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1 Introduction 

Let (R,m) be a local Noetherian ring. Given an R-ideal I of height g, a closely 
related object to I is its integral closure I . This is the set (ideal, to be precise) of all 
elements in R that satisfy an equation of the form 

Xm + b1Xm−1 + b2Xm−2 + · · · + bm−1X + bm = 0, 
p

with bj 2 I j and m a non-negative integer. Clearly one has that I � I � I , where p
I is the radical of I and consists instead of the elements of R that satisfy an equa-

tion of the form Xq − b = 0 for some b 2 I and q a non-negative integer. While 
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p
[EHV] already provides direct methods for the computation of I , the nature of I 
is complex. Even the issue of validating the equality I = I is quite hard and rela-
tively few methods are known [CHV]. In general, computing the integral closure 
of an ideal is a fundamental problem in commutative algebra. Although it is the-
oretically possible to compute integral closures, practical computations at present 
remain largely out-of-reach, except for some special ideals, such as monomial ide-
als in polynomial rings over a feld. One known computational approach is through 
the theory of Rees algebras: It requires the computation of the integral closure of 
the Rees algebra R of I in R[t]. However, this method is potentially wasteful since 
the integral closure of all the powers of I are being computed at the same time. On 
the other hand, this method has the advantage that for the integral closure A of an 
affne algebra A there are readily available conductors: given A in terms of genera-
tors and relations (at least in characteristic zero) the Jacobian ideal Jac of A has the 
property that Jac · A � A, in other words, A � A : Jac. This fact is the cornerstone 
of most current algorithms to build A [deJ, V]. 

On a seemingly unrelated level, let Hi = Hi(I) denote the homology modules of 
the Koszul complex K� built on a minimal generating set a1, . . . ,an of I . It is well 
known that all the non-zero Koszul homology modules Hi are annihilated by I , but 
in general their annihilators tend to be larger. To be precise, this article outgrew 
from an effort to understand our basic question: 

Are the annihilators of the non-zero Koszul homology modules Hi of 
an unmixed ideal I contained in the integral closure I of I? 

We are particularly interested in the two most meaningful Koszul homology mod-
ules, namely H1 and Hn−g — the last non-vanishing Koszul homology module. Of 
course the case that matters most in dealing with the annihilator of the latter module 
is when R is not Gorenstein. We also stress the necessity of the unmixedness re-
quirement on I in our question. Indeed, let R = k[[x,y,z,w]] with k a feld characteris-

2tic zero. The ideal I = (x2 −xy,−xy+y ,z2 −zw,−zw+w2) is an height two mixedp
ideal with Ann(H1) = I = (I ,xz−yz−xw+yw) and Ann(H2) = I = (x−y,z−w). 
It is interesting to note that this ideal has played a signifcant role in [CHV], where 
it was shown that the integral closure of a binomial ideal is not necessarily bino-
mial, unlike the case of its radical as shown by Eisenbud and Sturmfels [ES]. A 
frst approach to our question would be to decide if the annihilators of the Koszul 
homology modules are rigid in the sense that the annihilator of Hi is contained in 
the annihilator of Hi+1. Up to radical this is true by the well-known rigidity of 
the Koszul complex. If true, we could concentrate our attention on the last non-
vanishing Koszul homology. Unfortunately, this rigidity is not true. An example 
was given by Aberbach: let R = k[x,y,z]/(x,y,z)n+1 and let E be the injective hull 
of the residue feld of R. Then z is in the annihilator of H1(x,y;E), but zn does not 
annihilate H2(x,y;E). It would be good to have an example where such behavior 
occurs for the Koszul homology of an ideal on the ring itself. 

An obvious question is: What happens when I is integrally closed? In Section 
2 we provide some validation for our guiding question. In Corollary 2.4 we show 
that for any m-primary ideal I that is not generated by a system of parameters and 
c 2 R\I such that cH1 = 0 and c 2 I : m, then c 2 I . In particular, if I is an inte-



grally closed ideal then Ann(H1) = I . We then proceed to study ann(H1) for several 
classes of ideals with good structure: these include syzygetic ideals, height two per-
fect Cohen-Macaulay ideals, and height three perfect Gorenstein ideals. While in 
the case of height two perfect Cohen-Macaulay ideals the Koszul homology mod-
ules are faithful (see Proposition 2.10), in the case of syzygetic ideals we observe 
that ann(H1) can be interpreted as I : I1(ϕ), where I1(ϕ) is the ideal generated by 
the entries of any matrix ϕ minimally presenting the ideal I (see Proposition 2.6). 
In the case of height three perfect Gorenstein ideals we show the weaker statement 
that (ann(H1))2 ˆ I (see Theorem 2.12). 

