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1 Introduction

Let (R,m) be a local Noetherian ring. Given &sideall of heightg, a closely
related object td is itsintegral closurd. This is the sefideal, to be precisef all
elements in R that satisfy an equation of the form

XM+ b XM 4 bpXM2 4+ + by X + by =0,

with b € Il andm a non-negative integer. Clearly one has thatl C v/I, where

V1 is theradical of | and consists instead of the elementR tifat satisfy an equa-
tion of the formX%—b = 0 for someb € | andg a non-negative integer. While
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[EHV] already provides direct methods for the computation/bf the nature of
is complex. Even the issue of validating the equalityl is quite hard and rela-
tively few methods are known [CHV]. In general, computing the integral closure
of an ideal is a fundamental problem in commutative algebra. Although it is the-
oretically possible to compute integral closures, practical computations at present
remain largely out-of-reach, except for some special ideals, such as monomial ide-
als in polynomial rings over a field. One known computational approach is through
the theory of Rees algebras: It requires the computation of the integral closure of
the Rees algebrg of | in R{t]. However, this method is potentially wasteful since
the integral closure of all the powersldare being computed at the same time. On
the other hand, this method has the advantage that for the integral dafuaa
affine algebraA there are readily availabt®nductors: giver in terms of genera-
tors and relation&at least in characteristic zerhe Jacobian ideal Jac Ahas the
property that JacA C A, in other wordsA C A: Jac. This fact is the cornerstone
of most current algorithms to build A [deJ, V].

On a seemingly unrelated level, lt= H;(1) denote the homology modules of
the Koszul compleX, built on a minimal generating sat,...,a, of I. It is well
known that all the non-zero Koszul homology modideare annihilated by, but
in general their annihilators tend to be larger. To be precise, this article outgrew
from an effort to understand our basic question:

Are the annihilators of the non-zero Koszul homology modyles H
an unmixed ideal | contained in the integral closua# 1?

We are particularly interested in the two most meaningful Koszul homology mod-
ules, namelH; andH,_g — the last non-vanishing Koszul homology module. Of
course the case that matters most in dealing with the annihilator of the latter module
is whenR is not Gorenstein. We also stress the necessity of the unmixedness re-
quirement on in our question. Indeed, IBt=K[X,y, z,w] with k a field characteris-
tic zero. The idedl = (X2 —xy, —xy+Y?, 22 — zw —zw+W?) is an height two mixed
ideal with AnnfH;) =T = (I,xz— yz—xw+yw)and Annfz) = /1 = (X—Yy,z—w).
It is interesting to note that this ideal has played a significant role in [CHV], where
it was shown that the integral closure of a binomial ideal is not necessarily bino-
mial, unlike the case of its radical as shown by Eisenbud and Sturmfels [ES]. A
first approach to our question would be to decide if the annihilators of the Koszul
homology modules are rigid in the sense that the annihilatdr isfcontained in
the annihilator oH;, 1. Up to radical this is true by the well-known rigidity of
the Koszul complex. If true, we could concentrate our attention on the last non-
vanishing Koszul homology. Unfortunately, this rigidity is not true. An example
was given by Aberbach: I&= K[x,y,z]/(x,y,z)"*! and letE be the injective hull
of the residue field dR. Thenzis in the annihilator oH,(x,y;E), butZ" does not
annihilateHz(x,y;E). It would be good to have an example where such behavior
occurs for the Koszul homology of an ideal on the ring itself.

An obvious question is: What happens whésintegrally closed? In Section
2 we provide some validation for our guiding question. In Corollary 2.4 we show
that for anym-primary ideall that is not generated by a system of parameters and
c € R\I such thatH; = 0 andc € | : m, thenc € I. In particular, ifl is an inte-



grally closed ideal then AnHlj) = |. We then proceed to study ahfi| for several
classes of ideals with good structure: these include syzygetic ideals, height-two per
fect Cohen-Macaulay ideals, and height three perfect Gorenstein ideals. While in
the case of height two perfect Cohen-Macaulay ideals the Koszul homology mod-
ules are faithfu[see Proposition 2.10in the case of syzygetic ideals we observe
that annHj) can be interpreted ds 11(¢), wherel,1(¢) is the ideal generated by

the entries of any matrik minimally presenting the ideal(see Proposition 2.6)

In the case of height three perfect Gorenstein ideals we show the weaker statement
that @nnHi))? C T (see Theorem 2.12)

Section 3 contains variations on a result of Burch, which continues the theme
of this paper in that they deal with annihilators of homology and integrally closed
ideals. The result of Burch that we have in mind [B] asserts that{i Rgr, M),

