there is a homoge-
neous element d € R such that P = \/J :g d for all such ideals.
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Proof. Write c = !_,¢; with ¢; € R; homogeneous. Then by assumption and Lemma 3.2.3
we have P =+ K :c= 7_; /K :gc;. Since P is prime we have P = K : ¢; for some j.
Now for all J as in the statement we have
n
P= J:pc= Jirc;S J:gc; C K:gcj=P.

i=1

Thus P = J :g c; for all homogeneous ideals J with I C J C K as desired. O

Lemma 3.2.5. Let R and T be Noetherian rings with T a flat extension of R. Let Q € Spec(T)
and P € Spec(R) such that P = Q N R. Let I C R be an ideal. If there exists c € T such that

=JIT :;tc= 1IT :7c, then there existsd € R suchthat P =T :gd= 1:rd.

Proof. First note that Tp is a flat extension of Rp and QTp N Rp = P Rp. Furthermore, if I C R
is an ideal satisfying Q = /IT :7 ¢ = IT :7 ¢ for some ¢ € T, then QTp = ITp T €=

ITp 1, c, using that integral closure commutes with localization. Hence by Lemma 3.2.1, it
is enough to show the result when (R, P) is local, taking I for K in that lemma. Now choose
k such that Q¥ € (IT :7 ¢). Then c € (IT :x Q) € (IT :7 PXT) as P*T < QF. Now since Q
is a proper ideal, we have ¢ ¢ IT andso c ¢ IT as IT C IT. Since T is a f_iat extension of R,
(IT :p P*T) = (I :g P*)T. So we have that (I :g P*)T is not contained in IT. Thus (I :g P¥)
is not contained in /. Let d € (I :g Pk)\I. Then P C (I :gd) C (I :p d) C P as P is maximal
andd ¢ I. Therefore P=+/T:gd= [:xd. O

Proposition 3.2.6. Let R be a Noetherian ring and x € R a non-zerodivisor. Let P < R be
a prime ideal and suppose P € A*(xR). Then there exists n > 1 and d € R such that P =

JO&'R:d)= (x"R:d).

Proof. Suppose we could prove the result over Rp. Then, there would exist n > 1 and ¢ € Rp
with PRp = /(J : ¢), for all ideals J in Rp, with x"Rp C J C X" R p. Then, what we wish to
show would follow from Lemma 3.2.1. Thus, we may assume that R is local at P. Let R denote
the P-adic completion of R. Then P € A*(xR), so there exists a minimal prime g € R such that,
for S := R/q, PSe A*(xS) Since § is a quasi-unmixed local domain, height(PS) = 1, by [9,
Theorem 3.8]. Thus, PR is minimal over xR + q. If we now apply Lemma 3.2.2 followed by
Lemma 3.2.5, we get what we want. O

Corollary 3.2.7. Let R be a Noetherian domain, P € Spec R, and 0 = x € P. If there exists
QO € Spec(R) such that height(Q) =1 and Q N R = P, then there exists n > 1 and d € R such

that P = /x"R:gd= Xx"R:rd.
Proof. By [5, Proposition 3.5], P € A*(xR). Now apply Proposition 3.2.6. O
3.3. The centers of Rees valuations

In this subsection we prove one of the main results of this paper, namely that the prime ideals
in A*(M) are exactly the centers of the Rees valuations of M. This is the module analogue of
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what is known in the ideal case. We begin with a crucial test for a prime ideal P C R to belong
to A*(M).

Proposition 3.3.1. Let R be a Noetherian ring and M be a submodule of F = R". Assume
height(1.(M)) > 0 and let P € Spec(R). Assume further that there exists P € Spec(R) satisfying
the following conditions:

1 PNR=P,
(ii) there exists f € Ry with coefficients in P such that f ¢ P,
(iii) there exists a non-zerodivisor x € P and a homogeneous element d € R; such that P =

\/X'R:Rdz m:'}gd.
Then P € A*(M).

Proof. First localize R at P to assume (R, P) is local. Now choose n such that P¥ C (xR : d)
for all k > n. In particular, since P € P we have P*kd € xR C xF. Since all coefficients of fk
are in PX, we have that fXd is divisible by x in F. Say f*d = xq for some ¢ € Fy4;. Then we

have that P = xR :x fkd as f ¢ P. It follows that

P= xRpffd = GRNR:gxq)= (R:zxg)NR= R:zqNR,

as x is a non-zerodivisor. Note also that ¢ ¢ R as P is a proper ideal, so that ¢ ¢ R N Fy; =
Mj41. Choose m such that P € (xR :r f*d). Then we have that P € P C (R 'z ¢)N'R and
q € Fiy1/\Mj4,. Since the elements of P are homogeneous of degree zero when considered as
elements of R and ¢ is homogeneous of degree [ + k, this means that P"'g C R N Fyy; = Mj4y.
Since P is maximal and g € Fk-s—l\m, we have P € Ass(Fk+1/1\T+I). This holds for all k > n,
so P e AX(M). O

Remark 3.3.2. Note that the assumption that P = /xR :r d = xR : d is needed to ensure
that the element g as chosen in the first paragraph of the proof of Proposition 3.3.1 is in F. If we

merely assume that P = xR :R d, then ¢ will be in F but it is not clear that ¢ must be in F.
We will use the uniformity results of the previous subsection to write the centers on R of the

essential valuations of R in the form P = /xR :gd = xR:rd.

The following theorem is one of the main results of this paper. It shows, on the one hand,
that the primes in A*(M) are the centers of the Rees valuations of M, while, on the other hand,
these primes are contractions from R of primes associated to the integral closure of powers of a
principal ideal, which is reminiscent of the case for ideals (see [5]).

Theorem 3.3.3. Let R be a Noetherian domain, M be a submodule of F = R" having rank r.
Let P be a prime ideal of R. The following are equivalent:

() P e A*(M).
(i1) P is the center of a Rees valuation of M on R.
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(iii) P contains I,(M) and there exists 0 = x € R together with a prime ideal P € A*(xR) so
that PNR=P.

Proof. Without loss of generality we may assume that R is local with maximal ideal P. Assume
P € Ass(F,/M,), and write P = (M,, :g ¢) with ¢ € F,\M,,. Then by Theorem 3.1.6, ¢ ¢ M,V
for some Rees valuation V of M. Now in a similar fashion to what was done in the proof of
Lemma 3.1.1, let fi,..., f, be a basis of FV such that MV = [_ |y fiV< [_ fiV=

i=1

FV,where y € V is a uniformizing parameter. For 1 <iy <--- <i, <r,let f;, . ;, denote the
basis element of V), corresponding to the product f;, - -- fi,. Then we have
MnV — ya,-l+...+ain fi1 .... iy V C FnV
1<i < <Kin<r
Write ¢ = 1< < in<r Cit oo infironin With ¢;; ;€ V. Let v: K — Z denote the value

function of V. Since ¢ ¢ M,V, there exist 1 < k; < --- < k, < r such that v(ck,,. x,) <
og, + -+ + ai,. However Pc € M, € M, V, so Pcy,...x, is contained in y¥a T 7 Thys
v(P) > 1 and hence P C my. Therefore P =my N R as P is the maximal ideal of R. It follows
that P is the center of a Rees valuation, so (i) implies (ii).

Now, suppose that P is the center of the Rees valuation V on R. Then V =V N R, where
V= 7_273, for a height one prime PCRand ,(M)V=V.Let P:=PNR.Then PNR =P
and I, (M) € P. Now let 0 = x € P. By the ideal case (see [5, Proposition 3.5]) we have that
P e A*(x'R), and thus (ii) implies (iii).

Finally, suppose (iii) holds. Since P € A*(xR), by Corollary 3.2.7, there exists n > 1 and

d € R suchthat P = /x"R g d = x"R:rd.ByLemma 3.2.4 we may also assume that d
is a homogeneous element of R, say of degree /. On the other hand, by the ideal case, P is the
center of an essential valuation V of R. Since I,(M) € P, I,(M)V =V, by Lemma 3.1.1. Now
choose f € R according to Proposition 3.1.7, i.e., f has its coefficients in P and f ¢ P. All of
the conditions in Proposition 3.3.1 are satisfied and therefore P € A*(M). O

Remark 3.3.4. Maintain the notation in Theorem 3.3.3. The proof above shows that for a prime
P € R, the following statements are equivalent:

(@ PNReA*M).
(b) I,(M) CPand P € A*(xR), for some (any) 0=x € RNP.
(c) P is the center of an essential valuation V' of R for which I, (M)Y = V.

Theorem 3.3.3 is true without the assumption that R is a domain. It will follow immediately
from the domain case and Proposition 3.3.5. However, we need the domain case of Theorem 3.3.3
to prove Proposition 3.3.5, and so had to prove it first. We will state and prove the general result
after Proposition 3.3.5.

Proposition 3.3.5. Let R be a Noetherian ring and M be a submodule of F = R". Suppose
height(/,(M)) > 0 and let P < R be a prime ideal in the support of F/M. Then P € A*(M) if
and only if there exists a minimal prime ideal q such that P/q € A*(%).

Proof. Without loss of generality we may localize at P to assume R is local with maxi-
mal ideal P. If P € A*(M), then we proceed as in the ideal case. Choose n 0 such that
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Ass(F,/M,,) and write P = (M, :g f) with f € F,\M,. Since f ¢ M,, Proposition 2.2.2
says that there exists a minimal prime ideal g such that if we write S := R/q, the image of
f in F,S, say f,is notin M,S. Clearly PS - f C M,S. Since PS is maximal and f ¢ M,5,
PS=M,S:s f). Increasing n if necessary gives PS € A*(MS), which is what we want.

Next assume that ¢ is a minimal prime ideal of R and that P.S € A*(MS), where S := R/q.
Note that since P is in the support of M, I,(M) C P, and it follows that dim(R) > 0. We first
note that we may assume that the depth of R is positive. Suppose that the depth of R is zero. Let
L :=(0: P"), where n is chosen large enough so that R/L has positive depth. Note that L is a
nilpotent ideal. Since ¢ /L is a minimal prime of R/L, if we know the result when the depth of R
is positive, then P/L € A*((M + LF)/LF). By Proposition 2.5.2, P € A*(M), which is what
we want. Thus, we replace R/L by R and begin again assuming that R has positive depth.

To continue, we have PS € A*(MS), so by Theorem 3.3.3 and Remark 3.3.4 there exists a
prime ideal Pg € R(M S) so that PS = PsN S and Pg is the center of an essential valuation ) of
R(MS) satisfying I, (M)V = V. By Proposition 3.1.7, there exists an element f € R(MS)1 such
that the coefficients of f belong to PS and f ¢ Ps. Let P C R be the prime ideal corresponding
to Ps and let f € R be a preimage of f such that f € R, f has coefficients in P and f ¢ P.
Now let x € R be a non-zerodivisor. Then Ps € A*(xR(MS)), by Remark 3.3.4. By the ideal
version of this proposition (see [5, Proposition 3.18]), P € A*(xR). Thus, by Proposition 3.2.6,
there exists n > 1 and d € R so that

P= x"R:d = x"R:d,

and by Lemma 3.2.4, we may assume d is homogeneous. By Proposition 3.3.1, P € A*(M),
which completes the proof. O

We will now state and prove Theorem 3.3.3 without the assumption that R is a domain.

Theorem 3.3.6. Let R be a Noetherian ring, M be a submodule of F = R" such that
height(I,(M)) > 0. For a P be a prime ideal of R, the following statements are equivalent:

i) P e A*(M).
(ii) P is the center of a Rees valuation of M on R.
(iii) P contains I.(M) and there exists x € R with height(xR) > 0 and a prime ideal P in
A*(M)(xR) with PN R = P. If grade(P) > 0, we may take x to be a (any) non-zerodivisor
in P.

Proof. First note that each of the conditions imply that /(M) C P, so if P satisfies any of the
conditions, P is in the support of F//M. Now suppose that (i) holds. By Proposition 3.3.5, there
exists a minimal prime ¢ € P such that if we write S := R /g, PS € A*(MS). By Theorem 3.3.3,
PS is the center of a Rees valuation V of MS on S. Clearly V has center P on R and by
definition, V is a Rees valuation of M.

If (i) holds, then by definition, there exists a minimal prime ¢ € P such that writing S :=
R/q, P is the center of a essential valuation V of R(M S) for which I,(M)V = V. Since P has
positive height, take x € P not in any minimal prime of R. Then if Ps denotes the center of )V on
R(MS), by Remark 3.3.4 Pg belongs to A*(xR(MS)). Writing P for the preimage of Ps in R,
it follows from Proposition 3.18 in [5] that P € A*(xR). Thus, the first statement in (iii) holds.
The second statement is clear.
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Finally, if (iii) holds, then by [5, Proposition 3.18], there exists a minimal prime Q C P
such that P/Q € A*(x - R/Q). Thus, there exists a minimal prime ¢ C R such that if we write
S:=R/qand Ps:=P/Q, Q=qgFNR, R/Q=R(MS) and Ps € A*(xR(MS)). By Theo-
rem 3.3.3, PS € A*(MS). Therefore, P € A*(M), by Proposition 3.3.5. Thus, (iii) implies (i)
and the proof is complete. O

3.4. Asymptotic primes via faithfully flat extensions

In this section we note the important fact that the asymptotic primes of M are induced from
any faithfully flat extension of R. In particular, when R is a local ring, the asymptotic primes of
M lift to those of M and those of M contract back to those of M. Though this is certainly not
unexpected, it requires work, just as in the ideal case.

We begin with a result that is similar in spirit to the case for ideals, in that it brings into play
extensions of R(M) that look like extended Rees algebras. Unfortunately, unlike the case for
ideals, the zeroth graded pieces of these rings are rather complicated and are certainly not just M
in degree zero.

Proposition 3.4.1. Let R be a Noetherian ring and M be a submodule of F = R". Assume
height(1-(M)) > 0 and let P € R be a prime ideal. Then P € A*(M) if and only if there exists
i=1,....,r and P € A*(t] "Rt 1) such that PN R = P.

Proof. We will first prove the proposition in the case that R is a domain. By Theorem 3.3.3
and the definition of Rees valuation, we have that P € A*(M) if and only if there is an essential
valuation V of R such that MV = F) and my N R = P. Using Proposition 3.1.4, this holds
if and only if for some i, there is an essential valuation V of R[tl._l] such that tl-_1 € my and
my N R = P. On the other hand, combining [5, Lemma 3.2 and Proposition 3.5], we have that
P e A*(I_IR[I_l]) if and only if P is the center of an essential valuation of R[z;” ] such that
- '€ my, which completes the proof in this case R is a domain.