Section 3 contains variations on a result of Burch, which continues the theme 
of this paper in that they deal with annihilators of homology and integrally closed 
ideals. The result of Burch that we have in mind [B] asserts that if TorR(R/I,M),t 
M a fnitely generated R-module, vanishes for two consecutive values of t less 
than or equal to the projective dimension of M, then m(I : m) = mI . This has the 
intriguing consequence that if I is an integrally closed ideal with fnite projective 
dimension, then Rp is a regular local ring for all p 2 Ass(R/I). In particular, a local 
ring is regular if and only if it has an m-primary integrally closed ideal of fnite 
projective dimension. A variation of Burch’s theorem is given in Theorem 3.1. 
We then deduce a number of corollaries. For instance, we show in Corollary 3.3 
that integrally closed m-primary ideals I can be used to test for fnite projective 
dimension, in the sense that if TorR

i (M,R/I) = 0, then the projective dimension of 
M is at most i − 1. This improves Burch’s result in that we do not need to assume 
that two consecutive Tors vanish. Recent work of Goto and Hayasaka ([GH1] 
and [GH2]) has many more results concerning integrally closed ideals of fnite 
projective dimension. 

The annihilator of the conormal module I/I2 is a natural source of elements 
in the integral closure of I . In Section 4 we study a class of Cohen-Macaulay 
ideals whose conormal module is faithful. We close with a last section giving an 
equivalent formulation of our main question, and also include another question 
which came up in the course of this study. 

2 Annihilators of Koszul homology 

We start with some easy remarks, that are defnitely not sharp exactly because of p
their generality. It follows from localization that ann(H1) ˆ I . Moreover, for any 
R-ideal I minimally presented by a matrix ϕ we also show that ann(H1) ̂  I : I1(ϕ), 
where I1(ϕ) is the ideal generated by the entries of ϕ. Things get sharper when 
one focuses on the annihilator of the frst Koszul homology modules of classes of 
ideals with good structural properties. We conclude the section with a result of 
Ulrich about the annihilator of the last non-vanishing Koszul homology module. 

2.1 The frst Koszul homology module 

Our frst theorem is a general result about annihilators of Koszul homology. It 
follows from this theorem that our basic question has a positive answer for the 



frst Koszul homology module in the case that I is an integrally closed m-primary 
ideal. Throughout this section we assume that Koszul homology modules under 

1consideration are not zero. 

Theorem 2.1 Let (R,m) be a local Noetherian ring and let I be an m-primary ideal 
satisfying Hi(I) 6= 0 and µ(I) � d + i. If c 2 R\I is an element such that cHi(I) = 0 
then one of the following conditions hold : 

(a) I : c = mI : c 

(b) There exists J � I and x 2 R such that I = J + (cx), µ(I) = µ(J) + 1 and 
c Hi(J) = c Hi−1(J) = 0. 

We will need a lemma before proving Theorem 2.1. 

Lemma 2.2 Let J � R be an ideal and c,x 2 R. Assume that (J,cx) is primary to 
the maximal ideal. Then λ(Hi(J,c)) = λ(annc Hi(J,cx)). 

Proof. Induct on i. Suppose i = 0. The desired equality of lengths follows imme-
diately from the exact sequence 

·c
0 ! ((J,cx) : c)/(J,cx) −! R/(J,cx) −! R/(J,cx) −! R/(J,c) ! 0. 

Suppose i > 0 and the lemma holds for i − 1. We have an exact sequence 

0 ! Hi(J,cx)/cHi(J,cx) −! Hi(J,cx,c) −! annc(Hi−1(J,cx) ! 0. 

But Hi(J,cx,c) = Hi(J,c) �Hi−1(J,c), so 

λ(Hi(J,c)) + λ(Hi−1(J,c)) = λ(annc(Hi−1(J,x)) + λ(Hi(J,cx)/cHi(J,cx)). 

Using the induction hypothesis, we obtain λ(Hi(J,c)) = λ(Hi(J,cx)/cHi(J,cx)) = 
λ(annc Hi(J,cx)). 

