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Abstract. Let R be a local, Noetherian ring and I ⊆ R an ideal. A question 
of Kodiyalam asks whether for fixed i>  0, the polynomial giving the ith Betti 
number of In has degree equal to the analytic spread of I minus one. Under 
mild conditions on R, we show that the answer is positive in a number of cases, 
including when I is divisible by m or I is an integrally closed m-primary ideal.  

 
 
 
 

1. Introduction 

Let (R, m, k) be a local ring with maximal ideal m and residue field k. In this note 
we wish to study the degree of Hilbert–Samuel polynomials of the form τi(n) := 
λ(TorR(R/In,M )), where I ⊆ R is an ideal, M is a finitely generated R-module 
and λ(T ) denotes the length of the R-module T . These polynomials represent 
generalizations of the standard Hilbert–Samuel polynomial P (n) := λ(C/InC), 
where C is a finitely generated module for which λ(C/IC) is finite. In this case, 
it is well known that the degree of P (n) equals dim(C) and its normalized leading 
coefficient is the multiplicity of I on C. However, for the polynomial τi(n), the 
current state of affairs is not very well understood, though there are some partial 
results. It is not hard to see that τi(n) has degree at most l(I) − 1, where l(I) 
denotes the analytic spread of I (see Remark 3.2 below). Kodiyalam asks whether 
in the case M = k the degree of τi(n) might equal l(I) − 1, provided the Tor 
modules in question do not vanish. For values of M different from k, one has mixed 
expectations regarding the degree of τi(n). For example, in [3, Theorem I], it is 
shown that if R is Cohen–Macaulay and I = m, then the τi(n) has the expected 
degree d − 1; but an example ([3], Proposition III) is given showing that if R is not 
Cohen–Macaulay, then the degree can be less than d − 1. As we shall see below, 
the relevant point regarding the degree of τi(n) seems to be that the syzygies of M 
have maximal dimension, so we are able to recover the result from [3] assuming only 
that R is unmixed and equidimensional on the one hand and offer an explanation 
of their example on the other. More precisely, our main results, Theorem 3.3 and 
Theorem 3.4, show that as long as syzygies over R are reasonably well behaved, 
then the degree of τi(n) is l(I) − 1 when we replace the filtration {In} by an I- 
good filtration {Jn} which either satisfies Jn is divisible by m, (mJn : m) = Jn or 
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(Jn : m) /⊆ Jn, where the overbar denotes integral closure. The results stated in 
the abstract are then immediate corollaries. 

 
2. Preliminaries 

In this section we set our notation and lay the groundwork for our main results 
concerning the degree of the Hilbert–Samuel polynomials under consideration. Our 
primary motivation and interest is the original question of Kodiyalam concerning 
the asymptotic behavior of the ith Betti numbers of powers of a fixed ideal, i.e., 
the case when M = k. On the other hand, it is not yet clear to us whether there 
is anything particularly special about k, except that its syzygies have nilpotent 
annihilators. 

Throughout (R, m, k) will denote a Noetherian local ring having residue field k 
and Krull dimension d. Given an ideal I ⊆ R and a finitely generated R-module 
M , we assume that I is not nilpotent and we let τ I(n) or just τi(n) denote the 
polynomial giving the lengths of TorR(R/In,M ) for n large, when such lengths are 
finite. We shall tacitly assume that i ≤ p. d.(M ). Similarly, if J := {Jn}n≥0 is a 
filtration such that the lengths of the modules TorR(R/Jn,M ) take on the values 
of a polynomial for n large, we write τ J (n) or just τi(n) for this polynomial. The 
motivating case for us is the case when M = k, in which case τi(n) gives the ith 
Betti numbers of R/In for n large. By dimension shifting, if deg(τi(n)) = l(I) − 1, 
then the polynomial giving the degree of the ith Betti numbers of In also has degree 
l(I) − 1. 

For an ideal I, we will consider filtrations of ideals J := {Jn}n≥0 satisfying the 
following properties : (i) In ⊆ Jn, for all n, (ii) In · Jm ⊆ Jn+m, for all n and m, 
and (iii) there exists q ≥ 1 such that Jn+q = InJq for all n. We will say that such a 
filtration is a good filtration with respect to I. Note that we are not requiring that 
Jn · Jm ⊆ Jn+m. We write RI := 

EB 
Intn for the Rees ring of R with respect to 

n≥0 
I (t an indeterminate) and, by abuse of notation, RJ := 
RI -module corresponding to the filtration J . 