Now remove the assumption that R is a domain and assume that P € A*(M). Then there
exists a minimal prime ¢ € P such that for S := R/q, PS € A*(MS), by Proposition 3.3.5.
By the domain case, there exists 1 <i < r and a prime ideal Pg in A* (t;]R(M S)[tfl]) such
that Ps N S = PS. Now, R(MS)[t; '] = R(M)[1;'1/Q, where Q = ¢F[t,7' 10 R(M)[1; '],
and Q is a minimal prime ideal in R(M) [ti_l]. Let P be a prime ideal in R(M) [ti_l] such that
P/Q = Ps. Then, P/Q € A* (17 'R(MS)[1;7']). Hence P € A*(17'R(M)[1; '), by the ideal
case of Proposition 3.3.5 (see [5, Proposition 3.18]). Clearly PN R = P.

Conversely assume that P € E(flR(M )[fl]) and P N R = P. Then there exists a min-
imal prlme Q C Rl such that P/Q € A*((t_lR(M)[t_l] +0)/0). Say Q =qF[t7 1N
R(M)[t; ] with ¢ a minimal prime ideal in R. Then for S := R/q, PS = (P/Q) N S, so

PS e A*(MS) by the domain case. Thus P € A*(M) by Proposition 3.3.5. O

Theorem 3.4.2. Let R be a Noetherian ring, M a submodule of F = R" and assume
height(I,(M)) > 0. Let T be a Noetherian ring that is a faithfully flat extension of R. For a
prime P C R, P € A*(M) if and only if there exists a prime ideal Q C T such that Q N R = P
and Q € A*(MT). In particular, if R is a local ring, then the P € A*(M) if and only if there
exists a prime Q € R such that P = ONRand Q € A*(MR)
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Proof. If P € A*(M), then such a Q exists by Lemma 2.2.3. Conversely, suppose that Q cT
is a prime ideal belonging to A*(MT) and set P := Q N R. Then there exists 1 <i < r and
Qe A*(tl_lRFT(MT)[tl_l]) such that @ N'T = Q, by Proposition 3.4.1. Since RFT(MT) is
faithfully flat over R(M), by the ideal case, P := Q N R(M) belongs to A*(z;7 'R(M)[1;'1)
(see [6, Proposition 1.9]). Thus, P =P N R belongs to A*(M), again by Proposition 3.4.1,
which gives what we want. The second statement in the theorem follows as a special case. O

3.5. Asymptotic primes and analytic spread

In this subsection we want to give a version for M of McAdam’s theorem concerning mem-
bership in A* (I), I € R, an ideal (see [5, Proposition 4.1]). When R is a locally quasi-unmixed
domain, then in [11], Rees showed that for a prime P in the support of F/M, P is the center
of an essential valuation of R(M) if and only if the expected local condition on analytic spread
holds, i.e., /(M p) = height(P) 4+ r — 1. Thus, in this case, one gets McAdam’s theorem for M
by applying Theorem 3.3.3. The general case for M will follow by reducing to this case using
various results from section three.

Theorem 3.5.1. Let R be a Noetherian ring and M be a submodule of F = R". Assume
height(,(M)) > 0 and let P be a prime ideal in R that contains I, (M). If |(Mp) = height(P) +
r — 1, then P € A*(M). Conversely, if R is locally quasi-unmixed and P € Ass(F,/M,) for
some n, then [(Mp) = height(P) +r — 1.

Proof. We may localize R at P to assume that (R, P) is local at P. We may also assume that
the residue field R/ P is infinite. Let N be a minimal reduction of M. Then N, = M, for all n,
so A¥(N) = A*(M) and I[(N) = [(M). Thus, it is enough to show the result when M = N.
Since R/P is infinite, Proposition 2.4.3 gives u(M) =1(M), M is generated by analytically
independent elements and PR is a prime ideal.

Assume [ (M) = height(P) +r — 1. By definition, [(M) = dim(R/PR). Therefore,

height(PR) < dim(R) —I(M)=d+r—(d+r—1)=1.

Since height(P) > 0, we have helght(PR) =1.Let @ € PR be minimal prime. It follows that
there exists a height one prime P € R/Q with P N'R/Q = PR/Q. Thus, we have an essential
valuation V of R/Q, centered on P, such that V N K is a Rees valuation of M, where K is the
quotient field of R/(Q N R). Therefore, by Theorem 3.3.6, P € A*(M).

Now assume that R is quasi-unmixed and P € A*(M). By Proposition 3.3.5, there exists
a minimal prime ideal ¢ such that if we write S := R/q, PS € A*(MS). By Theorem 3.3.3,
PS is the center of a Rees valuation of M S, which by definition, means that PS is also the
center of an essential valuation V of R(MS) for which MV = FV. By [11, Theorem 2.4],
[(MS) = height(PS) + r — 1. Since R is quasi-unmixed, P and P S have the same height. Thus
by Proposition 2.4.6, we have

height(P) = height(PS) =I(MS) —r+ 1 <I(M) —r + 1.
Since [(M) < height(P) 4+ r — 1 (Proposition 2.4.5), this gives the result. O

We now summarize the characterizations of A*(M) that we have obtained.


https://Ir(M).If

2228 D. Katz, G. Rice / Journal of Algebra 319 (2008) 2209-2234

Theorem 3.5.2. Let R be a Noetherian ring and let M be a submodule of F = R". Assume
height(Z,(M)) > 0 and let P C R be a prime ideal. Then the following are equivalent:

() P e A*(M).
(i) P is the center of a Rees valuation of M.
(iii) P contains I.(M) and P =P N R, for some P € A*(xR), some x € R such that
height(x R) > 0.
(iv) P/q € A*(M + qF)/qF), for some minimal prime g C R.
(v) There exists 1 <i <r and a prime ideal P € /F(ti_lR[ti_l]) such that PN R = P.
(vi) There exists a faithfully flat extension T of R and a prime Q € A*(MT) with P = Q N R.

Furthermore, I.,(M) C P and height(P) =I1(Mp) —r + 1 imply (i) and if R is locally quasi-
unmixed, the converse holds.

3.6. Two applications

In this subsection we will utilize our characterizations of A*(M) derived in the previous sub-
sections to prove that A*(M) is a subset of each of the sets A*(M) and A*(I,(M)). The proof that
A*(M) C A*(I.(M)) will be accomplished by using the fact that when R is a normal Noetherian
domain, the Rees valuations of M are a subset of the Rees valuations of I, (M) (see [7]).

We begin by showing A*(M) € A*(M), thereby extending an important result of Ratliff from
the case of ideals (see [10]) to modules. Our task would be made much easier of we knew that
the following statement, similar in spirit to Proposition 3.4.1, were true. For a prime P C R,
P € A*(M) if and only if for some 1 < i < r, there exists a relevant prime divisor P of tl._l R[ti_l]
such that P N R = P. This would correspond exactly to a known characterization of A*(I)
for ideals (see [5]). Unfortunately, we have not been able to prove such a statement. However,
the following crucial criterion, similar to Proposition 3.3.1, will ensure that a prime ideal is in
A*(M).

Proposition 3.6.1. Let R be a Noetherian ring, M a submodule of F = R" and P € Spec(R).
Assume there exists P € Spec(R) satisfying the following conditions:

i PNR=P,
(ii) there exists f € Ry with coefficients in P such that f ¢ P,
(iii) there exists a non-zerodivisor x € P and a homogeneous element d € R; such that P =

VAR R d.

Then P € A*(M).
Proof. First localize R at P to assume (R, P) is local. Now choose n such that PX C (xR : d)
for all k > n. In particular, since P C P we have Pkd € xR C xF. Since all coefficients of f k

are in PX, we have that f*d is divisible by x in F. Say f*d = xq for some g € Fy;;. Assume
that P satisfies the conditions in the statement. Then, P = xR :r f*d as f ¢ P. Now

xRir ffd =R rxq) =R % q)
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as x is a non-zero divisor. Note also that ¢ ¢ 'R as P is a proper ideal, so that g ¢ M. Choose
m such that P C (xR :xz f*d). Then P C P" C (R :q) and g € Fj4;\Mj4,. Since the
elements of P are homogeneous of degree zero when considered as elements of R and g is
homogeneous of degree [/ + k, this means that P""g € R N Fy4; = My4;. Since P is maximal
and g € Fy4/\Mj;, we have P € Ass(Fj4;/Mky;). Since this is true for all k£ > n, we have that
PeA*(M). O

Theorem 3.6.2. Let R be a Noetherian ring and M be a submodule of F = R" satisfying
height(1,(M)) > 0. Then A*(M) C A*(M).

Proof. Let P € A*(M) and localize to assume that (R, P) is local. Note that I, (M) C P, so
dim(R) > 0. If P € Ass(R), then P € A*(M), by Proposition 2.5.1. Thus, we may assume that
R has positive depth.

Now, by the definition of Rees valuation and Theorem 3.3.6, there exists a minimal prime
g < R such that if we write S := R/q, PS is the center of an essential valuation V of R(MS)
for which I, (M S)V = V. Let Ps :=my NR(MS) and P := my N R. By Proposition 3.1.7,
there exists f € R(MS); with coefficients in P, yet f ¢ Ps. It follows that there exists f, a
preimage of f,suchthat f € Ry, f ¢ P and f has coefficients in P.

On the other hand, let y € R be a non-zerodivisor. By Theorem 3.3.6, there exists P € A*( YR)
with P N R = P. By Proposition 3.2.6, for some n > 1 and x := y", P = /(xR :d), for
some d, which can be taken to be homogeneous, say of degree /. Thus, P € A*(M), by Proposi-
tion3.6.1. O

Remark 3.6.3. Let / C R be an ideal. Then Ratliff’s theorem guarantees A*(I) is contained
in A*(I) when height(/) > 0 (see [10, Corollary 2.6]). Our hypothesis in Theorem 3.6.2 that
height(Z,(M)) > 0 is the module analogue of this condition.

We now want to show that A*(M) € A*(I.(M)). The main point is that if R is a normal
Noetherian domain, then the Rees valuations of M are a subset of the Rees valuations of I, (M)
(see [7, Theorem 3.4]).

Theorem 3.6.4. Let R be a Noetherian ring and M be a submodule of F = R" satisfying
height(1,(M)) > 0. Then A*(M) € A*(1,(M)).

Proof. Let P € A*(M). We may assume that R is local at P. Set [ := [,.(M). By Theorem 3.4.2
and Proposition 3.3.5, we can find a minimal prime g contained in the completion R of R such
that for S := Ié/q, PS € A*(MS). By the ideal case (see [5, Proposition 3.18)), if PS € A*(IS),
then P € A*(I). Thus, changing notation, we may assume that R is a complete local domain. By
Theorem 3.3.3, P is the center of a Rees valuation V of M. From the definition of Rees valuation,
it is clear that V is also a Rees valuation of M R. Since R is a normal Noetherian domain, V is a
Rees valuation of IR, by [7]. Thus, V is also a Rees valuation of /. Therefore, by the ideal case
[5, Proposition 3.20], P € A* (I), which is what we wanted to prove. O

Corollary 3.6.5. Let R be a locally quasi-unmixed ring, let M be a rank r submodule of F = R",
and let P € Spec(R). If [((Mp) = height(P) +r — 1, then [((I,(M)) p) = height(P).
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E‘oof. Assume that /(M p) = height(P)+r — 1. Then P € A¥(M) by Theorem 3.5.1. Thus P €
A*(I.(M)) by Theorem 3.6.4. Therefore [ ((I.(M)) p) = height(P) by Proposition 4.1 of [S]. O

4. Asymptotic primes in low dimension

In this section we study A*(M) in two dimensional Cohen—Macaulay local rings and three
dimensional regular local rings. In order to do this some generalizations of results due to Sally in
[12] are needed, which extend bounds on the number of generators of ideals in Cohen—Macaulay
rings to bounds on the number of generators of M.

4.1. Bounds on the number of generators

Let (R, m) be a Noetherian local ring and M be a submodule of F = R". In the case that
A(F /M) < 0o, define the nilpotency degree of F/M to be the integer ¢ such that m' F € M but
m'~ F  M.If I C R is an ideal, then the order of I, ordg(I),ist if I Cm! but I m!'tl.

Let N be a finitely generated R-module, and / € R be an ideal. If A(N/IN) < oo, then
A(N/I"N) < oo for all n > 1 and there exists a polynomial P(n) with rational coefficients,
whose degree is equal to dim(N), such that P(n) = A(N/I"N) for all n 0. The multiplicity
of I on N, denoted ey (1), is the product of (dim(/N))! and the leading coefficient of P. Recall
that a € I' is superficial of degree t for I with respect to N if there is an integer ¢ > 0 such that
(I"N :ya)NI°N = I""!'N for all n > c. It is straightforward to show that if x € I is superficial
of degree one for I with respect to N, then x’ is superficial of degree ¢ for I with respect to N.

Remark 4.1.1. Recall that superficial elements of degree one preserve multiplicity. In fact, let
(R, m) be a local Noetherian ring and N a finitely generated R-module with dim(N) =d > 1.
Let I be an ideal of R satisfying A(N/IN) < oo and assume a € I’ is superficial of degree ¢ for
I with respect to N and is chosen so that dim(N/aN) =d — 1. Theney(I) =t - en/an (). See
[14, Section VIIIL.8, Lemma 4].

We next give a bound on the minimal number of generators M in terms of the nilpotency
degree of F//M and the multiplicity of the ring. This is an analogue of Theorem 1.2 of [12]. Note
that the right-hand side of the estimate now requires a factor of r to reflect that fact the rank of
M is greater than one.

Lemma 4.1.2. Let (R, m) be a Cohen—Macaulay local ring of dimension d > 0. Let M be a
submodule of F = R" such that .(F /M) < 0o, and let t be the nilpotency degree of F /M. Then

w(M) <r tlegm)+d—1.

Proof. The proof is by induction on d. Without loss of generality we may assume that R/m is
infinite. Note that m ¢ Ass(R) as R is Cohen—Macaulay and d > 0. Assume d = 1. In this case,
there exists an x € m so that xR is a minimal reduction of m and x is a non-zerodivisor. Then
er(m) =A(R/xR). Thus,

r-eg(m) = A(F/xF)=MF/xF)+A(xF/xM) — \(F/M)
= MF/xM) — M(F/M) = A\(M/x M).
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The exact sequence
0—->mM/xM — M/xM — M/mM — 0
gives
M) :=r(M/mM)=A(M/xM) —A(mM/xM)=r-eg(m) —A(mM/xM).