M a finitely generatedR-module, vanishes for two consecutive values lefss

than or equal to the projective dimensionvbfthenm(l: m) = ml. This has the
intriguing consequence thatlifis an integrally closed ideal with finite projective
dimension, theiR, is a regular local ring for afi € Ass(R/I). In particular, a local

ring is regular if and only if it has an-primary integrally closed ideal of finite
projective dimension. A variation of Burch’s theorem is given in Theorem 3.1.
We then deduce a number of corollaries. For instance, we show in Corollary 3.3
that integrally closedn-primary idealsl can be used to test for finite projective
dimension, in the sense that if fM,R/I) = 0, then the projective dimension of

M is at mosi — 1. This improves Burch’s result in that we do not need to assume
that two consecutive Tors vanish. Recent work of Goto and Hayasaka ([GH1]
and [GHZ2]) has many more results concerning integrally closed ideals of finite
projective dimension.

The annihilator of the conormal modulgl? is a natural source of elements
in the integral closure df. In Section 4 we study a class of Cohen-Macaulay
ideals whose conormal module is faithful. We close with a last section giving an
equivalent formulation of our main question, and also include another question
which came up in the course of this study.

2 Annihilators of Koszul homology

We start with some easy remarks, that are definitely not exaqily because of
their generality. It follows from localization that akh( C +/I. Moreover, for any
R-ideall minimally presented by a matrjxwe also show that anHg) C I : 11(¢),
wherel;(¢) is the ideal generated by the entrieshof Things get sharper when
one focuses on the annihilator of the first Koszul homology modules of classes of
ideals with good structural properties. We conclude the section with a result of
Ulrich about the annihilator of the last non-vanishing Koszul homology module.

2.1 The first Koszul homology module

Our first theorem is a general result about annihilators of Koszul homology. It
follows from this theorem that our basic question has a positive answer for the



first Koszul homology module in the case th& an integrally closeéh-primary
ideal. Throughout this section we assume that Koszul homology modules under
consideration are naero.!

Theorem 2.1 Let(R,m) be a local Noetherian ring and let | be mrprimary ideal
satisfying H(I) # 0and iI) > d+i. If c € R\I is an element such that {H =0
then one of the following conditions hold :

(@) l:c=ml:c

(b) There exists & | and x€ R such that & J+ (cx), u(l) = uJ) +1 and
cH(J)=cH_1(J)=0.

We will need a lemma before proving Theorem 2.1.

Lemma 2.2 Let JC R be an ideal and g, R. Assume thdt),cx) is primary to
the maximal ideal. Then M{(J,c)) = A(anrzH;(J,cx)).

Proof. Induct oni. Suppose = 0. The desired equality of lengths follows imme-
diately from the exact sequence

0— ((J,ex):¢)/(J,cx) — R/(@J,cX) — R/(J,cx) — R/(J,¢) — 0.
Suppose i> 0 and the lemma holds foril. We have an exact sequence
0 — Hi(J,cx)/cHi(J,cx) — Hi(J,cx c) — ann(Hi-1(J,cx) — O.
But H(J,cx,.c) =H;(J,c)® Hi—1(J,c), so
A(Hi(3,c))+A(Hi—1(3,c)) = A(anre(Hi—1(3,%)) + A(Hi(J,cx) /cH;(J,cX)).

Using the induction hypothesis, we obtaif;(J,c)) = A(H;(J,cx)/cHi(J,cx)) =
A(anrgHi(J,cx)). O

Proof of Theorem 2.1.Suppose€a) does not hold. Then there exists m such
thatcx is a minimal generator df We can writd = J + (cx), for an ideall C |
satisfying |{l) = u(J) + 1. We will see below that ust be m-primary.

On the one hand, from the exact sequences

0— Hi(J)/cHi(J) — Hi(J,c) — anngHi—1(J) — 0

and
0— Hi(J)/exH(J) — Hi(J,cx) — annyHi_1(J) — 0

1The statements of Theorem 2.1, Corollary 2.3 and Corollary 2.4 have been changed from the
original published version of this paper. In Theorem 2.1 we have added the conditigh)that + i,
whered is the dimension dR. In Corollaries 2.3 and 2.4, we have added the corresponding condition
thatp(l) > d+ 1. The proofs of 2.1 and 2.5 have been changed as well. We note that the statement
of our main result in this section, Corollary 2.5, did not require change. We thank Janet Striuli for
pointing out to us that the proof of our original version of Theorem 2.1 was not correct.



we get
A(Hi(3,¢)) = A(Hi(J)/cHi(J)) + A(ann Hi—1(J))
and
A(Hi(J,ex)) = A(Hi(J)/cxH (J)) + A(annxHi-1(J)).
On the other hand,

A(Hi(3)/exH(J)) > A(Hi(J)/cHi(J)) and A(annxHi—1(J)) > A(anreHi(J)).