EB
n≥0 Jntn for the finite 

We will use the following notation. If I ⊆ R is an ideal and K is a finitely 
generated R-module, then we write lK(I) to denote the analytic spread of I on K, 

which is just the Krull dimension of the graded module 
EB 

K = R, we write l(I). 
n≥0 InK/mInK.  When 

We begin with a remark concerning syzygies over R. The contents are well known 
to experts, but we include them for the convenience of the reader and for ease of 
reference. 

Remark 2.1. (i) Suppose that M has a rank; in other words, there exists an r ≥ 0 
such that MQ is a free RQ-module of rank r for all Q ∈ Ass(R). Then any non-zero 
syzygy K of M is a faithful R-module. To see this, note that KQ is a free RQ 
module of constant rank, for all Q ∈ Ass(R). Thus, for any such Q, KQ =  0 if 
and only if K = 0. For any x ∈ R, if x · K = 0, then x · KQ = 0; thus, xQ = 0. 
Since this holds for all Q, x = 0, so K is faithful. In particular, it follows that if 
depth(R) > 0, then every syzygy of every finite length R-module, and hence of k, 
is faithful. 

(ii) Suppose dim(R) > 0 and depth(R) = 0. Let K be the ith syzygy in a 
minimal free resolution of the residue field of R. We note that the annihilator 
of K is nilpotent. Indeed, for all primes Q /= m, KQ is free of some fixed rank. 
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If this rank were zero, then K would have finite length. By [5, Corollary 3.16], 
TorR(R/mn+1, k) = mnK/mn+1K, for n large, so this Tor vanishes for large n, 
which is absurd, for then p. d.(R/mn+1) would be finite. Thus KQ /=  0 for all 
primes Q /= m. It follows that the annihilator of K is nilpotent. Note that the 
annihilator of K is a non-zero nilpotent ideal, since the same clearly holds for 
m. In Theorem 3.3 below, we will show that the syzygies of any integrally closed 
m-primary ideal have nilpotent annihilators. 

As mentioned above, a key ingredient in our main results is the dimension of 
the syzygies over R. More precisely, this ingredient will be the dimension of var- 
ious graded modules over RI determined by the syzygy and the filtration under 
consideration. The propositions below address this issue. 

Let I ⊆ R be an ideal and K a finitely generated R-module. Then it is well 
known that dim(

EB 
InK/In+1K) = dim(K) and lK(I) = lR/ann(K)(I).  Our 

first proposition notes that these relations extend to filtrations that are good with 
respect to I. This result follows immediately from the ideal case, but lacking a 
suitable reference, we give a brief indication of the proof. 

Proposition 2.2. Let I ⊆ R be an ideal and J := {EBJn} be an I-good filtration. Let 
K be a finitely generated R-module. Then : (i) dim( n≥0 JnK/Jn+1K) = dim(K) 
and (ii) dim(

EB 
JnK/mJnK) = lK (I). 

n≥0 
Proof. We may mod out the annihilator of K and assume that K is a faithful R- 
module. Set S := RI [t−1] and K := 

EB∞  JnKtn (Jn := R if n ≤ 0), so that K 
is a finitely generated, faithful S-module and K≥0 is a finitely generated, faithful 
RI -module. Thus, the S-modules S/t−1S and K/t−1K have the same support. 
Similarly, the RI -modules RI/mRI and K≥0/mK≥0 have the same support. The 
required identities now follow from the definitions and the well-known fact that 
dim(S/t−1S) = dim(R). □ 

In the proof of the following proposition we will use the fact that if R is a quasi- 
unmixed local ring, then RJ [t−1] localized at its homogeneous maximal ideal is a 
quasi-unmixed local ring of dimension d + 1 (see [8], Proposition 2.1). 