Proof of Theorem 2.1. Suppose (a) does not hold. Then there exists x 2 m such 
that cx is a minimal generator of I . We can write I = J +(cx), for an ideal J � I 
satisfying µ(I) = µ(J)+ 1. We will see below that J must be m-primary. 

On the one hand, from the exact sequences 

0 ! Hi(J)/cHi(J) −! Hi(J,c) −! annc Hi−1(J) ! 0 

and 
0 ! Hi(J)/cxHi(J) −! Hi(J,cx) −! anncx Hi−1(J) ! 0 

1The statements of Theorem 2.1, Corollary 2.3 and Corollary 2.4 have been changed from the 
original published version of this paper. In Theorem 2.1 we have added the condition that µ(I) � d + i, 
where d is the dimension of R. In Corollaries 2.3 and 2.4, we have added the corresponding condition 
that µ(I) � d + 1. The proofs of 2.1 and 2.5 have been changed as well. We note that the statement 
of our main result in this section, Corollary 2.5, did not require change. We thank Janet Striuli for 
pointing out to us that the proof of our original version of Theorem 2.1 was not correct. 



we get 
λ(Hi(J,c)) = λ(Hi(J)/cHi(J)) + λ(annc Hi−1(J)) 

and 
λ(Hi(J,cx)) = λ(Hi(J)/cxHi(J)) + λ(anncx Hi−1(J)). 

On the other hand, 

λ(Hi(J)/cxHi(J)) � λ(Hi(J)/cHi(J)) and λ(anncx Hi−1(J)) � λ(annc Hi(J)). 

Since cHi(J,cx) = 0, Hi(J,cx) = annc Hi(J,cx), so λ(Hi(J,cx)) = λ(Hi(J,c)), by 
Lemma 2.2. It follows from this that λ(Hi(J)/cHi(J)) = λ(Hi(J)/cxHi(J)). Thus, 
cHi(J) = cxHi(J), so cHi(J) = 0, by Nakayama’s lemma. Now, assume for the 
moment that J is m-primary. Then since 

λ(annc Hi−1(J)) = λ(anncx Hi−1(J)), 

it follows that λ(Hi−1(J)/cHi−1(J)) = λ(Hi−1(J)/cxHi−1(J)), so cHi−1(J) = 0, as 
before. 

To see that J is m-primary, suppose µ(I) = r + 1. Writing I = (z1, . . . ,zr ,cx), 
with J = (z1, . . . ,zr), if J were not m-primary, it would have to have height d − 1. 
Let P be a height d −1 prime containing J. Note that c 62 P, so Hi(z1, . . . ,zr ;RP) = 0, 
since cHi(J) = 0. By [E], Theorems 17.4 and 17.6, r − i < grade(JP) � d − 1, so 
µ(I) = r + 1 < (d + i), a contradiction. Thus, J must be m-primary, and the proof 
is complete. 

Corollary 2.3 Let (R,m) be a local Noetherian ring and let I be an m-primary 
ideal satisfying µ(I) � d + 1. If c 62 I and c ·H1(I) = 0, then I : c = mI : c. 

Proof. If I : c properly contains mI : c, then by Theorem 2.1, there exists J � I and 
x 2 m such that I = J +(cx), µ(I) = µ(J)+ 1 and c · H0(J) = 0. But then, c 2 J, so 
I = J, a contradiction. 

Corollary 2.4 Let (R,m) be a local Noetherian ring and let I be an m-primary 
ideal satisfying µ(I) � d + 1. If c 2 R\I is an element such that c · H1(I) = 0 and 
c 2 I : m, then c 2 I . 

Proof. Since m � I : c, we have mc � mI , by Corollary 2.3. By the determinant 
trick, c 2 I . 

Corollary 2.5 Let (R,m) be a local Noetherian ring and let I be an integrally 
closed m-primary ideal with H1(I) 6= 0. Then Ann(H1) = I. 



Proof. We frst note that µ(I) � d +1. Indeed, since H1(I) 6= 0, I is not generated by 
a regular sequence. Thus, by the main result of [G], I cannot be generated by a sys-
tem of parameters. Thus, µ(I) � d + 1. Now, suppose annH1(I) properly contains 
I . Take c 2 (annH1(I)\I) \ (I : m). By Corollary 2.4, c 2 I = I , a contradiction. 
Thus, annH1(I) = I . 