Hence, u(M) <r-eg(m).

Now assume d > 1. We may choose x so that x is a non-zerodivisor on R and also a superficial
element of degree one for m with respect to R. Pass to the d — 1 dimensional Cohen—Macaulay
local ring R/x' R. Note that x’ F C M by the definition of the nilpotency degree ¢, and M /x"F C

F/x'F with F/x'F a free R/x'R-module of rank r. Furthermore )»(Af;//f,l;) =AF/M) < 00
F/x'F

M/x'F is t. Hence, by induction

and by Nakayama’s lemma the nilpotency degree of

w M/X'"F <r td_zeR/xrR m/x'R +d—2 .

Next observe that eR/sz(m/xtR) = tegr(m) by Remark 4.1.1. Finally, note that u(x'F) =
rank(F) = r and hence

wM)<pu M/X'F +u x'F =p M/xX'F +r.
Therefore
uM)<u M/x'F +r<r td_zteR(m)—i—d—Z +r=r td_leR(m)+d—1 . O

Using this lemma, a bound on the number of generators of M can be obtained if the quotient,
F/M, is Cohen—Macaulay with an annihilator of positive height. This generalizes Theorem 2.1
of [12]. Again, we see the presence of terms involving r that are not in the original expressions.

Proposition 4.1.3. Let (R, m) be a Cohen—Macaulay local ring of dimension d > 0. Let M C
F = R" be such that F /M is a Cohen—Macaulay R-module and assume height(I.(M)) > 0. Set
h := height(/,(M)) = height(ann(F/M)) > 0. Then

w(M) <r eppp(m)'leg(m) +h—1.

Proof. Without loss of generality, we may assume R/m is infinite. The proof is by induction
on s =dim(F/M). If s =0 then A(F/M) < oo and h = d. Now let ¢ be the nilpotency degree
of F/M. Note that m'"F + M m'~""'F + M fori =0,...,t — 1. For if m""'F + M =
m'~'=1F 4+ M then we would have

mT T U FCm T F+M=m-m'"""'F+ M.

Nakayama’s lemma would then give that m’~"~! F C M, contradicting that ¢ is the nilpotency
degree of F/M. Thus we have a strictly increasing chain of length ¢

0 m~YF+M m2F+M mF+M F
M M M M
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Hence A(F/M) > t. The proposition follows in this case by Lemma 4.1.2, since ep/p (m) =
MF/M)>tand h=d.

Now assume s > 0. Note then that dim(R) > 1. Take x € m such that x is a non-zerodivisor
on R and F/M, and also superficial for m with respect to R and F/M. We pass to the
d — 1 dimensional Cohen—-Macaulay ring R/xR. Note that (M + xF)/xF C F/xF and
W((M+xF)/xF)= u(M) since x is a non-zerodivisor on F'/M. Also note that ann(F/M)+xR
and ann(F /(M + x F)) are equal up to radical. Thus h = heightR/xR(ann(F/(M + xF))). Now
F/(M +xF)is as — 1 dimensional Cohen—Macaulay module over R/x R, and hence by induc-
tion we have

M+ xF

uM) =pn —F <1 er/mxry(m)" " eg e r(m) +h — 1

=r eF/M(m)hfleR(m) +h—1.
The last equality follows from our choice of x together with Remark 4.1.1. O
4.2. Stabilizing points for asymptotic primes

Using the bounds from the previous section we are able to find a specific point by which the
sets Ass(Fy, /M) and Ass(F;/ M,,) must have stabilized if the ring is a two dimensional Cohen—
Macaulay local ring or a three dimensional regular local ring. First we will need the following
lemma, which is a generalization of Lemma 2.14 in [2]. It will allow us to extend a minimal
generating set for the nth torsion-free symmetric power of a reduction of M to one for M,
or M,,.

Lemma 4.2.1. Let (R, m) be a local Noetherian ring with R/m infinite and let M C F = R" with
rank(M) =r. Assume that N C M is a minimal reduction of M. Then N, "\mM,, = N, "mM,, =
mN,, forall n.

Proof. First note that mN,, € N, NmM, € N, N mM, and so it is enough to show that mN,, =
N, NmM,. Now consider T = R(M)NF = oM, and S=R(N)= )N, Then T
is integral over S, and S/mS is a domain, since N is generated by analytically independent
elements and m S is prime by Proposition 2.4.3. By lying over there is a prime Q of T such that
ONS=mS. InparticularmS CmTNSCONS=mS, somS=mT NS.Hence mM, NN, =
mN,. 0O

The following is a generalization of Lemma 4.8 in [5] and the proposition following
Lemma 2.14 in [2].

Proposition 4.2.2. Let (R, m) be a two dimensional Cohen-Macaulay ring and M € F = R,
with rank(M)_: r. If m € A*(M), then for all n > (eg(m) — 1)r + 1, m € Ass(F,;/M,) and
m € Ass(Fy, /My).
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P_roof. We may assume that R/m is infinite. Assume that m € A*(M). Let L be either M, or
M, for some fixed n, and suppose that m ¢ Ass(F,/L). Then F, /L is a one dimensional Cohen—
Macaulay module. Clearly we must have height(ann(F}, /L)) = 1. Thus Proposition 4.1.3 yields

p(n) <rank(Fperom = " epom),

On the other hand, m € A*(M) implies that [(M) =2 +4r — 1 =r + 1 by Theorem 3.5.1, as
R is Cohen—Macaulay and hence quasi-unmixed. Let N be a minimal reduction of M. Since
R/m is infinite, N is minimally generated by r + 1 analytically independent elements. By
Lemma 4.2.1 there is an embedding of N,/mN, into L/mL and hence "Jr” = n(N,) <

w(L) < "1 er(m). Thus n < (eg(m) — 1)r. Therefore if n > (eg(m) — 1)r + 1, then

r—1

m € Ass(F,/L). 0O
Along the lines of Theorem 2.15 of [2] we obtain the following proposition.

Proposition 4.2.3. Let (R, m) be a three dimensional regular local ring, and M C F = R”
with rank(M) = r and height(ann(F/M)) = 2. Suppose that I(M) = r + 2 and set t =

ordg (ann(F/M)). If F,,/M, or F,/M, is Cohen—Macaulay then n(—:errl—)T < t. In particular, if

n>t(r+1)r—2r—1, then m € Ass(F,/M,) and m € Ass(F,/M,).

Proof. We prove the statement for M,,. The proof for M, is essentially the same. First we may
assume that R/m is infinite. Now let N be a minimal reduction of M. Since /(M) =r + 2, by

Lemma 4.2.1 we have u(M,) > u(N,) = "7t

Set e := ordg (ann(F,/M,)). By choosing h € m\m? sufficiently general (e.g., the leading
form of & in R(m)/mR(m) does not divide the leading form of some element of order ¢ in
ann(F,/M,)), we may assume that

ann(F,/M,) + hR
ordR/hR IR =e

and / is a non-zerodivisor on F,,/AT,,. LetS=R/hR,G=F,/hF,,andset K = mh;ém” Then

S is a two dimensional regular local ring and pu(K) = M(ATn), since & is not a zerodivisor on
F,/M,,. Next, we have

ann(F,/M,) +hR
hR

Canng(G/K),
SO

F,/M,) +hR
ords anng(G/K) < ordg ann( "/hR")+ —e.

Furthermore (ann(F/M))* C ann(F,/M,) € ann(F,/M,) and hence e¢ < nt. Let g €
anng(G/K) such that g € m\m‘*t! where ¢ = ordg(anng(G/K)). Then S/g$ is a one di-
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mensional Cohen—Macaulay ring with eg/o5(m) = c. Noting that G/K is a finite length S/g$
module, by Lemma 4.1.2 we get

—1
(K /2G) < rank(G/gG)e < rank(G/gGre < " 1 oot
r_
Thus
n+r—1 n+r—1
w(K) < u(K/gG) +rank(G) < | nt + 1
r— r—
Therefore, we have
n+r+1 _ n+r—1
< u(My) = p(K) < (nt +1)
r+1 r—1

Simplifying this inequality gives "(':_%’1;1 <t. O
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	1. Introduction 
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	We now describe the contents of this paper. We begin in section two by recalling a number of relevant defnitions and constructions; we also give a few technical results needed for the rest of the paper. In section three, subsection one and two, we begin by describing the Rees valuations of Mand prove a number of technical results that are used in the main results of that section. In Section 3.3 we present our characterizations for a prime Pto belong to (M). In Section 3.6 we use the results from Section 3.3
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	2. Preliminaries 
	2. Preliminaries 
	In this section we will introduce some notational conventions and defnitions as well as give some technical results which facilitate our work in subsequent sections. Throughout Rwill be a Noetherian, commutative ring. All modules will be fnitely generated R-modules, unless stated otherwise. We work with a fxed R-module Mcontained in a fnitely generated free module F=R. We write Ir(M)to denote the ideal of r×rminors of the matrix whose columns generate M. For most of our results we assume height(Ir(M))>0. In
	r
	A
	∗
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	2.1. The Rees ring 
	2.1. The Rees ring 
	Fix a basis e,...,erof F, and let F =R[t,...,tr]with t,...,trindeterminates over Rcorresponding to the basis elements chosen. Note that F is just the symmetric algebra of F. Let A=(aij)be an r×mmatrix whose columns (with respect to the given basis) generate M. 
	1
	1
	1

	rr
	For 1 . j. m,let A˜j=aijeibe the jth column of A, and let Cj=aijtibe the 
	1 
	1 

	i=i=linear form in F corresponding to A˜j. By abuse of terminology we defne the Rees ring of M(with respect to the embedding of Minto F) to be the subring of F generated over Rby these linear forms. This will be denoted RF(M),orsimply R(M)or R if there is no question as to which modules we are referring to. Thus we have R =R[C,...,Cm]⊆F. While there has been common agreement as to what the Rees algebra of a module Mshould be when Ris a domain and Mis torsion-free, there has not been a rigorous effort to des
	1

	where Fnis the nth graded component of F, which is a free module of rank . Thus Mn
	r−1 

	n+r−1 is the submodule of Fn=Rr−1 generated over Rby the column vectors of An, where the columns of Anare obtained by fxing an ordering on the monomials of degree nin t,...,trand reading off the coeffcients of the monomials of degree nin all n-fold products of C,...,Cm. To illustrate this construction, let Mbe the submodule of F=Rgenerated by the columns of 
	(
	)
	1
	1
	2 

	aa
	11 
	12

	A=.aa
	21 
	22 

	Then C=at+atand C=at+at. Therefore, 
	1 
	11
	1 
	21
	2 
	2 
	12
	1 
	22
	2

	CC=aat+(aa+aa)tt+aat,
	1
	2 
	11
	12
	1
	2 
	11
	22 
	21
	12
	1
	2 
	21
	22
	2
	2 

	2 22 22
	2 22 22
	2 22 22


	C=a+2aatt+a
	1 
	12
	22
	1
	2 

	2 12
	t
	22
	t
	2 

	are the 2-fold products of Cand C. Thus Mis the submodule of F=Rgenerated by the columns of 
	1 
	2
	2 
	2 
	3 

	⎛ 2 ⎞ 
	2

	aa
	aa
	11
	12

	11 12 
	⎝⎠
	A=2aaaa+aa2aa.22 
	2 
	11
	21 
	11
	22 
	21
	12 
	12
	22 

	aa
	aa
	21
	22

	21 22 
	To continue describing our notation, let f:R→Sbe a homomorphism of Noetherian rings. Let h:R→Fbe the homomorphism corresponding to the matrix Awhose image is M. Then the extension of Mto S, denoted MS, is the image of the map h⊗RS:R⊗RS→F⊗RS=S. This is the submodule of Sgenerated by columns of the matrix Aafter applying fto the entries. Thus if C,...,Cmare the linear forms in F corresponding to the generators of Mand C,...,Care the linear forms in F ⊗RSafter applying fto the coeffcients, then R(MS)=
	m
	m
	∼
	r
	r
	1
	1

	m
	S[C,...,C]. Hence MnS=(MS)nfor all n. 1. It also follows from the functorial properties 
	1

	m
	of the tensor product that if g:S→Tis another homomorphism with Ta Noetherian ring, then MT=(MS)T.The contraction of MnSto Fn, denoted MnS∩Fn, is the set of elements fof Fnsuch that the image of fin FnS=Fn⊗RSis in MnS. We will use this extension-contraction notation heavily throughout this paper. Here are some special cases we will often encounter. If J⊆Ris an ideal and S=R/Jthen MS=(M+JF)/JF⊆F/JFand we have 
	RR 
	RFS(MS)=[,...,]=,
	C
	1
	Cm
	∼

	J
	JF ∩R 

	where Ciis the linear form in F corresponding to the ith column of Aand is the linear form in (R/J)[t,...,ts]obtained from Ciby reducing the coeffcients modulo J.If P⊆Ris a prime ideal and S=RP, then MRP=M⊗RP=MP⊆FPby fatness. Furthermore, 
	Ci
	1

	R(MRP)=RP[C,...,Cm]=R(M)⊗RRP.
	1
	∼

	If (R,m)is local and S=Rˆis the m-adic completion of R, then MRˆ=Mˆ⊆Fˆas Rˆis a faithfully fat extension of R, and 
	∼

	R(MR)=R[C,...,Cm]=R(M)⊗RR.
	ˆ
	ˆ
	1
	∼
	ˆ

	A local ring (R,m)is said to be quasi-unmixed if dim(ˆ=dim(R)for every minimal 
	R/q)prime ideal q∈Spec(R)ˆ.Aring Ris said to be locally quasi-unmixed if Rpis quasi-unmixed for all p∈A⊆Bare domains then we will denote the transcendence degree of Bover Aby trdeg(B). It is well known that if Ais a Noetherian domain, Bis an extension ring of Awhich is a domain, and P∈Spec(B), then with p=P∩Awe have 
	Spec(R).If 
	A

	height(P)+trdeg(B/P). height(p)+trdeg(B)(2.1.1) 
	A/p
	A

	(see for instance [4, Theorem 15.5]). If a domain Asatisfes the condition that the inequality in (2.1.1) is an equality for every fnitely generated extension domain Bof A, then Ais said to satisfy the dimension formula. A Noetherian domain Asatisfes the dimension formula if and only if Ais locally quasi-unmixed [9, Theorem 3.6]. Therefore if Ais a complete local domain then Asatisfes the dimension formula, as complete local domains are clearly quasi-unmixed. 
	Remark 2.1.1. If Ris a domain and Mis a rank rsubmodule of F=R, then for any non-zero maximal minor δof M, Rδ=Fδ. Thus the quotient feld of R is the same as that of F. Hence trdegR =r. 
	r
	R