Proposition 2.3. Let K be a finitely generated R-module with nilpotent annihi- 
lator. Let Jn be an I-good filtration and assume RJ is a ring. Let L := {Ln} be 
another filtration satisfying : (i) Jn ⊆ Ln, for all n, (ii) RL is an RJ -module, 
(iii) x · RL ⊆ RJ , for some non-zerodivisor x ∈ R and (iv) Lq /⊆ Iq , for some q. 
Assume furthermore that R is quasi-unmixed. Then dim(

EB 
LnK/JnK) =  d, 

where d = dim(R). 
Proof. Set S := RJ [t−1] = 

EB∞  Jntn and write M for its homogeneous max- 
imal ideal.  Since 

:= 
EB −∞ is the quotient of the finite -module 

EB C n≥0 LnK/JnK S 
∞  LnKtn by its submodule 

EB∞  JnKtn, C is a finite module S-module, and 
thus its dimension is the same over both rings RJ and S. We are going to regard 
C as a module over the ring S. Let A  ⊆  S denote the annihilator of C. Since A 
contains the non-zerodivisor x, we have dim(C) = dim /(S/A) ≤ d. 

Now let ftr ∈  A be a homogeneous element. (Note, r ∈ Z.) Then for all n, 
we have fLnK ⊆ Jn+rK. If a ∈ fLn, then the usual determinant trick shows 
that a is integral over the ideal Jn+r modulo the annihilator of K. But then a is 
integral over Jn+r, since the annihilator of K is nilpotent. Thus, f Ln ⊆ Jn+r. It 
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follows that A · RL[t−1] ⊆ S. By hypothesis, we can write RL[t−1] = U , for some 
ideal U ⊆ S. Thus, A ·  U ⊆ x · S, from which it follows that A · U ⊆ x · S. If 
U ⊆ x · S, then U ⊆ S. But this would imply Lq ⊆ Jq = Iq , a contradiction. Thus, 
A consists of zerodivisors modulo the ideal x · S, so A  ⊆ P, for some prime P in 
S associated to x · S. Since x · S is homogeneous, P is contained in M. Since R 
is quasi-unmixed, SM is quasi-unmixed, so height(P) = 1 ([9], Theorem 2.12). It 
follows that dim(S/P) = d, so dim(S/A) = d, as required. □ 

3. The degree of τi(n) 

In this section we present our main results concerning the degree of τ J (n). We 
provide three classes of filtrations of ideals for which τ J (n) (with M essentially 
arbitrary) has maximal degree. In particular, our main results apply to filtrations 
satisfying any one of the following conditions : Jn is divisible by m, (mJn : m) = Jn 
or (Jn : m) /⊆ Jn. These results in turn provide a large number of examples where 
the question of Kodiyalam has a positive answer. 

Before turning to our main result, we offer a couple of comments and results 
concerning the degree of τ I (n), when M = k. In [4], it is shown that for a finite 
R-module N satisfying dim(N ) = dim(R), the Betti numbers of mnN are given by 
a polynomial of degree lN (m) − 1, for n large. In particular, deg(τm(n)) = d − 1. 
Kodiyalam also shows that if I is the ideal of maximal minors of a generic t ×(t + 1) 
matrix, the Betti numbers of In are given by a polynomial of degree l(I) − 1 and 
cites a result due to Herzog which states that if R is a regular local ring and RI 
is Cohen–Macaulay, then the Betti numbers of In are given by a polynomial of 
degree l(I) − 1 for n large. These are the only results concerning the case M = k 
that we know of. In fact, aside from the result of Marley mentioned in the proof 
of Proposition 3.1 below and Theorem I from [3], these represent the only prior 
results we know of giving the exact degree of τ I (n) for any sort of module M . 

Proposition 3.1. Let I ⊆ R be an ideal and assume M = k. Then τ I (n) has 
maximal degree l(I) − 1 in each of the following cases: 

(1) i = 1; 
(2) R is Cohen–Macaulay, I ⊆ R is m-primary and 1 ≤ i ≤ d; 
(3) i = 2, grade(I) ≥ l(I) − 1 and I is not generated by a regular element. 