Syzygetic ideals: It follows from the determinant trick that the annihilator of 
Im/Im+1 is contained in I for all m. Hence, another piece of evidence in support 
of our question is given by the close relationship between H1 and the conormal 
module I/I2. This is encoded in the exact sequence 

0 ! δ(I) −! H1 −! (R/I)n −! I/I2 ! 0, 

where δ(I) denotes the kernel of the natural surjection from the second symmetric 
power Sym2(I) of I onto I2, Sym2(I) � I2, see [SV]. We will exploit this exact 
sequence in at least two occasions: Proposition 2.6 and Theorem 4.1. We recall 
that the ideal I is said to be syzygetic whenever δ(I) = 0. 

Proposition 2.6 Let R be a Noetherian ring. For any R-ideal I minimally presented 
by a matrix ϕ, ann(H1) ˆ I : I1(ϕ), where I1(ϕ) denotes the ideal generated by the 
entries of ϕ. If, in addition, I is syzygetic then ann(H1) = I : I1(ϕ). 

Proof. Let Z1 and B1 denote the modules of cycles and boundaries respectively. If 
x 2 ann(H1) one has that for z 2 Z1 the condition xz 2 B1 means that each coordi-
nate of z is conducted into I by x. Thus x 2 I : I1(ϕ). The reverse containment holds 
if I is syzygetic. In fact, in this situation one actually has that H1 ,! (I1(ϕ)/I)n . 
Thus I : I1(ϕ) ˆ Ann(H1). 

Corollary 2.7 Let R be a local Noetherian ring, and let I be an ideal of fnite 
projective dimension n. Then (ann(H1))n+1 � I. 

Proof. Assume I is minimally presented by a matrix ϕ. By the above proposi-
tion, ann(H1) ˆ I : I1(ϕ). The result then follows immediately from the following 
proposition of G. Levin (unpublished). The proof follows from a careful analysis 
of Gulliksen’s Lemma, 1.3.2 in [GL]. 

Proposition 2.8 Let R be a local Noetherian ring and let I be an ideal of fnite 
projective dimension n, minimally presented by a matrix ϕ. Then (I : I1(ϕ))n+1 � I. 

Remark 2.9 In general, the ideal I : I1(ϕ) may be larger than the integral closure 
of I . For example the integrally closed R-ideal I = (x,y)2, where R is the local-
ized polynomial ring k[x,y](x,y), is such that I : I1(ϕ) = (x,y). However, Levin ’s 
proposition shows that (I : I1(ϕ))2 ˆ I . 



Height two perfect ideals: The frst case to tackle is the one of height two perfect 
ideals in local Cohen-Macaulay rings. However the Cohen-Macaulayness of the 
Hi ’s gets into the way. Indeed we have the following fact: 

Proposition 2.10 Let R be a local Cohen-Macaulay ring and let I be a height two 
perfect R-ideal. Then for all i (with Hi 6= 0) one has Ann(Hi) = I. 

Proof. Consider the resolution of the ideal I 

0 ! Rn−1 −! Rn −! I ! 0. 

The submodule of 1-cycles of K�, Z1, is the submodule Rn−1 of this resolution. 
Also, for all i one has Zi = 

Vi Z1. All these facts can be traced to [AH]. This im-
plies that for any i � n − 2, Hi — this multiplication is in H�(K). Thus the 1 = Hi 
annihilator of H1 will also annihilate, say, Hn−2. But this is the canonical module 
of R/I, and its annihilator is I. The conclusion now easily follows. 

Gorenstein ideals: Let us consider a perfect m-primary Gorenstein ideal in a local 
Noetherian ring R. In this situation, if I is Gorenstein but not a complete inter-
section then Ann(H1) =6 I . Otherwise, R/I would be a submodule of H1. By a 
theorem of Gulliksen [GL], if H1 has a free summand then it must be a complete 
intersection. Actually, using Gulliksen’s theorem one shows that if I is m-primary, 
Gorenstein but not a complete intersection, then the socle annihilates H1. Combin-
ing Proposition 2.6 and the work of [CHV] yields the following result: 

Proposition 2.11 Let (R,m) be a local Noetherian ring with embedding dimension 
at least 2 and let I be an m-primary ideal contained in m2 with R/I Gorenstein. 
Suppose further that I is minimally presented by a matrix ϕ and that I1(ϕ) = m, 
where I1(ϕ) denotes the ideal generated by the entries of ϕ. Then ann(H1) ˆ I . 