	The next proposition is quite useful for reducing to the case that Ris a domain. It follows easily in standard fashion from the fact that R(M)is a subring of a polynomial ring over R. 
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	Proposition 2.1.2. The map φ:Spec(R)→Spec(R)defned by φ(p)=pF ∩R is injective and order preserving. This map induces a bijection between the minimal prime ideals of Rand the minimal prime ideals of R. The same is true for the associated prime ideals of Rand R. 
	−1
	It is worth pointing out that Proposition 2.1.2 holds if we replace R with R[t]for some 
	i
	−1 −1
	1 . i. rusing the correspondence p→pF[t]∩R[t]. The proof is the same, noting
	ii
	−1
	that F[t]is the localization of F at the multiplicatively closed set generated by ti, and that 
	i
	−1
	extensions of prime or primary ideals of Rto F[t]are prime or primary and do not contain ti.
	i
	Proposition 2.1.2 above and [13], Proposition 2.2 together yield: 
	Proposition 2.1.3. Let d=dim Rand Mbe a submodule of F=R. Then 
	r

	RM+pF
	dim R =max dim +rank p∈Ass(R).
	ppF
	Furthermore, if Mhas rank rthen dim R =d+r=d+height(R+).Here R+=Mnis 
	∞
	1 

	n=
	the irrelevant homogeneous ideal of R. 
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	2 22 22
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	2.2. Integral closure 
	2.2. Integral closure 
	We now consider the integral closure of Min F, and more generally, the integral closure of Mnin Fn. For this, we take the integral closure of R in F. This is a graded subring of F (see for instance [14, Theorem 11]). Defne the integral closure of Mnin Fn, denoted ,tobethe nth graded component of this ring, which is a submodule of Fn.If Ris a domain then Rees, in [11], defnes the integral closure Mnin Fnto be the set of elements xin Fnsuch that x∈MnVfor all discrete valuation rings Vbetween Rand its fraction
	Mn
	closure of Mnin 
	Mn

	x+mx+···+ml−1x+ml=0 
	l
	1
	l−1 

	with mi∈Mni, where the sums and products occur in F. 
	Remark 2.2.1. Let Jbe the ideal of F generated by C,...,Cm, with C,...,Cmthe linear forms in F corresponding to the generators of M. By degree considerations, for x∈Fn,wehave x∈Mnif and only if x∈J, and x∈if and only if x∈. With these comments and those in the paragraph above, the proof of the next proposition is straight-forward. 
	1
	1
	n
	Mn
	J
	n

	Proposition 2.2.2. Let Rbe a Noetherian ring and Ma submodule of F=R. Then for all 
	r

	n>0, x∈Fnis in if and only if x˜, the image of xin Fn/qFn,isin for every minimal prime ideal qof R. 
	Mn
	((Mn+qFn)/qFn)

	The following lemma generalizes Lemma 3.15 from [5], which says that the integral closure of an ideal Iof Ris equal to the contraction to Rof the integral closure of the extension of Ito a faithfully fat extension of R. 
	Lemma 2.2.3. Let Rbe a Noetherian ring and Ma submodule of F=R. Let Tbe a Noetherian faithfully fat extension of R. Then ∩Fn=. Moreover if P∈Ass(Fn/)then there exists Q∈Ass(FnT/)such that Q∩R=P. 
	r
	MnT
	Mn
	Mn
	MnT

	Proof. Note that the Rees ring of MTis R =R ⊗T, so that MnT=(MT)n.Let F =F ⊗Tand F=Fn⊗T, which is the degree ncomponent of F .Let Jbe as before. Restating Re-
	n
	mark 2.2.1 gives 
	∩Fn=Mnand ∩F=.
	J
	n
	J
	n
	F 
	(MT)n

	n
	Thus we have 
	∩Fn=∩F∩Fn=∩F ∩Fn.
	(MT)n
	J
	n
	F 
	J
	n
	F 

	n
	By the ideal case this last module is ∩Fn=. The second statement now follows along similar lines, since associated primes of contracted modules or ideals lift over an extension of Noetherian rings. . 
	J
	n
	F 
	Mn


	2.3. Free summands 
	2.3. Free summands 
	In this section we deal with a technical matter encountered upon localization. Even if we begin with a local ring (R,m)and a module M⊆mF, if we localize at some prime Qdifferent from m, it is often the case that MQQFQ. In this case a free RQsummand splits from MQ, and we want to discuss the effect this has on the objects under consideration. So we assume for this section that (R,m)is a Noetherian local ring and that MmF. Then there exists a free submodule Gof M, a free submodule Hof Fof rank t, and a submod
	Proposition 2.3.1. In the situation of described above, there exists a new set of variables x,...,xrfor F such that 
	1

	RF(M)=RH(N)[xt+1,...,xr]
	∼

	with xt+1,...,xrindeterminates over RH(N). Furthermore, RH(N)is generated over Rby linear forms in the indeterminates x,...,xtwith coeffcients in m. 
	1

	Maintaining the notation above, let G =R[xt+1,...,xr]=Sym(G). Then Proposition 2.3.1 says that RF(M)=RH(N)⊗G. On the module level, this says that 
	∼
	∼

	nn
	i+l−1 
	(

	l−1 )
	Mn=(Nn−i⊗Gi)=N
	∼
	∼

	n−i
	i=0 i=0 
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	n+l−1
	(

	)
	where l=rank(G)=r−t. Note that N=Rso that Gn=Nis the nth summand. For 
	0 
	l−1 

	0 
	example, if rank(F)=5,rank(G)=3, and rank(H)=2 then 
	M=N⊕(N⊕N⊕N)⊕Gand M=N⊕N⊕N⊕G.
	2 
	∼
	2 
	2 
	3 
	∼
	3 
	2
	3 
	6 
	3

	Nowwealsohavethat 
	==[xt+1,...,xr].
	RF(M)
	∼
	RH(N)[xt+1,...,xr]
	RH(N)

	Intersecting with F and comparing homogeneous components we see that 
	n
	i+l−1
	(

	l−1 )
	∼

	=.i=0 
	Mn
	Nn−i

	Clearly the above direct sum decompositions are embedded into similar decompositions relating Fn, Gnand Hn. Thus we obtain 
	i+l−1 i+l−1
	(
	(

	n−1 n−1 
	l−1 )l−1 )
	FnHn−iFnHn−i
	FnHn−iFnHn−i

	∼∼
	=and =.(2.3.2)i=0 i=0 
	M
	n
	N
	n−i
	M
	n
	N
	n−i


	2.4. Reductions and analytic spread 
	2.4. Reductions and analytic spread 
	Let N⊆Mbe a submodule. One says that Nis a reduction of M(in F)if =or equivalently if R(M)is integral over R(N). By the Artin–Rees lemma, this integrality is equivalent to saying that N·Mn=Mn+1 for n0. A reduction Nof Mis a minimal reduction of Mif it does not properly contain any other reduction of M. A detailed study of reductions was initiated by Rees in [11]. An easy, yet important fact is that free modules do not admit proper reductions. The following lemma gives the case that we will need. 
	N
	M
	-

	Lemma 2.4.1. Let Rbe a Noetherian ring. Let MF=R. Then Mis not a reduction of F. 
	r

	Proof. Assume by way of contradiction that Mis a reduction of F. By localizing at a prime in the support of F/M, we may assume that (R,m)is local. By our discussion in the previous section, we may write 
	M=G⊕N⊆G⊕H=F
	with Hand Gfree R-modules and N⊆mH. By Proposition 2.3.1, 
	RF(M)=RH(N)[xt+1,...,xr].
	Note, that t>0 since M=F. Now, by our hypothesis, F is integral over RF(M). Therefore, xis integral over RF(M). Thus, in the notation of Remark 2.2.1, xis integral over the ideal Jin F. In particular, some power of xbelongs to J. But this is a contradiction, since N⊆mH. Indeed, this latter condition implies that for every f∈J, every coeffcient of a monomial involving xbelongs to m, and this precludes any power of xbelonging to J. . 
	1 
	1 
	1 
	1 
	1 

	Corollary 2.4.2. For all n. 1, the supports of the modules Fn/Mnand Fn/Mnare the same and independent of n. 1. 
	Proof. Let P⊆Rbe a prime ideal. Clearly, if (F/M)P=0, then (Fn/Mn)P=(Fn/)P=0 for all n. Suppose now that (Fn/Mn)P=0, for some n>1. Then, (Fn+1)P=(MnF)P⊆(MFn)P,so MPis a uction of FP. By the previous lemma, MP=FP. Similarly, one can show that if (Fn)P=(Mn)Pfor some n, then MPis a reduction of FP,so MP=FP. . 
	Mn
	1
	1
	red

	Let (R,m)be a local Noetherian ring and Ma submodule of F=R. The ring R/mR is called the fber ring of M.The analytic spread of Mis defned to be the dimension of the fber ring, and will be denoted l(M). Elements a,...,as∈Faresaidtobe analytically independent in Mif whenever f(X,...,Xs)∈R[X,...,Xs]is a homogeneous form of degree nsuch that f(a,...,as)∈mMn, then all coeffcients of fare in m. We say that a,...,as∈Fare analytically independent if whenever f(X,...,Xs)∈R[X,...,Xs]is a homogeneous form of degree ns
	r
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	n+m−1
	by the monomials of degree nin the generators of M, in other words μ(Mn)=for all n. 1. 
	m−1 

	The next proposition summarizes the basic facts concerning minimal reductions for modules. The statements and proofs are entirely analogous to the ideal case. See the discussion in [13] preceding Proposition 2.3 for details. 
	Proposition 2.4.3. Let (R,m)be local with infnite residue feld, and suppose that M⊆F=R. Then there exists a minimal reduction of M. Furthermore, if Nis a reduction of Mthen the following hold: 
	r

	(i) 
	(i) 
	(i) 
	Nis a minimal reduction of Mif and only if μ(N)=l(M). 

	(ii) 
	(ii) 
	If Nis a minimal reduction of M, then the elements of a minimal generating set for Nare analytically independent. 


	(iii) If Mis generated by analytically independent elements, then mR(M)is a prime ideal. 
	Using the previous proposition, one easily proves the following lemma. 
	Lemma 2.4.4. Let (R,m)be a local ring, let M⊆F=R, and let P∈Spec(R). Then l(M). l(MP). 
	r

	We now state some bounds on the analytic spread of Mwhich are given in [13, Proposition 2.3]. 
	-

	Proposition 2.4.5. Let Mbe a submodule of F=R. 
	r

	(i) 
	(i) 
	(i) 
	If dim R>0, then l(M). dim R+r−1. 

	(ii) 
	(ii) 
	If height(Ir(M))>0, then r. l(M). dim R+r−1. 


	D. Katz, G. Rice / Journal of Algebra 319 (2008) 2209–2234 2217 
	Proposition 2.4.6. Let (R,m)be a local Noetherian ring and M⊆F=R. For any minimal 
	r

	M+qF
	M+qF

	prime ideal qof R, l(). l(M)and if dim R>0, then equality holds for some minimal prime ideal q. 
	qF


	2.5. Two extreme cases 
	2.5. Two extreme cases 
	In this subsection we want to record two extreme cases for a prime P⊆Rto be in (M)or A(M)as well as record an observation that will often allow us to assume that the depth of Ris positive. 
	A
	∗
	∗

	Proposition 2.5.1. Let P⊆Rbe a prime ideal such that MP=FP. 
	(i) If P∈Ass(R), then P∈A(M). 
	∗

	(ii) If Pis minimal in the support of F/M, then P∈(M)∩A(M). 
	A
	∗
	∗

	Proof. We may assume that Ris a local ring with maximal ideal P.If P∈Ass(R), write P=
	(0 :Rc),for some c∈R. As in Section 2.3, we write F=H⊕Gand M=N⊕G, where 
	n
	N⊆PH. Then as noted in Section 2.3, Hn/Nn⊆Fn/Mnfor all n.Take nso that c/∈P, for n. n. Then for n. nand any basis vector v∈Hn, c·v/∈Nn, since Nn⊆PHn. Since P·(c·v)=0, we must have P∈Ass(Hn/Nn). Thus, P∈A(M). Now assume Pis minimal in the support of F/M. Then since MP=FP, the quotients (Fn/Mn)Pand (Fn/)Phave non-zero fnite length for all n, by Corollary 2.4.2. Thus, P∈(M)∩A(M). . 
	0 
	0
	0 
	n
	∗
	Mn
	A
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	∗

	Proposition 2.5.2. Let L⊆Rbe a nilpotent ideal and set S:=R/L. Then for a prime ideal P⊆R, P∈(M)if and only if PS∈(MS). 
	A
	∗
	A
	∗

	Proof. First note that the discussion in Section 2.1 yields (MS)n=MnSand (FS)n=FnS. Suppose h∈Fnis such that its image in FnSis integral over MnS.Ifwelet Jdenote the ideal in F generated by the linear forms in F determined by the generators of M, it follows from Remark 2.2.1 that the image of h˜in F ⊗Sis integral over the ideal (J+LF)/LF. Here, h˜denotes the form of degree nin F corresponding to h. Since Lis a nilpotent ideal, it follows that s integral over J. Thus, his integral over Mn.Wealsohave LFn⊆, so
	n
	h˜i
	n
	Mn



	3. Characterizations of asymptotic prime divisors 
	3. Characterizations of asymptotic prime divisors 
	In this sectiowe offer our main results that characterize the stable set of prime ideals associated to Fn/Mnfor nlarge. Following McAdam in the case of ideals (see [5]), we refer to this fnite set of prime ideals as the asymptotic prime divisors of M. Strictly speaking, this set of prime ideals depends upon the embedding of Min F, so a proper notation might reference Fas well, but we opt to follow the convention already established for ideals. The existence of a fnite set of asymptotic prime divisors for Mi
	n 
	-
	say
	r
	Mn+1
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	Mn

	3.1. Rees valuations 
	3.1. Rees valuations 
	In this subsection we will defne the Rees valuations of Mand mention Rees’ result that these fnitely many discrete valuations determine for all n. Leading up to this we discuss the essential valuations of R(M). The initial part of this discussion has some overlap with section one in [11], but we include it because we have modifed a number of things for our specifc purposes. 
	Mn