Proof. For (1), we note that the short exact sequence 0 → m → R → k → 0 gives 
rise to the exact sequence 

0 → TorR(R/In, k) → m/mIn → R/In → k → 0, 

from which it follows that TorR(R/In, k) = (In ∩ m)/mIn = In/mIn. Thus, we 
have deg(τ I(n)) = l(I) − 1, essentially by the definition of analytic spread. For 
(2), we may harmlessly assume that k is infinite. Let J be a minimal reduction of 
I. Then it is shown in [6, Corollary 4.9], that the degree of the polynomial giving 
the lengths of TorR(R/In, R/J ) equals d − 1, for 1 ≤ i ≤ d. Take a short exact 
sequence of the form 0 → k → R/J → C → 0, where C is a finite length R-module. 
Fix 1 ≤ i ≤ d. Using subadditivity of lengths in the associated long exact Tor 
sequence, it follows that either the degree of the polynomial giving the lengths of 
TorR(R/In, k) equals d − 1 or the degree of the polynomial giving the lengths of 
TorR(R/In,C) equals d − 1. If it’s the former, we’re done. If it’s the latter, we 
repeat the process until C = k, and this gives what we want. 
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For (3), first note that TorR(R/In, k) = 0 for all large n if and only if R/In 

has projective dimension one if and only if In, and hence I, is generated by a non- 
zerodivisor. So if I is not generated by a regular element, we may assume that the 
Tor modules in question do not vanish. 

Now Tor2(R/In, k) = Tor1(R/In, m). Assuming this doesn’t vanish, we need to 
prove deg(τ2(n)) = l(I) − 1. We induct on l := l(I). If l = 1, then deg(τi(n)) ≤ 0, 
and since τ2(n) is not identically zero, the result is immediate. 

Assume l ≥ 2. Consider the part of the minimal resolution of m: 
0 → K → F → m → 0. 

Pick x ∈ I a non-zerodivisor so that x is a superficial element of I on m and on its 
first syzygy K. This is possible because grade(I) ≥ l(I) − 1 > 0. Let S denote the 
ring R/xR and n its maximal ideal. We can further choose x so that its image in the 
fiber ring of I is part of a transcendence basis over k. We then have l(IS) = l(I)−1, 
so grade(IS) ≥ l(IS) − 1. The short exact sequence induced by multiplication by 
x, 

0 → R/I 
· 
→ R/I n+1 → S/I n+1 S → 0, 

gives rise to the long exact sequence 
·x R n+1 R n+1 n ·x n+1 

· · ·  → Tor1 (R/I , m) → Tor1 (S/I S, m) → m/I m → m/I m. 
As in the proof of [3, Lemma 2.5], the maps in this sequence induced by multipli- 
cation by x are injective. It follows that 

λ(TorR(R/In+1, m)) − λ(TorR(R/In, m)) = λ(TorR(S/In+1S, m)). 
1 1 1 

It now suffices to check that deg λ(TorR(S/In+1S, m)) = l(IS) − 1. Our grade 
hypothesis and choice of x allow us to apply the change of rings formula for Tor, 
giving 

TorR(S/In+1S, m) = TorS(S/In+1S, m/xm). 
1 1 

Thus, we must prove that the degree of the polynomial giving the lengths of this 
second Tor module equals l(IS) − 1, the maximum possible value. 
Consider the short exact sequence of S-modules, 

0 → k → m → m 

xm xR 
→ 0, 

induced by the natural projection. We have the long exact sequence 
TorS(S/In+1S, m/xm) → TorS(S/In+1S, n) → k → 

1 
m 

In+1m + xm → 

1 
m 

In+1m + xR 

 
→ 0. 

Thus, the cokernel of the map TorS(S/In+1S, m/xm) → TorS(S/In+1S, n) has 
1 1 

length at most one. If l(I) > 2, then, by induction, the lengths of TorS(S/In+1S, n) 
are given by a polynomial of degree l(IS) − 1 > 0, and since the length of 
TorS(S/In+1S, m/xm) is greater than or equal to λ(TorS(S/In+1S, n)) − 1, we 

1 1 
are done. If l(I) = 2, then by induction, if TorS(S/In+1S, n) = 0, then IS is 
generated by a non-zerodivisor. Therefore I is generated by a regular sequence of 
length two in R. But in this case, if we apply the Hilbert–Burch theorem to In, 
we readily see that TorR(R/In, k) = kn, so deg(τ2(n)) = 1 = l(I) − 1, which is 
what we want. Finally, note that when l(I) = 2 and TorS(S/In+1S, n) /= 0, then 
the map TorS(S/In+1S, n) → k cannot be surjective, for it would imply that the 
map m/(In+1m + xm) → m/(In+1m + xR) is an isomorphism. This is false, as 
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the non-zero class of the element x gets mapped to zero. Thus, in this case, the 
lengths of TorS(S/In+1S, m/xm) are bounded below by a non-zero constant, and 
this finishes the proof of the proposition. □ 