Proof. By Proposition 2.6 and our assumption we obtain that ann(H1) ̂  I : I1(ϕ) = 
I : m. Our assertion now follows from Lemma 3.6 in [CHV] since (I : m)2 = 
I(I : m). 

For an height three perfect Gorenstein ideal I we have some evidence that 
(ann(H1))2 = I · ann(H1). If this were to hold in general, it would imply that 
I ( ann(H1) ˆ I . Thus far, we can prove the weaker result that the square of the 
annihilator of H1 is in the integral closure of I. 

Theorem 2.12 Let R be a local Noetherian ring with char(R) 6= 2 and let I be a 
height three perfect Gorenstein ideal minimally generated by n � 5 elements. Then 

(ann(H1))2 ˆ I . 

Proof. Let a1, . . .an denote a set of minimal generators of I . Notice that B1 and Z1 
are submodules of Rn of rank n −1; in general, if E is a submodule of Rn of rank r, 



we denote by det(E) the ideal generated by the r × r minors of the matrix with any 
set of generators of E (as elements of Rn). 

Let c 2 R be such that cZ1 ˆ B1. It suffces to prove that c2 2 I since the 
square of an ideal is always integral over the ideal generated by the squares of 
its generators. Note that cn−1 det(Z1) ˆ det(B1). Let V be a valuation overring 
of R with valuation v; the ideal IV is now principal and generated by one of the 
original generators, say a1 = a. By the structure theorem of Buchsbaum and Eisen-
bud [BE], we may assume that a is one of the maximal Pfaffans of the matrix 
presenting I . Since I is generated by a, B1V is generated by the Koszul syzy-
gies (a2,−a,0, . . . ,0),(a3,0,−a, . . . ,0), . . . ,(an,0,0, . . . ,−a). Hence det(B1V ) = 
(an−1) = I n−1V . As for Z1V , one has that det(Z1V ) includes the determinant 
of the minor defning a2 (a is the Pfaffan of the submatrix). Thus cn−1I2V ˆ 
I n−1V , which yields that cn−1 2 I n−3V , as cancellation holds. Hence, we have that 
(n − 1)v(c) = v(cn−1) � v(I n−3V ) = (n −3)v(IV ). Finally, this yields 

n − 3 
v(c2) � 2 v(IV ) � v(IV )

n − 1 

and, in conclusion, c2 2 I . 

Remark 2.13 It is worth remarking that the above proof shows much more. Recall 

that I b
a 

denotes the integral closure of the ideal generated by all x 2 R such that 
xb 2 I a . By [BE], n = 2k + 1 is odd. Our proof shows that 

(ann(H1)) ˆ I
k− 

k 
1 
. 

As k gets large this is very close to our main objective, proving that (ann(H1)) ˆ I . 

2.2 Last non-vanishing Koszul homology module 

Let us turn our attention towards the tail of the Koszul complex. 

Proposition 2.14 Let R be a one-dimensional domain with fnite integral closure. 
Then any integrally closed ideal is refexive. In particular, for any ideal I its bidual 
(I−1)−1 is contained in its integral closure I. 

Proof. We may assume that R is a local ring, of integral closure B. An ideal L is 
integrally closed if L = R \ LB. Since B is a principal ideals domain, LB = xB for 
some x. We claim that xB is refexive. Let C = B−1 = HomR(B,R) be the conductor 
of B/R. C is also an ideal of B, C = yB, and therefore C−1 = y−1B−1 = y−1C, which 
shows that C−1 = B. This shows that (L−1)−1 ˆ (R−1)−1 \ ((xB)−1)−1 = L. The 
last assertion follows immediately by setting I ˆ L = I . 

We can interpret the above result as an annihilation of Koszul cohomology. Let 
I = (a1, . . . ,am) and let K� denote the Koszul complex 

2 m^ ^ 
0 ! R −! Rm −! Rm −! · · · −! Rm ! 0, 






with differential ∂(w) = z^w, where z = a1e1 + · · ·+anem. One sees that Z1 = I−1z, 
and B1 = Rz. Thus (I−1)−1 is the annihilator of H1. On the other hand H1 =̆ 
Hm−1 =̆ Ext1 

R(R/I,R). Let us raise a related issue: (I−1)−1 is just the annihilator 
of Ext1 

R(R/I,R), so one might want to consider the following question which is 
obviously relevant only if the ring R is not Gorenstein. Let R be a Cohen-Macaulay 
geometric integral domain and let I be a height unmixed ideal of codimension g. Is 
ann(ExtgR(R/I,R)) = ann(Hn−g) always contained in I? Notice that the annihilator 
of the last non-vanishing Koszul homology can be identifed with J : (J : I) for J an 
ideal generated by a maximal regular sequence inside I . This follows since the last 
non-vanishing Koszul homology is isomorphic to (J : I)/J. 