	For the time being, we assume that Ris an integral domain with quotient feld Kand that Mis a rank rsubmodule of F=R. Write R :=RF(M)and let K be the quotient feld of R, so tat K is also the quotient feld of F =R[t,...,tr]. Note that the integral closure of R in K, R, is a Krull domain [8, 33.10]. Ts means that there exists a defning family {Vλ}λ∈Λof discrete valuation rings of K such that R =Vλ, and, for all 0 =f∈R, fVλ=Vλfor only 
	r
	h
	1
	hi

	λ∈Λfnitely many λ. As is well known, {R |P ∈Spec(R),height(P)=1}satisfes these conditions 
	P 
	P 

	ad is ontained any other efning family {Vλ}. For this reason, the discrete valuation rings {R|P ∈Spec(R),height(P)=1}are called the essential valuations of R. 
	n
	c
	in 
	d
	P 

	There is a fnite subset of essential valuations of R that will be distinguished in the following. They are non-trivial in that they do not contain F. They are the discrete valuations introduced by Rees in [11] and determine the integral closure of R in F and thus determine for all n. 
	Mn

	Lemma 3.1.1. Let V be a discrete valuation ring between R and its quotient feld. Then MV =FV if and only if Ir(M)V =V. 
	Proof. Since V is a principle ideal domain and MV ⊆FV =V, we have that MV is a free V-
	r

	r
	module and there exists a basis f,...,frof FV such that MV =yfiV, where y∈V is a uniformizing parameter for V and αi. 0for 1 . i. r.Now Ir(M)V =Ir(MV)is the zeroth Fitting ideal of FV/MV with respect to the standard basis of FV. On the other hand, yi=1 V is the zeroth Fitting ideal of FV/MV with respect to the basis f,...,frof FV. Since the Fitting ideals are invariants of FV/MV,wemusthave Ir(M)V =yi=1 V. Now clearly Ir(M)V =V if and only if αj>0for some 1 . j. rif and only if MV =FV. . 
	1
	i=1 
	α
	i
	r
	α
	i
	1
	r
	α
	i

	Deﬁnition 3.1.2. Observe that there are only a fnite number of essential valuations V of R such that Ir(M)V =V. Hence, by Lemma 3.1.1, there are only a fnite number of essential valuations V of R such that MV =FV,say V,...,Vs. Set Vi:=Vi∩K. We call V,...,Vsthe Rees valuations of M. 
	1
	1

	The following observation plays a crucial role in any study of Rees valuations and is implicit in [11], section one. We state and prove it here for the convenience of the reader. 
	Observation 3.1.3. Let Rbe a Noetherian domain, let Kbe the fraction feld of R, and let M⊆F=Rbe such that rank M=r. Let (V,n)be a Rees valuation of Mand let V be an essential valuation of R =R(M)such that MV =FV and V ∩K=V. Set W:=R(MV)nR(MV). Then W=V. Thus, the Rees valuations of Mare in one-to-one correspondence with the essential valuations V of R such that MV =FV. 
	r

	Proof. First note that since MVis a free V-module, R(MV)is an integrally closed polynomial ring. Thus, nR(MV)is a height one prime ideal, so Wis a discrete valuation domain. Since nR(MV)⊆mV ∩R(MV), if we show that mV ∩R(MV)has height one, then nR(MV)=
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	mV∩R(V), so that W⊆V, and ths W=V. Nowsuppose V =RP , with P a height one prime in R. Write U:=R\P. Then, R ⊆R(MV)⊆RU. Thus [mV ∩R(MV)]U=mV .This implies that height(mV ∩R(MV))=1, which is what we want. . 
	M
	u
	, 

	The next proposition is a collection of facts most of which are due to Rees [11]. Some modifcations of the statements and additions have been made to serve the purposes of this paper. In particular, we have added condition (iv) involving t.
	-
	−1

	i
	Proposition 3.1.4. In the notation above, let V be a discrete valuation ring between R and its quotient feld. Then the following are equivalent: 
	(i) 
	(i) 
	(i) 
	V is an essential valuation of R and Ir(M)V =V. 

	(ii) 
	(ii) 
	V is an essential valuation of R and there exists isuch that ti∈/V. 


	(iii) V is an essential valuation of R which is not an essential valuation of F. −1 −1
	(iv) V is an essential valuation of R[t]and tV =V,for some 1 . i. r.
	ii
	Proof. For (i) implies (ii), assume that Ir(M)V =V and set (V,n):=V ∩K. By Observation 3.1.3, V =R(MV)nR(MV). If each tiwere in V, then we would have R(MV)⊆V[t,...,tr]⊆R(MV)nR(MV). For any height one prime Q⊆R(MV)not equal to nR(MV), Q∩V=0, so 
	-
	1

	V[t,...,tr]⊆K[t,...,tr]⊆R(MV)Q.
	1
	1

	It follows from this that R(MV)=V[t,...,tr],so MV=FV, contrary to our assumption. Thus, ti∈/R,for some i. The implication (ii) implies (iii) is obvious. For (iii) implies (iv), frst te at ti∈/V for −1 −1
	1
	no
	th

	some i, and hence t∈V and tV =V. Indeed, if all tibelong to V, then R ⊆R[t,...,tr]⊆
	i
	1

	i
	V. Since V is an essential valuation of R there exists P in Spec(R)such that R=V. Then we have 
	P 

	⊆[t,...,tr]⊆V.
	R 
	R
	1
	m
	V 
	∩
	R
	[t
	1
	,...,t
	r
	]

	P 
	P 

	Thus, =[t,...,tr]=V. This contradicts that V is not an essential valua
	R
	P 
	R
	1
	m
	V 
	∩
	R
	[t
	1
	,...,t
	r
	]
	-

	tion of R[t,...,t]. Thus, ti∈/V for some i.Wenow have R ⊆⊆V. Thus R ⊆
	1
	R[t
	−1
	]

	ri
	P 

	−1 
	−1 
	−1

	⊆V. But now this implies that =V, so that V is an essential
	R[t]
	R[t]

	−1 
	−1 
	−1

	ii
	mV ∩mV ∩
	R[t]
	R[t]

	ii
	−1
	valuation of R[t].
	i
	Finally, let V be as in (iv). We frst show that V is an essential valuation of R. Suppose −1
	−1 −1 

	Q ⊆is a height one prime such that Q =V. Set P :=Q∩R. Then, since t∈Q,
	R[t]
	R[t]

	iii
	−1
	the transcendence degree of R[t]/Q over R/P is zero. Thus, by [5, Lemma 3.1], Q ∩R has
	i
	height one. It follows immediately from this that R=V,so V is an essential valuation 
	Q∩R 

	of R. To fnish, we must show that Ir(M)V =V.Let δ∈Ir(M). Then δti∈R ⊆V as δ∈−1 −1
	t∈mV , this implies that δ=(δti)t∈mV . Thus Ir(M)V ⊆
	ann(F/M)=ann(F/R).As 
	1
	1


	iimV , as desired. . 
	We now state the general defnition of Rees valuation. 
	Deﬁnition 3.1.5. Let Rbe a Noetherian ring and let Mbe a submodule of F=Rand assume height(Ir(M))>0. Let {q,...,qu}be the minimal prime ideals of R.For i=1,...,u,set Si:=R/qiand let {Vij}be the Rees valuations of MSi. We will call the collection {Vij}the 
	r
	1
	v
	j
	i
	=1 

	Rees valuations of M. Note that if for some 1 . i. u, MSi=FSi, then we eliminate Sifrom consideration. 
	The next theorem is essentially Theorem 1.7 in [11], though our notation is somewhat different. We record its statement for ease of reference. Recall our convention that MnVij∩Fnmeans the set of elements in Fnthat map to MnVijas a submodule of Fn⊗Vij. 
	-

	Theorem 3.1.6 (Rees). Let Rbe a Noetherian ring and Mbe a submodule of F=R. Suppose height(Ir(M))>0 and let {Vij}as above denote the Rees valuations of M. Then for all n. 1, 
	r

	uvi
	=((MnVij∩Fn)). 
	Mn
	i=1
	j=1

	The last proposition in this subsection allows us to fnd a special linear form in R(M).This proposition will be used in a crucial way in the proofs of Theorem 3.3.3, Proposition 3.3.5, and Theorem 3.6.2. 
	Proposition 3.1.7. Let Rbe a Noetherian domain and Mbe a rank rsubmodule of F=R. Let V be an essential valuation of R such that MV =FV. Set P :=mV ∩R and P:=mV ∩R. Then there exists a linear combination fof t,...,trwith coeffcients in Psuch that f∈R and f/∈P. 
	r
	1

	Proof. We frst reduce to the case that (R,P)is local. Note V is also an essential valuation of R(MP)as the elements of R\Pare units in V [4, Theorem 12.1]. Clearly MPV =MV =FV =FPV. Hence our conditions pass to the local situation. Now assume the result is true for a 
	r
	local ring. Let g=(ai/si)tibe an element of R(MP)with coeffcients in PRPsuch that 
	i=1

	g/∈PR(MP)=mV ∩R(MP). Since si∈/P we may clear denominators to assume si=1for r
	all i, while preserving the desired properties of g. Then clearly ai∈Pand f=aiti∈/P. So fis the desired element. 
	i=1 

	Now assume (R,P)is local. In this case, by our comments in Section 2.3, we may write M=N⊕G⊆H⊕G=Fwith Hand Gfree submodules of Fof ranks 0 <t. rand r−trespectively, and N⊆PH. Then, maintaining the notation of Proposition 2.3.1, R =RH(N)[xt+1,...,xr], a polynomial ring over RH(N). Set PH:=P ∩RH(N). Suppose the conclusion of the proposition fails. Then RH(N)+⊆PH, i.e., PHis an irrelevant ideal. 
	Now, as before, let (V,n):=V ∩K, so that R(MV)nR(MV)=V. Note that we also have R(MV)=RHV(NV)[xt+1,...,xr]. Since PH=nRHV(NV)∩RH(N), it follows that RHV(NV)+⊆nRHV(NV), and this is a contradiction. Indeed, RHV(NV)is a polynomial ring in variables corresponding to linear forms in a minimal generating set for NV,soinfact none of these linear forms can belong to nRHV(NV). This contradiction completes the proof of the proposition. . 

	3.2. Uniformly associated prime ideals 
	3.2. Uniformly associated prime ideals 
	This subsection is entirely technical and consists of several lemmas and propositions that play a key role in our main results in Section 3.3. These results are based upon a number of known results, which we have refned in order to save extra information. This extra information will 
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	then tell us that a prime ideal associated to certain families of ideals can be written uniformly as a colon into members of the family through a single fxed element. 
	Lemma 3.2.1. Let Rbe a Noetherian ring, P∈Spec(R), and I,K⊆Rbe ideals with I⊆K. If there exists c∈RPsuch that PRP=for all ideals Jof Rwith I⊆J⊆K, then 
	JRP:R
	P
	c

	√
	there exists d∈Rsuch that P=for any ideal Jof Rwith I⊆J⊆K. 
	J:Rd

	Proof. First choose ksuch that PRP⊆IRP:Rc. Then (PRP)c⊆IRP. Write c=b/twith b∈Rand t∈R\P. Then there exists s∈R\Psuch that Pbs⊆I. Thus P⊆(I:Rbs)⊆(J:Rbs)⊆(K:Rbs).Now let y∈(K:Rbs). Then (y/1)(b/t)s∈KRP. This implies that (y/1)c∈KRPas sis a unit in RP. Thus y/1 ∈PRPand so y∈P.Sowehave P⊆
	k
	P
	k
	k
	k
	k

	√√√
	(I:Rbs)⊆(J:Rbs)⊆(K:Rbs)⊆P. Therefore P===with d=bs. . 
	I:Rd
	J:Rd
	K:Rd

	The following lemma is essentially Lemma 3.12 of [5]. McAdam shows that for Pas in the lemma below, for large m, Pis associated to every ideal Jbetween Iand its integral closure. We are merely saving some information from McAdam’s proof. Namely, not only are we showing that Pis associated to a collection of ideals Jdetermined by I, but that uniformly, Pis the radical of (J:x)and xdepends only on I. 
	m
	m

	Lemma 3.2.2. Let Rbe a Noetherian ring, I⊆Ran ideal, and q∈Spec(R)a minimal prime ideal. If P∈Spec(R)is minimal over I+q, then there exists an n. 1 such that for any m. n,
	√
	there exists x∈Rsuch that for any ideal Jwith I⊆J⊆we have P=. Therefore P∈Ass(R/J)for all such J. 
	m
	I
	m
	J:Rx

	Proof. By Lemma 3.2.1, and noting that =RP, we may localize at Pto assume that (R,P)is local. In this case, as Pis minimal over I+q, there exists k. 1 such that P⊆I+q. 
	I
	m
	RP
	I
	m
	k

	n
	As qis minimathere exists x/∈qsuch that qx=0 for all large n. Now Lemma 3.11 of [5] says that Iis equal to the nilradical of R. Since x/∈q, xis also not in the nilradical of R. Hence if we choose nlarge enough we have that x/∈.Let m. nand assume I⊆J⊆. 
	l, 
	n.1 
	n
	I
	n
	m
	I
	m

	mm
	Now P⊆(I+q)⊆I+q, so that Px⊆Ix+qx=Ix⊆I. Thus as x/∈and Pis maximal, we have 
	2
	mk
	2
	m
	m
	2
	mk
	m
	m
	m
	I
	m

	2mk
	⊆

	PI:Rx⊆(J:Rx)⊆:Rx⊆P.√
	m
	I
	m

	Thus P=. . 
	J:Rx

	We record the next lemma for ease of reference. 
	∞
	Lemma 3.2.3. Let R=Rnbe a graded Noetherian ring, and let Jbe a homogeneous 
	n=0 

	√
	n
	ideal of R. Let c=cibe any element of R, with ci∈Ri. Then is a homogeneous 
	J:Rc

	i
	=m

	√√
	nn
	ideal and =(J:Rci)=.
	J:Rc
	J:Rci

	i=mi=m
	∞
	Lemma 3.2.4. Let R=Rnbe a graded Noetherian ring. Let P∈Spec(R)be a homogeneous prime ideal, and let I,K⊆Rbe homogeneous ideals with I⊆K. If there exists c∈R
	n=0 
	-