Remark 3.2. Before continuing, we would like to point out that for any finitely 
generated R-module M and I-good filtration J , if the lengths of TorR(R/Jn,M ) 
are finite, then the function giving these lengths is a polynomial τ J (n) in n for 
large n and deg(τ J (n)) ≤ l(I) − 1. Indeed, let K ⊆ F respectively denote the 
ith syzygy and (i − 1)st free module in a resolution of M . Then Tori(R/Jn,M ) =  
(JnF ∩ K)/JnK. The graded module 

EB 
(JnF ∩ K)/JnK is a finite module over 

RI which is annihilated by mqRI for some large, but fixed, value of q. Thus, the 
lengths in question are given by a polynomial of degree l(I) − 1 or less. Note that if 
l(I) = 1 and the lengths are not zero for n large, then τ J (n) is a non-zero constant. 
In other words, in the case that l(I) = 1, the polynomial τ J (n) has the “expected” 
degree l(I) − 1. 

As mentioned above, aside from the choice of filtration, our results depend upon 
the fact that the syzygies of M have, among other properties, maximal dimension. 
Listed below are various conditions which guarantee the properties of syzygies that 
we need in Theorem 3.3 and Theorem 3.4. 

Conditions on M , R and I. 
(a) M has a rank (possibly zero). 
(b) For all minimal primes Q ⊆ R, MQ is not a free RQ-module. 
(c) R is equidimensional, unmixed and lR/P (I) = d, for all minimal primes P . 
(d) M is a finite length R-module that tests finite projective dimension. 
For M as in condition (d), we mean that an R-module N has projective dimension 
less than i if and only if TorR(N, M ) = 0. While the residue field k obviously 
satisfies this condition (and this is the case we are mainly interested in), it follows 
from [1, Corollary 3.3], that R/C satisfies the condition for any integrally closed 
m-primary ideal C. 

Theorem 3.3. Let M be a finitely generated R-module and I ⊆ R be an ideal. Fix 
i> 0. Let J := {Jn}n≥0 be an I-good filtration of ideals such that the lengths of the 
modules TorR(R/Jn,M ) are finite for n large. Assume any one of the conditions 
(a), (b), (c) or (d). Then deg(τ J (n)) = l(I) − 1 in each of the following cases: 

(1) Jn is divisible by m, i.e., there exists a good filtration {Ln} with respect to 
I such that Jn = mLn for all n.; 

(2) (mJn : m) = Jn for all n » 0 and l(I) = d. 

Proof. Let K ⊆ F respectively denote the ith syzygy and (i − 1)st free module in a 
minimal resolution of M , so that Tori(R/Jn,M ) = (JnF ∩ K)/JnK. Now assume 
the filtration satisfies the condition in (1). Then since K ⊆ mF , LnK/mLnK is con- 
tained in TorR(R/Jn,M ), so in all cases, the degree of τ J (n) is greater than or equal to one less than the dimension of the graded module 

EB 
L K/mL K. By Proposi- i i 

tion 2.2 above, this is lR/ann(K)(I). If in all cases we show that l(I) = lR/ann(K)(I), 
then deg(τ J (n)) ≥ l(I)−1, which will give the result since deg(τ J (n)) ≤ l(I)−1, by i i 
Remark 3.2. Now, if M has a rank, then K is faithful over R, so lR/ann(K)(I) = l(I). 
If for every minimal prime Q ⊆ R, MQ is not free, then KQ /= 0, so ann(K) ⊆ Q. 
Thus ann(K) is nilpotent. It follows easily from this that lR/ann(K)(I) = l(I). If 

n  n
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R is equidimensional and unmixed, then since any prime minimal over the anni- 
hilator of K must be in Ass(R), it follows that dim(R/ann(K)) = d = dim(R). 
Since I extended to R/ann(K) still has maximal analytic spread modulo each 
minimal prime, we have lR/ann(K)(I) = d = l(I). Finally, suppose M satisfies 
condition (d). If depth(R) > 0, then rank(M ) = 0, and this case is covered by 
case (a).  Suppose depth(R) = 0.  Then, on the one hand, we have that KQ is 
a free summand of FQ of constant rank for all prime ideals Q /= m. If KQ =  0 
for all Q, then K has finite length. Thus Jp · K = 0, for p » 0. It follows that 
TorR(R/Jn,M ) = 0, for n large. On the other hand, by condition (d), the vanish- 
ing of Tor against M implies that R/Jn has finite projective dimension, which is 
absurd, since depth(R) = 0. Thus, KQ /= 0 for all minimal primes Q, so ann(K) is 
nilpotent. Therefore, lR/ann(K)(I) = l(I). Thus, in all cases, lR/ann(K)(I) = l(I), 
so in all cases deg(τ J (n)) = l(I) − 1. 