SincecH;(J,cx) = 0, Hi(J,cx) = anngH;(J,cx), soA(Hi(J,cx)) = A(Hi(J,c)), by
Lemma 2.2. It follows from this that(H;(J) /cHi(J)) = A(Hi(J)/cxH(J)). Thus,
cHi(J) = cxH(J), socH(J) = 0, by Nakayama’s lemma. Now, assume for the
moment that Js m-primary. Then since

AManngHi_1(J)) = A(annyHi_1(J)),

it follows thatA(Hi_1(J)/cHi—1(J)) = A(Hi—1(J)/cxH_1(J)), socH_1(J) =0, as
before.

To see thadl is m-primary, suppos@(l) =r+1. Writing| = (z,...,z,cX),
with J = (z,...,%), if J were notm-primary, it would have to have heigiht- 1.
LetP be a heightl — 1 prime containing. Note that ¢ P, soH;(z1,...,z;Rp) =
sincecH;(J) = 0. By [E], Theorems 17.4 and 17.6+-i1 < grade(p) <d—1, so
u(l) =r+1< (d+i), a contradiction. Thusg, must bem-primary, and the proof
is complete. O

Corollary 2.3 Let (R,m) be a local Noetherian ring and let | be anprimary
ideal satisfying @) >d+1. Ifc¢ 1l and ¢ Hyi(l) =0, thenl:c=ml : c.

Proof. If | : c properly contains mic, then by Theorem 2.1, there exists J and
x € m such that = J+ (cx), u(l) = u(J) + 1 andc-Ho(J) = 0. But thenc € J, so
| = J, a contradiction. O

Corollary 2.4 Let (R,m) be a local Noetherian ring and let | be anprimary
ideal satisfying (i) > d+1. If cc R\l is an element such thatld () = 0 and
cel:m,thencel.

Proof. Sipcem C 1 :c, we havenc C ml, by Corollary 2.3. By the determinant
trick, ce . O

Corollary 2.5 Let (R,m) be a local Noetherian ring and let | be an integrally
closed m-primary ideal with 1) # 0. Then AnnK;) =I.



Proof. We first note that(l) > d+1. Indeed, sincEl;(1) # 0,1 is not generated by
a regular sequence. Thus, by the main result ofl[Gdnnot be generated by a sys-
tem of parameters. Thug(l) > d+ 1. Now, suppose arih (1) properly contains

I. Takec € (annHy(I)\l)N (I : m). By Corollary 2.4c €1 =1, a contradiction.
Thus, anidy (1) =1. O

Syzygetic ideals: It follows from the determinant trick that the annihilator of
Im/1M+1 is contained ifl for all m. Hence, another piece of evidence in support
of our question is given by the close relationship betwéeand the conormal
module /12, This is encoded in the exact sequence

0—3(1) — H; — (R/)"—1/12 =0,

whered(l) denotes the kernel of the natural surjection from the second symmetric
power Syrg(1) of | onto 12, Symy(1) — 12, see [SV]. We will exploit this exact
sequence in at least two occasions: Proposition 2.6 and Theorem 4.1. We recall
that the ideal Is said to be syzygetic whenever)a¢ 0.

Proposition 2.6 Let R be a Noetherian ring. For any R-ideal | minimally presented
by a matrixp, annHy) C I: 11(d), where {(¢) denotes the ideal generated by the
entries of ¢. If, in addition, | is syzygetic then aap(=1: 11(¢).

Proof. Let Z; andB; denote the modules of cycles and boundaries respectively. If
x € annH1) one has that faz € Z; the conditionxze B; means that each coordi-
nate ofzis conducted intb by x. Thusxe | :11(¢). The reverse containment holds

if 1 is syzygetic. In fact, in this situation one actually has that— (11.(¢)/I)".

Thus I: 11(¢) € Ann(Hy). O

Corollary 2.7 Let R be a local Noetherian ring, and let | be an ideal of finite
projective dimension n. Thear(nHy))"** C 1.

Proof. Assumel is minimally presented by a matrgx By the above proposi-
tion, annHi) C I: 11(¢). The result then follows immediately from the following
proposition of G. Levin (unpublished). The proof follows from a careful analysis
of Gulliksen’s Lemma, 1.3.2 in [GL]. O

Proposition 2.8 Let R be a local Noetherian ring and let | be an ideal of finite
projective dimension n, minimally presented by a matrikhen(l : 11(¢))" 1 C 1.