	√
	such that P=for all homogeneous ideals Jwith I⊆J⊆K, then there is a homoge
	J:Rc
	-

	√
	neous element d∈Rsuch that P=for all such ideals. 
	J:Rd

	n
	Proof. Write c=ciwith ci∈Rihomogeneous. Then by assumption and Lemma 3.2.3 
	i=0 

	√√
	n
	we have P==. Since Pis prime we have P=for some j.
	K:c
	K:Rci
	K:Rcj

	i=1 
	Now for all Jas in the statement we have 
	nP==⊆⊆=P.i=1 
	J:Rc
	J:Rci
	J:Rcj
	K:Rcj

	Thus P=for all homogeneous ideals Jwith I⊆J⊆Kas desired. . 
	J:Rcj

	Lemma 3.2.5. Let Rand Tbe Noetherian rings with Ta fat extension of R. Let Q∈Spec(T)and P∈Spec(R)st P=Q∩R. Let I⊆Rbe an ideal. If there exists such that 
	uch tha
	c∈T

	√√
	Q==:Tc, then there exists d∈Rsuch that P==:Rd. 
	IT:Tc
	IT
	I:Rd
	I

	Proof. First note that TPis a fat extension and QTP∩RP=PRP. Furthermore, if I⊂R
	of RP

	√
	is an ideal satisfying Q==:Tcfor some c∈T, then QTP=ITP:Tc=
	IT:Tc
	IT
	P

	:Tc, using that integral closure commutes with localization. Hence by Lemma 3.2.1, it is enough to show the result when (R,P)is local, taking for Kin that lemma. Now choose ksuch that Q⊆(IT:Tc). Then c∈(IT:TQ)⊆(IT:TPT)as PT⊆Q. Now since Qis a proper ideal, we have c/∈and so c/∈Tas T⊆. Since Tis a fat extension of R, (IT:TPT)=(I:RP)T.Sowehavethat (I:RP)Tis not contained in T. Thus (I:RP)is not contained in .Let d∈(I:RP)\. Then P⊆(I:Rd)⊆(:Rd)⊆Pas Pis maximal 
	ITP
	P
	I
	k
	k
	k
	k
	k
	IT
	I
	I
	IT
	k
	k
	k
	I
	k
	I
	k
	I
	k
	I

	√
	and d/∈. Therefore P==:Rd. . 
	I
	I:Rd
	I

	Proposition 3.2.6. Let Rbe a Noetherian ring and x∈Ra non-zerodivisor. Let P⊆Rbe a prime ideal ase P∈(xR). Then there exists n. 1 and d∈Rsuch that P=
	nd suppo
	A
	∗

	√
	=(:d). 
	(x
	n
	R:d)
	x
	n
	R

	Proof. Suppose we could prove the result over RP. Then, there would exist n. 1 and c∈RP
	√
	with PRP=, for all ideals Jin RP, with xRP⊆J⊆P. Then, what we wish to show would follow from Lemma 3.2.1. Thus, we may assume that Ris local at P.Let Rdenote the P-adic completion of R. Then Pˆ∈(xR)ˆ, so there exists a minimal prime q⊆Rˆsuch that, for S:==1, by [9, 
	(J:c)
	n
	x
	n
	R
	ˆ
	A
	∗
	ˆ

	R/q, PS∈(xS). Since Sis a quasi-unmixed local domain, height(PS)Theorem 3.8]. Thus, PRˆis minimal over xRˆ+q. If we now apply Lemma 3.2.2 followed by Lemma 3.2.5, we get what we want. . 
	A
	∗

	Corollary 3.2.7. Let Rbe a Noetherian domain, P∈Spec R, and 0 =x∈P. If there exists Q∈Spec()such that h=1 and Q∩R=P, then there exists n. 1 and d∈Rsuch 
	R
	eight(Q)

	√
	that P==:Rd. 
	x
	n
	R:Rd
	x
	n
	R

	Proof. By [5, Proposition 3.5], P∈(xR). Now apply Proposition 3.2.6. . 
	A
	∗


	3.3. The centers of Rees valuations 
	3.3. The centers of Rees valuations 
	In this subsection we prove one of the main results of this paper, namely that the prime ideals in (M)are exactly the centers of the Rees valuations of M. This is the module analogue of 
	A
	∗
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	what is known in the ideal case. We begin with a crucial test for a prime ideal P⊆Rto belong to (M). 
	A
	∗

	Proposition 3.3.1. Let Rbe a Noetherian ring and Mbe a submodule of F=R. Assume height(Ir(M))>0 and let P∈Spec(R). Assume further that there exists P ∈Spec(R)satisfying the following conditions: 
	r

	(i) P ∩R=P, 
	(ii) there exists f∈Rwith coeffcients in Psuch that f/∈P, 
	1 

	(iii) there exists a nivisor x∈Pand a homogeneous element d∈Rlsuch that P =
	on-zerod

	√
	xR :R d=:R d. 
	xR 

	Then P∈(M). 
	A
	∗

	Proof. First localize Rat Pto assume (R,P)is local. Now choose nsuch that P⊆(xR :R d)for all k. n. In particular, since P⊆P we have Pd⊆xR ⊆xF. Since all coeffcients of fare in P, we hais divisible by xin F. Say fd=xqfor some q∈Fk+l. Then we 
	k
	k
	k
	k
	ve that f
	k
	d
	k

	have that P =:R fdas f/∈P. It follows that 
	xR 
	k

	P =:R fd=(x∩R :R xq)=(x:xq)∩R =(:q)∩R,
	xR 
	k
	R 
	R 
	R 
	R 
	R 

	as xis a non-zerodivisor. Note also that q/∈as P is a proper ideal, so that /∈∩Fk+l=. Choose msuch that P⊆(:R fd). Then we have that P⊆P⊆(R :q)∩R and q∈Fk+l\. Since the elements of Pare homogeneous of degree zero when consides m
	R 
	q
	R 
	Mk+l
	m
	xR 
	k
	m
	m
	R 
	Mk+l
	red a

	elements of and qis homogeneous of degree l+k, this means that Pq⊆∩Fk+l=Mk+l. Since Pis maximal and q∈Fk+l\,wehave P∈Ass(Fk+l/). This holds for all k. n, so P∈(M). . 
	R 
	R 
	Mk+l
	Mk+l
	A
	∗

	√
	Remark 3.3.2. Note that the assumption that P ==:R dis needed to ensure that the element qas choserst paragraph of the proof of Proposition 3.3.1 is in F.Ifwe 
	xR :R d
	xR 
	n in the f

	merely assume that P =:R d, then qwill be in but it is not clear that qmust be in F. We will use the uniformity results of the previous subsecwrite the centers on R of the 
	xR 
	F 
	tion to 

	√
	essential valuations of R in the form P ==:R d. 
	xR :R d
	xR 

	The following theorem is one of the main results of this paper. It shows, on the one hand, that the primes in (M)are the centers of the Rees valuations of M, while, on the other hand, these primes are contractions from R of primes associated to the integral closure of powers of a principal ideal, which is reminiscent of the case for ideals (see [5]). 
	A
	∗

	Theorem 3.3.3. Let Rbe a Noetherian domain, Mbe a submodule of F=Rhaving rank r. Let Pbe a prime ideal of R. The following are equivalent: 
	r

	(i) P∈(M). 
	A
	∗

	(ii) Pis the center of a Rees valuation of Mon R. 
	(iii) Pcontains Ir(M)and there exists 0 =x∈Rtogether with a prime ideal P ∈(xR)so that P ∩R=P. 
	A
	∗

	Proof. Witholoss of generality wmay assume that Ris local with maximal ideal P. Assume P∈Ass(Fn/Mn), and write P=(Mn:Rc)with c∈Fn\. Then by Theorem 3.1.6, c/∈MnVfor some Rees valuation Vof M. Now in a similar fashion to what was done in the proof of 
	ut 
	e 
	Mn

	rr
	Lemma 3.1.1, let f,...,frbe a basis of FVsuch that MV=yfiV⊆fiV=FV, where y∈Vis a uniformizing parameter. For 1 . i. ···. in. r,let fi,...,idenote the basis element of Vncorresponding to the product fi···fi. Then we have 
	1
	i=1 
	α
	i
	i=1 
	1 
	1
	n
	1 
	n

	MnV=y1 fi,...,iV⊆FnV.
	α
	i
	+···+α
	i
	n
	1
	n

	1.il.···.in.r
	Write c=ci,...,ifi,...,iwith ci,...,i∈V.Let v:K→Z denote the value 
	1
	.i
	l
	.···.i
	n
	.r
	1
	n
	1
	n
	1
	n

	function of V. Since c/∈MnV, there exist 1 . k. ···. kn. rsuch that v(ck,...,k)<αk+···+αk
	1 
	1
	n
	1 
	n
	V. Thus 

	αk+···+αk. However Pc⊆⊆MnV,so Pck,...,kis contained in yv(P). 1 and hence P⊆mV. Therefore P=mV∩Ras Pis the maximal ideal of R. It follows that Pis the center of a Rees valuation, so (i) implies (ii). 
	1 
	n
	Mn
	1
	n

	Now, suppose that Pis the ceter the Rees valuation Von R. Then V=V ∩R, where V =, for a height one prime P ⊆R and Ir(M)V =V.Let P :=∩R. Then P ∩R=Pand Ir(M)⊆P.Now let 0 =x∈P. By the ideal case (see [5, Proposition 3.5]) we have that P ∈(xR), and thus (ii) implies (iii). 
	n
	of 
	R
	P 
	P 
	A
	∗

	Finally, suppose (iii) holds. Since P R), by Corollary 3.2.7, there exists n. 1 and 
	∈A
	∗
	(x

	√d∈R such that P ==:R d. By Lemma 3.2.4 we may also assume that dis a homogeneous element of R, say of degree l. On the other hand, by the ideal case, P is the center of an essential valuation V of R. Since Ir(M)⊆P, Ir(M)V =V, by Lemma 3.1.1. Now choose f∈Raccording to Proposition 3.1.7, i.e., fhas its coeffcients in Pand f/∈P.All of the conditions in Proposition 3.3.1 are satisfed and therefore P∈(M). . 
	x
	n
	R :R d
	x
	n
	R 
	1 
	A
	∗

	Remark 3.3.4. Maintain the notation in Theorem 3.3.3. The proof above shows that for a prime P ⊆R, the following statements are equivalent: 
	(a) P ∩R∈(M). 
	A
	∗

	(b) 
	(b) 
	(b) 
	Ir(M)⊆P and P ∈(xR),for some (any) 0 =x∈R∩P. 
	A
	∗


	(c) 
	(c) 
	P is the center of an essential valuation V of R for which Ir(M)V =V. 


	Theorem 3.3.3 is true without the assumption that Ris a domain. It will follow immediately from the domain case and Proposition 3.3.5. However, we need the domain case of Theorem 3.3.3 to prove Proposition 3.3.5, and so had to prove it frst. We will state and prove the general result after Proposition 3.3.5. 
	Proposition 3.3.5. Let Rbe a Noetherian ring and Mbe a submodule of F=R. Suppose height(Ir(M))>0 and let P⊆Rbe a prime ideal in the support of F/M. Then P∈(M)if and only if there exists a minimal prime ideal qsuch that P/q∈().
	r
	A
	∗
	A
	∗
	M+qF

	qF
	Proof. Without loss of generality we may localize at Pto assume Ris local with maximal ideal P.If P∈(M), then we proceed as in the ideal case. Choose n0 such that 
	-
	A
	∗
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	Ass(Fn/Mn)and write P=(Mn:Rf)with f∈Fn\Mn. Since f/∈Mn, Proposition 2.2.2 says that there exists a minimal prime ideal qsuch that if we write S:=R/q, the image of 
	˜
	fin Fnay f˜, is not in . Clearly PS·f˜⊆. Since PSis maximal and f/∈, PS=(MnS:Sf)˜. Increasing nif necessary gives PS∈(MS), which is what we want. 
	S,s
	MnS
	MnS
	MnS
	A
	∗

	Next assume that qis a minimal prime ideal of Rand that PS∈(MS), where S:=R/q. Note that since Pis in the support of M, Ir(M)⊆P, and it follows that dim(R)>0. We frst note that we may assume that the depth of Ris positive. Suppose that the depth of Ris zero. Let L:=(0 :P), where nis chosen large enough so that R/Lhas positive depth. Note that Lis a nilpotent ideal. Since q/Lis a minimal prime of R/L, if we know the result when the depth of Ris positive, then P/L∈((M+LF)/LF). By Proposition 2.5.2, P∈(M), whi
	A
	∗
	n
	A
	∗
	A
	∗

	To continue, we have PS∈(MS), so by Theorem 3.3.3 and Remark 3.3.4 there exists a prime ideal PS⊆R(MS)so that PS=PS∩Sand PSis the center of an essential valuation V of R(MS)satisfying Ir(M)V =V. By Proposition 3.1.7, there exists an element f˜∈R(MS)such that the coeffcients of f˜belong to PSand ˜∈PS.Let P ⊆R be the prime ideal corresponding 
	A
	∗
	1 

	f/to PSand let f∈R be a preimage of f˜such that f∈R, fhas coeffcients in Pand f/∈P. Now let x∈Rbe a non-zerodivisor. Then PS∈(xR(MS)), by Remark 3.3.4. By the ideal version of this proposition (see [5, Proposition 3.18]), P ∈(xR). Thus, by Proposition 3.2.6, there exists n. 1 and d∈R so that 
	1
	A
	∗
	A
	∗

	P =xR :d=:d,
	n
	x
	n
	R 

	and by Lemma 3.2.4, we may assume dis homogeneous. By Proposition 3.3.1, P∈(M), which completes the proof. . 
	A
	∗

	We will now state and prove Theorem 3.3.3 without the assumption that Ris a domain. 
	Theorem 3.3.6. Let Rbe a Noetherian ring, Mbe a submodule of F=Rsuch that height(Ir(M))>0.For a Pbe a prime ideal of R, the following statements are equivalent: 
	r

	(i) P∈(M). 
	A
	∗

	(ii) Pis the center of a Rees valuation of Mon R. 
	(iii) Pcontains Ir(M)and there exists x∈Rwith height(xR)>0 and a prime ideal P in (M)(xR)with P ∩R=P.If grade(P)>0,wemay take xto be a (any) non-zerodivisor in P. 
	A
	∗