We thank Bernd Ulrich for allowing us to reproduce the following result [U], 
which grew out of conversations at MSRI (Berkeley): 

Theorem 2.15 (Ulrich) Let (R,m) be a Cohen-Macaulay local ring, let I be an 
m-primary ideal and let J ̂  I be a complete intersection. Then J : (J : I) ˆ I . 
In particular the annihilator of the last non-vanishing Koszul homology of I is 
contained in the integral closure of I. 

Proof. We may assume that htJ = htI . We may also assume that R has a canonical 
module ω. We frst prove: 

Lemma 2.16 Let A be an Artinian local ring with canonical module ω and let 
I ˆ A be an ideal. Then 0 :ω (0 :A I) = Iω. 

Proof. Note that 0 :ω (0 :A I) = ωR/0:I . To show Iω = ωR/0:I note that the socle 
of Iω is 1-dimensional as it is contained in the socle of ω. Hence we only need to 
show that Iω is faithful over R/0 : I . Let x 2 annRIω, then xIω = 0, hence xI = 0, 
hence x 2 0 : I . 

Returning to the proof of Theorem 2.15, it suffces to show that (J : (J : I))ω ˆ Iω. 
But (J : (J : I))ω ˆ Jω :ω (J :R I). So it suffces to show Jω :ω (J :R I) ˆ Iω. Re-
placing R,ω by R/J, ωR/J = ω/Jω we have to show 0 :ω (0 :R I) ˆ Iω, which 
holds by Lemma 2.16. 

3 Variations on a theorem of Burch 

Theorem 3.1 below is a variation of Burch’s theorem mentioned in the introduction, 
and strengthens it in the case I is integrally closed. We then deduce a number of 
corollaries. 

Theorem 3.1 Let (R,m) be a local ring, I an integrally closed R-ideal having 
height greater than zero and M a fnitely generated R-module. For t � 1, set Jt := 
ann(Tort (R/I,M)). Let (F�,ϕi) be a minimal free resolution of M. If image(ϕt ) is 
contained in mJtFt−1, then 

image(ϕt R 1R/I ) \ socle(Ft−1/IFt−1) = 0. 









Proof. Take u 2 Ft−1 such that its residue class modulo I belongs to 

image(ϕt R 1R/I ) \ socle(Ft−1/IFt−1). 

Then u = ϕt (v)+ w, for v 2 Ft and w 2 IFt−1. For all x 2 m, ϕt (xv) � 0 modulo 
IFt−1. Thus for all j 2 Jt , there exists z 2 Ft+1 such that ϕt+1(z) � jxv modulo 
IFt . It follows that we can write jxv = ϕt+1(z) + w0, for w0 2 IFt . Therefore, 
jxu = ϕt ( jxv)+ jxw = ϕt (w0)+ jxw. By hypothesis, we get jxu 2 mJtIFt , for all 
j 2 Jt and all x 2 m. Therefore, by cancellation, u 2 IaFt−1. But since I is integrally 
closed, u 2 IFt−1, which gives what we want. 

In the following corollaries, we retain the notation from Theorem 3.1. 

Corollary 3.2 Suppose I is integrally closed and m-primary. If image(ϕt ) is con-
tained in mJtFt−1, then: 

(a) image(ϕt ) � IFt−1. 

(b) JtFt � image(ϕt+1). 

Proof. For (a), if image(ϕt 1R/I ) were not zero, then it would contain a non-zero 
socle element, since I is m-primary. This contradicts Theorem 3.1, so (a) holds. 
For (b), it follows from (a) that Tort (R/I,M) = Ft /(image(ϕt+1)+ IFt ), so JtFt is 
contained in image(ϕt+1)+ IFt , and (b) follows via Nakayama’s Lemma. 

The next corollary shows that integrally closed m-primary ideals can be used to 
test for fnite projective dimension. 

Corollary 3.3 Suppose that I is integrally closed and m-primary. Then M has 
projective dimension less than t if and only if Tort (R/I,M) = 0. 