i EB 
Now assume the filtration satisfies the condition (2). Because n(JnF ∩ K) is 

a finite module over RI , there exists t ≥ 1 such that JnF ∩ K = In−t(JtF ∩ K), 
for n ≥ t. It follows that It annihilates TorR(R/Jn,M ) for all n ≥ t. Increasing t if 
necessary, we may replace I by It and the filtration J by {Jnt}, and after changing 
notation, assume that for all n ≥ 1, JnF ∩ K = I(Jn−1F ∩ K), I annihilates 
TorR(R/Jn,M ) and (mJn : m) = Jn. 

We now have TorR(R/Jn,M ) = I(Jn−1F ∩ K)/JnK ⊆ Jn−1K/JnK, since I 
annihilates TorR(R/Jn−1,M ). It follows that the socle of TorR(R/Jn,M ) is con- 

i i 
tained in the socle of Jn−1K/JnK. On the other hand, let v ∈ Jn−1K be such 
that its image in Jn−1K/JnK is contained in the socle. Then m · v ∈ JnK. Thus, 
m · v ∈ mJnF . Our hypothesis on Jn implies that v ∈ JnF . Thus v ∈ JnF ∩ K, so 
the image of v in Jn−1K/JnK is in the socle of TorR(R/Jn,M ). In other words, 
the socle of TorR(R/Jn,M ) equals the socle of Jn−1K/JnK. Therefore, the degree 
of τ J (n) is greater than or equal to the degree of the polynomial which gives the 
lengths of the socles of Jn−1K/JnK. To finish, we must calculate the dimension of 

n≥0 Soc(JnK/Jn+1K) as a module over RI . This calculation is similar in spirit 
to the one given for H0 (−) of a graded module in the comment after Definition 
6.1.1 in [2]. 

On the one hand, our hypotheses on M imply that dim(K) = d, so by Proposition 
2.2, we have dim(

EB JnK/Jn+1K) = d. On the other hand, the hypotheses on EB 
I and M yield lK(I) = d, so by Proposition 2.2, n≥0 JnK/mJnK has dimension 
d.  Take Q to be a prime ideal in RI of dimension d that is minimal over the 
annihilator of 

EB 
EB 

 
n≥0 JnK/mJnK.  We claim that Q contains the annihilator of 

n≥0 JnK/Jn+1K. Suppose not. Let f ∈ RI have degree r and suppose f /∈ 
Q, but f is in the annihilator of 

EB 
JnK/Jn+1K. Note that r /= 0, since Q 

n≥0 
contains m. Increasing r if necessary, we may assume Jn+1+rK = IJn+rK, for 
all n.  Thus, for all n, f · JnK ⊆ Jn+1+rK ⊆ mJn+rK, so f belongs to the 
annihilator of 

EB 
JnK/mJnK, a contradiction. Thus, the claim holds, so Q ∈ 

Ass(
EB 

n≥0 ) 
n≥0 JnK/Jn+1K . 

If we write Q = (0 : f ), for f ∈ 
EB

n≥0 JnK/Jn+1K, it follows that f belongs to 
the graded module 

EB 
Soc(JnK/Jn+1K).  Thus, the dimension of this module 

n≥0 
is d, so the polynomial giving the lengths of the modules Soc(JnK/Jn+1K) has 
degree d − 1. Thus, deg(τ J (n)) ≥ d − 1. Since the reverse inequality always holds, 
the proof of part (2) is complete. □ 

n≥0 
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Theorem 3.4. Let M be a finitely generated R-module and I ⊆ R an ideal. Fix 
i > 0. Let J := {Jn}n≥0 be an I-good filtration of ideals such that the lengths of 
the modules TorR(R/Jn,M ) are finite for n large. Assume R is quasi-unmixed and 
that any one of the module conditions (a), (b) or (d) holds. In addition, suppose 
that RJ is a ring and (Jn : m) /⊆ Jn for some n. Then deg(τ J (n)) = l(I) − 1. 