	Proof. First note that each of the conditions imply that Ir(M)⊆P,soif Psatisfes any of the conditions, Pis in the support of F/M. Now suppose that (i) holds. By Proposition 3.3.5, there exists a minimal prime q⊆Psuch that if we write S:=R/q, PS∈(MS). By Theorem 3.3.3, PSis the center of a Rees valuation Vof MSon S. Clearly Vhas center Pon Rand by defnition, Vis a Rees valuation of M. 
	A
	∗

	If (ii) holds, then by defnition, there exists a minimal prime q⊆Psuch that writing S:=R/q, Pis the center of a essential valuation V of R(MS)for which Ir(M)V =V. Since Phas positive height, take x∈Pnot in any minimal prime of R. Then if PSdenotes the center of V on R(MS), by Remark 3.3.4 PSbelongs to (xR(MS)). Writing P for the preimage of PSin R, it follows from Proposition 3.18 in [5] that P∈(xR). Thus, the frst statement in (iii) holds. The second statement is clear. 
	A
	∗
	A
	∗

	Finally, if (iii) olds, then by [5, Proposition 3.18], there exists a minimal prime Q ⊆P such that P/Q ∈A(x·R/Q). Thus, there exists a minimal prime q⊆Rsuch that if we write S:=R/qand PSP/Q, Q =qF ∩R, Q =R(MS)and PS∈A(xR(MS)). By Theorem 3.3.3, PS∈A(MS). Therefore, P∈A(M), by Proposition 3.3.5. Thus, (iii) implies (i) and the proof is complete. . 
	h
	∗
	:=
	R/
	∗
	-
	∗
	∗


	3.4. Asymptotic primes via faithfully fat extensions 
	3.4. Asymptotic primes via faithfully fat extensions 
	In this section we note the important fact that the asymptotic primes of Mare induced from any faithfully fat extension of R. In particular, when Ris a local ring, the asymptotic primes of Mlift to those of Mˆand those of Mˆcontract back to those of M. Though this is certainly not unexpected, it requires work, just as in the ideal case. 
	We begin with a result that is similar in spirit to the case for ideals, in that it brings into play extensions of R(M)that look like extended Rees algebras. Unfortunately, unlike the case for ideals, the zeroth graded pieces of these rings are rather complicated and are certainly not just Min degree zero. 
	Proposition 3.4.1. Let Rbe a Noetherian ring and Mbe a submodule of F=R. Assume height(Ir(M))>0 and let P⊆Rbe a prime ideal. Then P∈(M)if and only if there exists 
	r
	A
	∗

	−1 −1
	i=1,...,rand P ∈(tR[t])such that P ∩R=P.
	A
	∗

	ii
	Proof. We will frst prove the proposition in the case that Ris a domain. By Theorem 3.3.3 and the defnition of Rees valuation, we have that P∈(M)if and only if there is an essential valuation V of R such that MV =FV and mV ∩R=P. Using Proposition 3.1.4, this holds 
	A
	∗

	−1 −1
	if and only if for some i, there is an essential valuation V of R[t]such that t∈mV and
	ii
	mV ∩R=P. On the other hand, combining [5, Lemma 3.2 and Proposition 3.5], we have that 
	−1 −1
	P ∈(tR[t])if and only if P is the center of an essential valuation of R[t]such that 
	A
	∗
	−1

	iit∈mV , which completes the proof in this case Ris a domain.
	−1 

	i
	Now remove the assumption that Ris a domain and assume that P∈(M). Then there exists a minimal prime q⊆Psuch that for S:=R/q, PS∈(MS), by Proposition 3.3.5. 
	A
	∗
	A
	∗

	−1 −1
	By the domain case, there exists 1 . i. rand a prime ideal PSin (tR(MS)[t])such
	A
	∗

	ii
	−1 −1 −1 −1
	that PS∩S=PS.Now, R(MS)[t]=R(M)[t]/Q, where Q=qF[t]∩R(M)[t],
	iiii
	−1 −1
	and Qis a minimal prime ideal in R(M)[t].Let P be a prime ideal in R(M)[t]such that 
	ii
	−1 −1 −1 −1
	P/Q=PS. Then, P/Q∈A(tR(MS)[t]). Hence P ∈A(tR(M)[t]), by the ideal 
	∗
	∗

	iiii
	case of Proposition 3.3.5 (see [5, Proposition 3.18]). Clearly P ∩R=P. 
	−1 −1
	Conversely assume that P ∈(tR(M)[t])and P ∩R=P. Then there exists a min-
	A
	∗

	ii
	−1 −1 −1 −1
	imal prime Q⊆R[t]such that P/Q∈A((tR(M)[t]+Q)/Q). Say Q=qF[t]∩
	∗

	iiii
	−1
	R(M)[t]with qa minimal prime ideal in R. Then for S:=R/q, PS=(P/Q)∩S,so 
	iPS∈(MS)by the domain case. Thus P∈(M)by Proposition 3.3.5. . 
	A
	∗
	A
	∗

	Theorem 3.4.2. Let Rbe a Noetherian ring, Ma submodule of F=Rand assume height(Ir(M))>0. Let Tbe a Noetherian ring that is a faithfully fat extension of R.For a prime P⊆R, P∈(M)if and only if there exists a prime ideal Q⊆Tsuch that Q∩R=Pand Q∈(MT). In particular, if Ris a local ring, then the P∈(M)if and only if there exists a prime Q∈Rsuch that P=Q∩Rand Q∈(MR). 
	r
	A
	∗
	A
	∗
	A
	∗
	ˆ
	A
	∗
	ˆ
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	Proof. If P∈(M), then such a Qexists by Lemma 2.2.3. Conversely, suppose that Q⊆Tis a me ideal belonging to (MT)and set P:=Q∩R. Then there exists 1 . i. rand 
	A
	∗
	pri
	A
	∗

	−1 −1
	Q ∈A(tRFT(MT)[t])such that Q ∩T=Q, by Proposition 3.4.1. Since RFT(MT)is
	∗

	ii
	−1 −1
	faithfully fat over R(M), by the ideal case, P :=Q ∩R(M)belongs to (tR(M)[t])
	A
	∗

	ii
	(see [6, Proposition 1.9]). Thus, P=P ∩Rbelongs to (M), again by Proposition 3.4.1, which gives what we want. The second statement in the theorem follows as a special case. . 
	A
	∗


	3.5. Asymptotic primes and analytic spread 
	3.5. Asymptotic primes and analytic spread 
	In this subsection we want to give a version for Mof McAdam’s theorem concerning membership in (I), I⊆R, an ideal (see [5, Proposition 4.1]). When Ris a locally quasi-unmixed domain, then in [11], Rees showed that for a prime Pin the support of F/M, Pis the center of an essential valuation of R(M)if and only if the expected local condition on analytic spread holds, i.e., l(MP)=height(P)+r−1. Thus, in this case, one gets McAdam’s theorem for Mby applying Theorem 3.3.3. The general case for Mwill follow by re
	-
	A
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	Theorem 3.5.1. Let Rbe a Noetherian ring and Mbe a submodule of F=R. Assume height(Ir(M))>0 and let Pbe a prime ideal in Rthat contains l(MP)=heigP)+r−1, then P∈(M). Conversely, if Ris locally quasi-unmixed and P∈Ass(Fn/Mn)for some n, then l(MP)=height(P)+r−1. 
	r
	Ir(M).If 
	ht(
	A
	∗

	Proof. We may localize Rat Pto assume that (R,P)is local at P. We may also sume that the residue feld R/Pis infnite. Let Nbe a minimal reduction of M. Then =Mnfor all n, so (N)=(M)and l(N)=l(M). Thus, it is enough to show the result when M=N. Since R/Pis infnite, Proposition 2.4.3 gives μ(M)=l(M), Mis generated by analytically independent elements and PR is a prime ideal. 
	as
	Nn
	A
	∗
	A
	∗

	Assume l(M)=height(P)+r−1. By defnition, l(M)=dim(R/PR). Therefore, 
	height(PR). dim(R)−l(M)=d+r−(d+r−1)=1.
	Since height(P)>0, we have high)=1. Let Q ⊆PR be minimal prime. It follows that there exists a height one prime P ⊆R/Q with P ∩R/Q =PR/Q.Thus,wehaveanessential valuation V of R/Q, centered on P, such that V ∩Kis a Rees luation of M, where Kis the quotient feld of R/(Q ∩R). Therefore, by Theorem 3.6, P∈A(M). 
	e
	t(PR
	va
	3.
	∗

	Now assume that Ris quasi-unmixed and P∈A(M). By Proposition 3.3.5, there exists a minimal prime ideal qsuch that if we write S:=R/q, PS∈(MS). By Theorem 3.3.3, PSis the center of a Rees valuation of MS, which by defnition, means that PSis also the center of an essential valuation V of R(MS)for which MV =FV. By [11, Theorem 2.4], l(MS)=height(PS)+r−1. Since Ris quasi-unmixed, Pand PShave the same height. Thus by Proposition 2.4.6, we have 
	∗
	A
	∗

	height(P)=height(PS)=l(MS)−r+1 . l(M)−r+1.
	Since l(M). height(P)+r−1 (Proposition 2.4.5), this gives the result. . 
	We now summarize the characterizations of (M)that we have obtained. 
	A
	∗

	Theorem 3.5.2. Let Rbe a Noetherian ring and let Mbe a submodule of F=R. Assume height(Ir(M))>0 and let P⊆Rbe a prime ideal. Then the following are equivalent: 
	r

	(i) P∈(M). 
	A
	∗

	(ii) Pis the center of a Rees valuation of M. 
	(iii) Pcontains Ir(M)and P=P ∩R,for some P ∈(xR),some x∈Rsuch that height(xR)>0. 
	A
	∗

	(iv) P/q∈((M+qF)/qF), for some minimal prime q⊆R. 
	A
	∗

	−1 −1
	(v) There exists 1 . i. rand a prime ideal P ∈(tR[t])such that P ∩R=P.
	A
	∗

	ii
	(vi) There exists a faithfully fat extension Tof Randaprime Q∈A(MT)with P=Q∩R. 
	∗

	Furthermore, Ir(M)⊆Pand height(P)=l(MP)−r+1 imply (i) and if Ris locally quasi-unmixed, the converse holds. 

	3.6. Two applications 
	3.6. Two applications 
	In this subsection we will utilize our characterizations of (M)derived in the previous subsections to prove that (M)is a subset of each of the sets A(M)and (Ir(M)). The proof that (M)⊆(Ir(M))will be accomplished by using the fact that when Ris a normal Noetherian domain, the Rees valuations of Mare a subset of the Rees valuations of Ir(M)(see [7]). 
	A
	∗
	-
	A
	∗
	∗
	A
	∗
	A
	∗
	A
	∗

	We begin by showing (M)⊆A(M), thereby extending an important result of Ratliff from the case of ideals (see [10]) to modules. Our task would be made much easier of we knew that the following statement, similar in spirit to Proposition 3.4.1, were true. For a prime P⊆R, 
	A
	∗
	∗

	−1 −1
	P∈A(M)if and only if for some 1 . i. r, there exists a relevant prime divisor P of tR[t]
	∗

	ii
	such that P ∩R=P. This would correspond exactly to a known characterization of A(I)for ideals (see [5]). Unfortunately, we have not been able to prove such a statement. However, the following crucial criterion, similar to Proposition 3.3.1, will ensure that a prime ideal is in A(M). 
	∗
	∗

	Proposition 3.6.1. Let Rbe a Noetherian ring, Ma submodule of F=Rand P∈Spec(R). Assume there exists P ∈Spec(R)satisfying the following conditions: 
	r

	(i) P ∩R=P, 
	(ii) there exists f∈Rwith coeffcients in Psuch that f/∈P, 
	1 

	(iii) there exists a non-zerodivisor x∈Pand a homogeneous element d∈Rlsuch that P =
	√
	. 
	xR :R d

	Then P∈A(M). 
	∗

	Proof. First localize Rat Pto assume (R,P)is local. Now choose nsuch that P⊆(xR :R d)for all k. n. In particular, since P⊆P we have Pd⊆xR ⊆xF. Since all coeffcients of fare in P, we have that fdis divisible by xin F. Say fdome q∈Fk+l. Assume that P satisfes the conditions in the statement. Then, P =xR :R fdas f/∈P.Now 
	k
	k
	k
	k
	k
	k
	=xqfor s
	k

	xR :R fd=(xR :R xq)=(R :R q)
	k
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	as xis a non-zero divisor. Note also that q/∈R as P is a proper ideal, so that q/∈Mk+l. Choose msuch that P⊆(xR :R fd). Then P⊆P⊆(R :q)and q∈Fk+l\Mk+l. Since the elements of Pare homogeneous of degree zero when considered as elements of R and qis 
	m
	k
	m
	m

	m
	homogeneous of degree l+k, this means that Pq⊆R ∩Fk+l=Mk+l. Since Pis maximal and q∈Fk+l\Mk+l,wehave P∈Ass(Fk+l/Mk+l). Since this is true for all k. n,wehavethat P∈A(M). . 
	∗

	Theorem 3.6.2. Let Rbe a Noetherian ring and Mbe a submodule of F=Rsatisfying height(Ir(M))>0. Then (M)⊆A(M). 
	r
	A
	∗
	∗

	Proof. Let P∈(M)and localize to assume that (R,P)is local. Note that Ir(M)⊆P,so dim(R)>0. If P∈Ass(R), then P∈A(M), by Proposition 2.5.1. Thus, we may assume that Rhas positive depth. 
	A
	∗
	∗

	Now, by the defnition of Rees valuation and Theorem 3.3.6, there exists a minimal prime q⊆Rsuch that if we write S:=R/q, PSis the center of an essential valuation V of R(MS)for which Ir(MS)V =V.Let PS:=mV ∩R(MS)and P :=mV ∩R. By Proposition 3.1.7, there exists f∈R(MS)with coeffcients in PS, yet f/∈PS. It follows that there exists f,a
	˜
	1 

	˜preimage of f, such that f∈R, f/∈P and fhas coeffcients in P. On the other hand, let y∈Rbe a non-zerodivisor. By Theorem 3.3.6, there exists P ∈(yR)
	˜
	1
	A
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	√
	n
	with P ∩R=P. By Proposition 3.2.6, for some n. 1 and x:=y, P =,for some d, which can be taken to be homogeneous, say of degree l. Thus, P∈A(M), by Proposition 3.6.1. . 
	(xR :d)
	∗
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	Remark 3.6.3. Let I⊆Rbe an ideal. Then Ratliff’s theorem guarantees (I)is contained in A(I)when height(I)>0 (see [10, Corollary 2.6]). Our hypothesis in Theorem 3.6.2 that height(Ir(M))>0 is the module analogue of this condition. 
	A
	∗
	∗