Proof. The hypothesis implies that Jt = R. Therefore, image(ϕt ) is automatically 
contained in mJtFt−1. By part (b) of Corollary 3.2, Ft � image(ϕt+1), so Ft = 0, by 
Nakayama’s Lemma. 

Corollary 3.4 Let J � R be an ideal and I an integrally closed m-primary ideal. If 
J � m(IJ : I \ J), then J � I. 

Proof. Apply Corollary 3.2 with M = R/J and t = 1. 

Corollary 3.5 Suppose that R is reduced and M has infnite projective dimension 
over R. Then for all t � 1, the entries of ϕt do not belong to m · ann(M). In partic-
ular, each map in the minimal resolution of k has an entry not belonging to m2. 






Proof. Let I be any m-primary integrally closed ideal. If the entries of ϕt belong to 
m ·ann(M), then image(ϕt ) is contained in mJtFt−1. By Corollary 3.2, image(ϕt ) 
is contained in IFt−1. But the intersection of the integrally closed m-primary ide-
als is zero, therefore, image(ϕt ) = 0, contrary to the hypothesis on M. Thus, the 
conclusion of the corollary holds. 

The last statement follows in the case R is regular from the fact that the Koszul 
complex on a minimal set of generators of the maximal ideal gives a resolution of 
k. If R is not regular, then k has infnite projective dimension, and the result follows 
at once from the frst statement. 

In regard to the above corollary, it is well-known that the Koszul complex of a 
minimal set of generators of the maximal ideal is part of a minimal resolution of k 
in all cases, so for the maps occuring in the minimal resolution up to the dimension 
of the ring, the last statement is clear. The new content of the last statement is for 
the maps past the dimension of the ring. 

Corollary 3.6 Suppose I is integrally closed and m 2 Ass(R/I). If image(ϕt ) is 
contained in mJtFt−1, e.g., Tort (R/I,M) = 0, then either M has projective dimen-
sion less than t − 1 or m 2 Ass(Tort−1(R/I,M)). 

Proof. Suppose M has projective dimension greater than or equal to t − 1. Then 
Ft−1 6= 0. By hypothesis, the socle of Ft−1/IFt−1 is non-zero, so a non-zero element 
u in this socle goes to zero under ϕt−1 1R/I . But the theorem implies that the im-
age of u in Tort−1(R/I,M) remains non-zero, so the result holds. 

4 The conormal module 

We end the article with a result in the spirit of our investigation. More precisely 
we show that the conormal module I/I2 is faithful for a special class of Cohen-
Macaulay ideals. 

Theorem 4.1 Let (R,m) be a Gorenstein local ring and I a Cohen-Macaulay al-
most complete intersection. Let ϕ be a matrix minimally presenting I. If I1(ϕ) is a 
complete intersection, then I/I2 is a faithful R/I-module. 

Proof. Let g denote the height of I , write n = g + 1 for the minimal number of 
generators of I = (a1, . . . ,an). We may assume that the ideals generated by any 
g of the ai ’s are complete intersection ideals. Let ei , with 1 � i � n, denote the 
n-tuple (0, . . . ,0,1,0, . . . ,0) where 1 is in the i-th position. Finally, note that H1 is 
the canonical module of R/I. 

Let us consider the exact sequence 

θ π
0 ! δ(I) −! H1 −! (R/I)n −! I/I2 ! 0, 

where δ(I) is the kernel of the natural surjection Sym2(I) � I2, see [SV]. Notice 
0 0 0that for any ε0 = ∑ r jej + B1 2 H1, where ∑ r jaj = 0, one has θ(ε0) = (r1 + I)e1 + 



0 . . . +(r + I)en while for any element in (R/I)n one has π((r1 + I)e1 + . . . +(rn +n 
I)en) = r1a1 + . . . + rnan + I2. Apply ( )_ = HomR/I ( ,H1) to the above exact 
sequence. We obtain 

π_ θ_
0 ! (I/I2)_ −! Hom((R/I)n ,H1) −! Hom(H1,H1) = R/I −! δ(I)_ ! 0. 