Proof. Let L denote the filtration {Ln} whose nth term is Ln := (Jn : m). We 
first note that the assumption that Ln /⊆ Jn for some n implies that l(I) = d, so 
that our goal is to show that d eg(τ J (n)) = d − 1. Indeed, if say Lq /⊆ Jq, m is an 
associated prime of R/Jq = R/Iq , and hence m is associated to R/In for all n ≥ q 
([7], Proposition 3.4), so l(I) = d ([7], Proposition 4.1). 

As before, let K ⊆ F respectively denote the ith syzygy and (i − 1)st free 
module in a minimal resolution of M , so that Tori(R/Jn,M )  = (JnF ∩ K)/JnK. 
We now claim that the graded module 

EB 
LnK/JnK has dimension d. Suppose n≥0 

the claim holds. Then the degree of the polynomial giving the lengths of the 
components of this module has degree d − 1. Since K ⊆ mF , we have LnK/JnK ⊆ 
TorR(R/Jn,M ), so deg(τ J (n)) ≥ d − 1. Since the reverse inequality always holds, 

i i 
we have deg(τ J (n)) = d − 1. 

To verify the claim, we first note that the proof of Theorem 3.3 shows that in 
each of the cases (a), (b) and (d), the annihilator of K is nilpotent. Suppose first 
that depth(R) > 0. Note that this automatically holds in case (a). Then there 
is a non-zerodivisor x ∈ m. It follows that x · RL ⊆ RJ , so the filtrations J 
and L satisfy the requirements of Proposition 2.3. Thus, by Proposition 2.3, the 
dimension of the graded module 

EB 
LnK/JnK is equal to d. 

Suppose that depth(R) = 0. We reduce to the case of positive depth as follows. 
Let U denote the m-torsion part of R, i.e., the set of elements in R annihilated by 
some power of m. Then U is a nilpotent ideal and S := R/U is a quasi-unmixed 
local ring with positive depth. Writing IS, J S and LS for extensions to S, we 
have that J S is an IS-good filtration, RJ S is a ring and RLS is an RJ S-module. 
Moreover, since 

EB 
LnS ⊆ 

EB 
(JnS :S mS), the filtration LS meets the third 

requirement of Proposition 2.3; i.e., there exists a non-zerodivisor x ∈ S such that 
x·RLS ⊆ RJ S. If we choose q so that Lq /⊆ Jq, we also have that LqS /⊆ JqS. Since 
the annihilator of the S-module K/UK is readily seen to be nilpotent, Proposition 
2.3 yields that the RIS-module 

EB 
Thus, 

EB 
n≥0 (LnK + UK)/(JnK + UK) has dimension d. , which is what we want. 

n≥0 LnK/JnK has dimension d □ 
 

The following corollary follows from the first part of Theorem 3.3 and shows that 
Kodiyalam’s question has a positive answer when we consider the Betti numbers of 
mIn or the Betti numbers of In for I divisible by m. 

Corollary 3.5. Let I ⊆ R be an ideal, i > 0 and M a finite R-module. Assume 
that any one of the module conditions (a), (b), (c) or (d) is in place. Then τ J (n) 
has degree l(I) − 1 in each of the following cases : (i) J := {mIn} for all n and (ii) 
J := {In}, with I = mL for some ideal L, provided the modules TorR(R/Jn,M ) 
have finite length. In particular, for any ideal I and i > 0, the ith Betti numbers 
of R/mIn and mIn are given by polynomials having degree l(I) − 1 and if I = mL, 
for some ideal L, then the Betti numbers of R/In and In are given by polynomials 
having degree l(I) − 1. 
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Proof. The first statement is clear. For the second statement, set Ln := mn−1Ln, 
so that {Ln} is an I-good filtration; taking Jn = In = mLn, Theorem 3.3(1) 
applies. □ 

Note that if I = m, then it follows from Corollary 3.5 (or Theorem 3.3) that 
if R is unmixed and equidimensional, then τm(n) has degree d − 1. This greatly 
extends [3, Theorem I]. Moreover, it follows that the polynomial giving the Betti 
numbers of mn has degree d − 1, so we have a simpler proof of Kodiyalam’s result 
([4], Example 12) when N = R. 