	We now want to show that (M)⊆(Ir(M)). The main point is that if Ris a normal Noetherian domain, then the Rees valuations of Mare a subset of the Rees valuations of Ir(M)(see [7, Theorem 3.4]). 
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	Theorem 3.6.4. Let Rbe a Noetherian ring and Mbe a submodule of F=Rsatisfying height(Ir(M))>0. Then (M)⊆(Ir(M)). 
	r
	A
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	Proof. Let P∈(M). We may assume that Ris local at P. Set I:=Ir(M). By Theorem 3.4.2 and Proposition 3.3.5, we can fnd a minimal prime qcontained in the completion Rof Rsuch that for S:=ˆ
	A
	∗
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	R/q, PS∈(MS). By the ideal case (see [5, Proposition 3.18]), if PS∈(IS), then P∈(I). Thus, changing notation, we may assume that Ris a complete local domain. By Theorem 3.3.3, Pis the center of a Rees valuation Vof M. From the defnition of Rees valuation, it is clear that Vis also a Rees valuation of M. Since is a normal Noetherian domain, Vis a Rees valuation of I, by [7]. Thus, Vis also a Rees valuation of I. Therefore, by the ideal case [5, Proposition 3.20], P∈(I), which is what we wanted to prove. . 
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	R
	R
	R
	A
	∗

	Corollary 3.6.5. Let Rbe a locally quasi-unmixed ring, let Mbe a rank rsubmodule of F=R, and let P∈l(MP)=height(P)+r−1, then l((Ir(M))P)=height(P). 
	r
	Spec(R).If 

	Proof. Assume that l(MP)=height(P)+r−1. Then P∈(M)by Theorem 3.5.1. Thus P∈(Ir(M))by Theorem 3.6.4. Therefore l((Ir(M))P)=height(P)by Proposition 4.1 of [5]. . 
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	4. Asymptotic primes in low dimension 
	4. Asymptotic primes in low dimension 
	In this section we study (M)in two dimensional Cohen–Macaulay local rings and three dimensional regular local rings. In order to do this some generalizations of results due to Sally in 
	A
	∗

	[12] are needed, which extend bounds on the number of generators of ideals in Cohen–Macaulay rings to bounds on the number of generators of M. 
	4.1. Bounds on the number of generators 
	4.1. Bounds on the number of generators 
	Let (R,m)be a Noetherian local ring and Mbe a submodule of F=R. In the case that 
	r

	λ(F/M)<∞, defne the nilpotency degree of F/Mto be the integer tsuch that mF⊆Mbut t−1t+1 
	t
	F

	mM.If I⊆Ris an ideal, then the order of I,ordR(I),is tif I⊆mbut Im. 
	t

	Let Nbe a fnitely generated R-module, and I⊆Rbe an ideal. If λ(N/IN)<∞, then λ(N/IN)<∞for all n. 1 and there exists a polynomial P(n)with rational coeffcients, whose degree is equal to dim(N), such that P(n)=λ(N/IN)for all n0. The multiplicity of Ion N, denoted eN(I), is the product of (dim(N))!and the leading coeffcient of P. Recall that a∈Iis superfcial of degree t for Iwith respect to Nif there is an integer c>0 such that (IN:Na)∩IN=INfor all n>c. It is straightforward to show that if x∈Iis superfcial of
	n
	n
	t
	n
	c
	n−t
	t

	Remark 4.1.1. Recall that superfcial elements of degree one preserve multiplicity. In fact, let (R,m)be a local Noetherian ring and Na fnitely generated R-module with dim(N)=d>1. Let Ibe an ideal of Rsatisfying λ(N/IN)<∞and assume a∈Iis superfcial of degree tfor Iwith respect to Nand is chosen so that dim(N/aN)=d−1. Then eN(I)=t·eN/aN(I). See [14, Section VIII.8, Lemma 4]. 
	t

	We next give a bound on the minimal number of generators Min terms of the nilpotency degree of F/Mand the multiplicity of the ring. This is an analogue of Theorem 1.2 of [12]. Note that the right-hand side of the estimate now requires a factor of rto refect that fact the rank of Mis greater than one. 
	Lemma 4.1.2. Let (R,m)be a Cohen–Macaulay local ring of dimension d>0. Let Mbe a submodule of F=Rsuch that λ(F/M)<∞, and let tbe the nilpotency degree of F/M. Then 
	r

	μ(M). rteR(m)+d−1 .
	d−1 

	Proof. The proof is by induction on d. Without loss of generality we may assume that R/mis infnite. Note that m/∈Ass(R)as Ris Cohen–Macaulay and d>0. Assume d=1. In this case, there exists an x∈mso that xRis a minimal reduction of mand xis a non-zerodivisor. Then eR(m)=λ(R/xR). Thus, 
	r·eR(m)=λ(F/xF)=λ(F/xF)+λ(xF/xM)−λ(F/M)
	=λ(F/xM)−λ(F/M)=λ(M/xM).
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	The exact sequence 
	0 →mM/xM→M/xM→M/mM→0 
	gives 
	μ(M):=λ(M/mM)=λ(M/xM)−λ(mM/xM)=r·eR(m)−λ(mM/xM).
	Hence, μ(M). r·eR(m). 
	Now assume d>1. We may choose xso that xis a non-zerodivisor on Rand also a superfcial element of degree one for mwith respect to R. Pass to the d−1 dimensional Cohen–Macaulay local ring R/xR. Note that xF⊆Mby the defnition of the nilpotency degree t, and M/xF⊆
	t
	t
	t

	F/x
	F/x
	t
	F

	F/xFwith F/xFa free R/xR-module of rank r. Furthermore λ()=λ(F/M)<∞
	t
	t
	t

	M/xFand by Nakayama’s lemma the nilpotency degree of is t. Hence, by induction 
	t
	F/x
	t
	F

	M/xF
	t

	d−2
	μM/xF. rteR/xtRm/xR+d−2 .
	t
	t

	Next observe that eR/xtR(m/xR)=teR(m)by Remark 4.1.1. Finally, note that μ(xF)=rank(F)=rand hence 
	t
	t

	t
	μ(M). μM/xF+μxF=μM/xF+r.
	t
	t

	Therefore 
	d−2 d−1
	μ(M). μM/xF+r. rtteR(m)+d−2 +r=rteR(m)+d−1 .. 
	t

	Using this lemma, a bound on the number of generators of Mcan be obtained if the quotient, F/M, is Cohen–Macaulay with an annihilator of positive height. This generalizes Theorem 2.1 of [12]. Again, we see the presence of terms involving rthat are not in the original expressions. 
	Proposition 4.1.3. Let (R,m)be a Cohen–Macaulay local ring of dimension d>0. Let M⊆F=Rbe such that F/Mis a Cohen–Macaulay R-module and assume height(Ir(M))>0.Set h:=height(Ir(M))=height(ann(F/M))>0. Then 
	r

	μ(M). reF/M(m)eR(m)+h−1 .
	h−1 

	Proof. Without loss of generality, we may assume R/mis infnite. The proof is by induction on s=s=0 then λ(F/M)<∞and h=d.Now let tbe the nilpotency degree of F/M. Note that mF+MmF+Mfor i=0,...,t−1. For if mF+M=mF+Mthen we would have 
	dim(F/M).If 
	t−i
	t−i−1
	t−i
	t−i−1

	t−i−1 t−it−i−1 
	mF⊆mF+M=m·mF+M.
	Nakayama’s lemma would then give that mF⊆M, contradicting that tis the nilpotency degree of F/M. Thus we have a strictly increasing chain of length t
	t−i−1

	mF+MmF+MmF+MF
	t−1
	t−2

	0 ···.
	MMMM
	Hence λ(F/M). t. The proposition follows in this case by Lemma 4.1.2, since eF/M(m)=λ(F/M). tand h=d. 
	Now assume s>0. Note then that dim(R)>1. Take x∈msuch that xis a non-zerodivisor on Rand F/M, and also superfcial for mwith respect to Rand F/M. We pass to the d−1 dimensional Cohen–Macaulay ring R/xR. Note that (M+xF)/xF⊆F/xFand μ((M+xF)/xF)=μ(M)since xis a non-zerodivisor on F/M. Also note that ann(F/M)+xRand ann(F/(M+xF))are equal up to radical. Thus h=height(ann(F/(M+xF))).Now F/(M+xF)is a s−1 dimensional Cohen–Macaulay module over R/xR, and hence by induction we have 
	R/xR
	-

	M+xF
	μ(M)=μ. reF/(M+xF)(m)eR/xR(m)+h−1 
	h−1 

	xF
	=reF/M(m)eR(m)+h−1 .
	h−1 

	The last equality follows from our choice of xtogether with Remark 4.1.1. . 

	4.2. Stabilizing points for asymptotic primes 
	4.2. Stabilizing points for asymptotic primes 
	Using the bounds from the vious section we are able to fnd a specifc point by which the sets Ass(Fn/Mn)and Ass(Fn/Mn)must have stabilized if the ring is a two dimensional Cohen– Macaulay local ring or a three dimensional regular local ring. First we will need the following lemma, which is a generalization of Lemma 2.14 in [2]. It will allow us to extend a minimal generating set for the nth torsion-free symmetric power of a reduction of Mto one for Mnor . 
	pre
	Mn

	Lemma 4.2.1. Let (R,m)be a local Noetherian ring with R/minfnite and let M⊆F=Rwith rank(M)=r. Assume that N⊆Mis a minimal reduction of M. Then Nn∩mMn=Nn∩m=mNnfor all n. 
	r
	Mn

	Proof. First note that mNn⊆Nn∩mMn⊆Nn∩mnd so it is enough to show that mNn=
	M
	na

	∞∞
	Nn∩m. Now consider T=∩F =Mnand S=R(N)=Nn. Then Tis integral over S, and S/mSis a domain, since Nis generated by analytically independent elements and mSis prime by Proposition 2.4.3. By lying over there is a prime Qof Tsuch that Q∩S=mS. In particular mS⊆mT∩S⊆Q∩S=mS,so mS=mT∩S. Hence m∩Nn=mNn. . 
	Mn
	R(M)
	i=0 
	i=0 
	Mn

	The following is a generalization of Lemma 4.8 in [5] and the proposition following Lemma 2.14 in [2]. 
	Proposition 4.2.2. Let (R,m)be a two dimensional Cohen–Macaulay ring and M⊆F=R, with rank(M)=r.If m∈(M), then for all n. (eR(m)−1)r+1, m∈Ass(Fn/Mn)and m∈Ass(Fn/). 
	r
	A
	∗
	Mn
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	Proof. We may assume that R/mis infnite. Assume that m∈(M).Let Lbe either Mnor for some fxed n, and suppose that m/∈Ass(Fn/L). Then Fn/Lis a one dimensional Cohen– Macaulay module. Clearly we must have height(ann(Fn/L))=1. Thus Proposition 4.1.3 yields 
	A
	∗
	Mn

	n+r−1 
	μ(L). rank(Fn)eR(m)=eR(m).
	r−1 
	On the other hand, m∈(M)implies that l(M)=2 +r−1 =r+1 by Theorem 3.5.1, as Ris Cohen–Macaulay and hence quasi-unmixed. Let Nbe a minimal reduction of M. Since R/mis infnite, Nis minimally generated by r+1 analytically independent elements. By 
	A
	∗

	n+r
	Lemma 4.2.1 there is an embedding of Nn/mNninto L/mLand hence =μ(Nn). 
	r
	n+r−1
	μ(L). eR(m). Thus n. (eR(m)−1)r. Therefore if n. (eR(m)−1)r+1, then m∈Ass(Fn/L). . 
	r−1 

	Along the lines of Theorem 2.15 of [2] we obtain the following proposition. 
	Proposition 4.2.3. Let (R,m)be a three dimensional regular local ring, and M⊆F=Rwith rank(M)=rand ght(ann(F/M))=2. Suppose that l(M)=r+2 and set t=
	r
	hei

	n+2r+1
	Fn/Mnor Fn/Mnis Cohen–Macaulay then . t. In particular, if 
	ordR(ann(F/M)).If 

	n>t(r+1)r−2r−1, then m∈Ass(Fn/)and m∈Ass(Fn/Mn). 
	(r+1)r
	Mn

	Proof. We prove the statement for . The proof for Mnis essentially the same. First we may assume that R/mis infnite. Now let Nbe a minimal reduction of M. Since l(M)=r+2, by 
	Mn

	n+r+1
	Lemma 4.2.1 we have μ(). μ(Nn)=. Set e:=ordR(ann(Fn/)). By choosing h∈m\msuffciently general (e.g., the leading form of n R(m)/mR(m)does not divide the leading form of some element of order ein ann(Fn/Mn)), we may assume that 
	Mn
	r+1
	Mn
	2 
	hi

	ann(Fn/)+hR
	Mn

	ordR/hR=e
	hR
	Mn+hFn
	Mn+hFn

	and his a non-zerodivisor on Fn/.Let S=R/hR, G=Fn/hFn, and set K=. Then Sis a two dimensional regular local ring and μ(K)=μ(), since his not a zerodivisor on Fn/. Next, we have 
	Mn
	hF
	n
	Mn
	Mm

	ann(Fn/)+hR
	Mn

	⊆annS(G/K),
	hR
	so 
	ann(Fn/)+hR
	Mn

	ordSannS(G/K). ordS=e.
	hR
	Furthermore (ann(F/M))⊆ann(Fn/Mn)⊆ann(Fn/Mn)and hence e. nt.Let g∈annS(G/K)such that g∈m\mwhere c=ordS(annS(G/K)). Then S/gSis a one di
	n
	c
	c+1 
	-

	2234 D. Katz, G. Rice / Journal of Algebra 319 (2008) 2209–2234 mensional Cohen–Macaulay ring with eS/gS(m)=c. Noting that G/Kis a fnite length S/gSmodule, by Lemma 4.1.2 we get 
	n+r−1 
	μ(K/gG). rank(G/gG)c. rank(G/gG)e. nt.
	r−1 Thus n+r−1 n+r−1 
	μ(K). μ(K/gG)+rank(G). nt+.
	r−1 r−1 
	Therefore, we have 
	n+r+1 n+r−1
	. μ()=μ(K). (nt+1).
	Mn

	r+1 r−1 
	Simplifying this inequality gives . t. .
	n+2r+1 

	(r+1)r
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