To conclude it will be enough to show that (I/I2)_ is faithful. 
First, we claim that the image of θ_ belongs to I1(ϕ)/I . In fact, any element of 

Hom((R/I)n ,H1) can be written as a combination of elementary homomorphism 
of the form 

ξi((1 + I)ei) = ε ξi((1 + I)ej) = 0, if i 6= j, 

with ε = ∑ r jej + B1 2 H1, where ∑ r jaj = 0. Thus, for any ε0 2 H1 we have 

0 0(θ_(ξi))(ε0) = ξi(θ(ε0)) = ξi(∑(r j + I)ej) = (ri + I)ε. 
0 0 0 0Observe that (ri + I)ε = (ri + I)ε0 in H1. Indeed, riε − riε0 = ∑(ri r j − rir j)ej + B1. 

0 0But ∑(ri r j − rir j)ej is a syzygy of the complete intersection (a1, . . . , abi , . . . ,an) and 
thus it is a Koszul syzygy of the smaller ideal: hence it is in B1. In conclusion, 
θ_(ξi) is nothing but multiplication by ri + I 2 I1(ϕ)/I . Given that ε and i were 
chosen arbitrarily one has that the image of θ_ is I1(ϕ)/I . 

Notice that the number of generators of I1(ϕ) is strictly smaller than n. So we 
can say that the image of θ_ is given say by (θ_(ξ2), . . . ,θ_(ξn)). Write, for some 
ci 2 R/I, 

θ_(ξ1) = ∑ ci θ_(ξi). 
i�2 

Hence ξ1 −∑i�2 ci ξi 2 Ker(θ_) = Im(π_) so that we can fnd γ 2 (I/I2)_ such that 

ξ1 − ∑ ci ξi = π_(γ) = γ � π. 
i�2 

The restriction of these homomorphisms to the frst component of Hom((R/I)n ,H1) 
gives an homomorphism from R/I to H1. Now, something that annihilates γ would 
also annihilate the restriction, but that restriction is faithful. 

Remark 4.2 From the proof of Theorem 4.1 we also obtain that Hom(δ(I),H1) = 
R/I1(ϕ). In addition, if I1(ϕ) is Cohen-Macaulay of codimension g then by the 
theorem of Hartshorne-Ogus we have that δ(I) (which is S2) is Cohen-Macaulay 
and therefore depthI/I2 � d − g − 2. 

Unfortunately, there is not much hope to stretch the proof of Theorem 4.1 as 
the following example shows. 

Example 4.3 Let R be the localized polynomial ring k[x,y](x,y). The ideal I = 
5 4 3(x5 − y ,x y,xy4) is such that I2 : I = (I ,x y3). In this case I1(ϕ) = (x,y)2 so that 

µ(I) = µ(I1(ϕ)) = 3. 



5 More Questions 

We end by considering some other closely related questions which came up during 
the course of this investigation. We let I be an m-primary ideal of the local ring R 
minimally generated by n elements, and let Ji be the annihilator of the ith Koszul 
cohomology of I with respect to a minimal generating set of I. 

Set d equal to the dimension of R. Is J1 · J2 · · ·Jn−d contained in In−d? 

Notice that the Koszul homology of I vanishes for values larger than n − d, 
so that the product above represents all the interesting annihilators of the Koszul 
homology of I . Furthermore, a postive answer to this question gives a positive 
answer to our main question. This follows since each Ji contains I . Along any 
discrete valuation v, this means that v(I) � v(Ji) for all i. A positive answer to the 
question above implies that 

n−d n−d 

∑ v(Ji) � (n −d)v(I) � ∑ v(Ji). 
i=1 i=1 

It would follow that v(Ji) = v(I) for all i, implying that Ji � I for all 1 � i � n −d. 
Conversely, if Ji � I for all 1 � i � n − d, then clearly J1 · J2 · · ·Jn−d is contained 
in I n−d, so the above question is equivalent to saying that Ji � I for all 1 � i � 
n −d. This form of the question suggests using homotopies to compare the Koszul 
complex of a set of generators of I with the free resolution of I . However, we have 
not been able to use this idea to settle the question. 

Another question which arose during our work is the following: 

Let n be the number of minimal generators of an m-primary ideal I in 
a Cohen-Macaulay local ring R with infnite residue feld, and let d be 
the dimension of the ring. For every j, d � j � n −1, choose j general 
minimal generators of I, and let Jj be the ideal they generate. Let Hn− j 
denote the (n − j)th Koszul homology of a minimal set of generators of 
I. Is 

Ann(Hn− j) � Jj : (Jj : I) � I? 

We have positive answers to this question for the two extremes: j = d and 
j = n − 1, in the latter case assuming I is integrally closed. 
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