It follows from our next corollary that Kodiyalam’s question has a positive answer 
for the filtration {In} when R is analytically unramified and I has maximal analytic 
spread. 

Corollary 3.6. For I ⊆ R and M a finite R-module as in the previous corollary, 
assume l(I) = d. Then deg(τ J (n)) = d − 1 in the following cases: 

(1) J = {(mIn : m)} and depth(R) > 0, 
(2) J = {(In : m)} and depth(R) > 0, 
(3) R is analytically unramified and J = {In}, 

provided the modules TorR(R/Jn,M ) have finite length. In particular, for n large, 
the ith Betti numbers of (mIn : m), (In : m) and In (when R is analytically unram- 
ified) are given by polynomials of maximal degree. 

Proof. In each case RJ is finite over RI , so the filtration is good with respect to 
I. Moreover, in each of these cases, the filtration satisfies (mJn : m) = Jn for all n, 
so the second part of Theorem 3.3 applies. □ 

Remark 3.7. Let R be an analytically unramified local ring and I ⊆ R an ideal. It 
is well known that there exists t ≥ 1 such that J := It is a normal ideal, i.e., the 
powers of J are all integrally closed. Thus if l(I) = d, then deg(τ J (n)) = d − 1, 
for J the J -adic filtration. In particular, the ith Betti numbers of the powers of 
J are given by a polynomial of maximal degree. In fact, a stronger result follows 
from Corollary 3.8. 

The following corollary is an immediate consequence of Theorem 3.4. 

Corollary 3.8. Let R be a quasi-unmixed local, I ⊆ R be an ideal, and let M 
be a finitely generated R-module. Assume any one of the module conditions (a), 
(b) or (d). If (In : m) /⊆ In for some n, then for all i > 0, if the modules 
Tori(R/In,M ) have finite length, τ I (n) has maximal degree d − 1. It follows that 
the ith Betti numbers of R/In and In are given by polynomials having degree d − 1. 
In particular, if I is an integrally closed ideal and m ∈ Ass(R/I), then τ I(n) has 
maximal degree and the ith Betti numbers of R/In and In are given by polynomials 
having degree d − 1, for all i>  0. 

Remark 3.9. Two comments regarding the previous corollary are in order. The 
first is that, as in the proof of Theorem 3.4, the condition (In : m) /⊆ In for some 
n implies that I has analytic spread d. The second comment is that, for I ⊆ R 
an m-primary ideal, the condition (In : m) /⊆ In for some n (and hence all large 
n) seems to hold more often than not, in a sense that we have not been able to 
quantify. Indeed, if this condition doesn’t hold, then (In : m) ⊆ In for all n. The 
only examples we know of satisfying this latter condition are ideals I which also 

http://www.ams.org/journal-terms-of-use


3082 D. KATZ AND E. THEODORESCU 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 

 

 

i 

i 

 
have the property that In has finite projective dimension for n large. Of course, 
then τ I (n) is identically zero when i>  d. 

Note added in proof. S. Goto has shown us an example of an ideal I generated 
by a system of parameters in a Buchsbaum local ring R so that (In : m) ⊆ In for 
all n and In has infinite projective dimension for all n.) 

It should be clear from the foregoing, that in those (rare) cases where syzygies 
of M over R have small dimension, one cannot expect deg(τi(n)) to equal l(I) − 1. 
This phenomenon is at the heart of the example given in [3]. In fact, let R be any 
local ring with finite module M that has an ith syzygy K of dimension less than 
d. Then, say for any m-primary ideal I, after replacing I by large powers of itself, 
TorR(R/In,M ) ⊆ In−1K/InK (as in the proof of Theorem 3.3), and it follows that 
deg(τi(n)) ≤ deg(PK(n)) < d − 1, where PK(n) is the Hilbert polynomial giving 
the lengths of In−1K/InK. This can be realized concretely (as in [3]) by finding 
a ring R containing an ideal J such that dim(J ) < d and taking M = R/J and 
i = 1. On the other hand, as pointed out in Remark 1.1, for any local ring R, every 
syzygy of k has nilpotent annihilator, so one cannot produce a similar example with 
K a syzygy of k. This lends further credence for a positive answer to Kodiyalam’s 
question. 
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