Remark 2.9 In general, the idedl: 1;(¢) may be larger than the integral closure
of I. For example the integrally clos&tideall = (x,y)?, whereR is the local-
ized polynomial ringk[X,y]xy), is such that: 13(¢) = (x,y). However, Levin s
proposition shows that { 11(¢))? C .



Height two perfect ideals: The first case to tackle is the one of height two perfect
ideals in local Cohen-Macaulay rings. However the Cohen-Macaulayness of the
Hi's gets into the way. Indeed we have the following fact:

Proposition 2.10 Let R be a local Cohen-Macaulay ring and let | be a height two
perfect R-ideal. Then for all ijth H; # 0) one has Anri;) = 1.

Proof. Consider the resolution of the ideal |
0O—-R!1 LR | -0.

The submodule of 1-cycles &., Z;, is the submodul& 1 of this resolution.
Also, for alli one hasz; = A'Z;. All these facts can be traced to [AH]. This im-
plies that for any < n—2, H; = H; — this multiplication is inH, (K). Thus the
annihilator ofH; will also annihilate, say,_». But this is the canonical module
of R/I, and its annihilator is.IThe conclusion now easily follows. O

Gorenstein ideals:Let us consider a perfest-primary Gorenstein ideal in a local
Noetherian ringR. In this situation, it is Gorenstein but not a complete inter
section then AnrH;) # |I. Otherwise,R/I would be a submodule ¢1;. By a
theorem of Gulliksen [GL], iH; has a free summand then it must be a complete
intersection. Actually, using Gulliksen’s theorem one shows thas ifa-primary,
Gorenstein but not a complete intersection, then the socle annikljat€embin-

ing Proposition 2.6 and the work of [CHV] yields the following result:

Proposition 2.11 Let(R,m) be a local Noetherian ring with embedding dimension
at least2 and let | be anm-primary ideal contained im? with R/l Gorenstein.
Suppose further that | is minimally presented by a mgtrand that {(¢) = m,
where }(¢) denotes the ideal generated by the entries of ¢. Themaha(l.

Proof. By Proposition 2.6 and our assumption we obtain that-nrg | : 11(¢
|- m. Our assertion now follows from Lemma 3.6 in [CHV] sinde m)?
[(1:m).

0l

For an height three perfect Gorenstein idesde have some evidence that
(annHy))? =1 -annH,).  If this were to hold in general, it would imply that
| CannH;) C 1. Thus far, we can prove the weaker result that the square of the
annihilator of H is in the integral closure of |

Theorem 2.12 Let R be a local Noetherian ring witthar®R) # 2 and let | be a
height three perfect Gorenstein ideal minimally generated:bypelements. Then

(annHy))? .

Proof. Letay,...a, denote a set of minimal generatord oNotice thaiB; andZ;
are submodules &" of rankn— 1; in general, iE is a submodule dR" of rankr,



we denote by del) the ideal generated by the r minors of the matrix with any
set of generators of fas elements of R.

Let c € R be such thatz; c B;. It suffices to prove that> € T since the
square of an ideal is always integral over the ideal generated by the squares of
its generators. Note thaf—'det(Z;) C det®;). LetV be a valuation overring
of R with valuationv; the ideallV is now principal and generated by one of the
original generators, saf = a. By the structure theorem of Buchsbaum and Eisen-
bud [BE], we may assume thatis one of the maximal Pfaffians of the matrix
presentingl. Sincel is generated bw, B;V is generated by the Koszul syzy-
gies (az,—a,0,...,0),(as,0,-a,...,0),...,(a,,0,0,...,—a). Hence de®V) =
(@ 1) = I"v. As for Z;V, one has that déf{V) includes the determinant
of the minor definingg? (a is the Pfaffian of the submatrix)Thus ¢"~%12V C
I"-1v, which yields thatc"~1 € I"-3V, as cancellation holds. Hence, we have that
(n—=1)v(c) =v(c" 1) > v(I"3V) = (n—3)v(IV). Finally, this yields

V() > 2n;iv(|V) > v(IV)

and, in conclusion,?c=T. 0

Remark 2.13 It is worth remarking that the above proof shows much more. Recall
that| denotes the integral closure of the ideal generated by<aR such that
x? € 12, By [BE], n=2k+1 is odd. Our proof shows that

1

(anntHy)) C 1%
As k gets large this is very close to our main objective, proving#matH1)) C 1.

2.2 Last non-vanishing Koszul homology module
Let us turn our attention towards the tail of the Koszul complex.

Proposition 2.14 Let R be a one-dimensional domain with finite integral closure.
Then any integrally closed ideal is reflexive. In particular, for any ideal | its bidual
(171)~1is contained in its integral closure |

Proof. We may assume th&is a local ring, of integral closuf®. An ideall is
integrally closed iL = RNLB. SinceB is a principal ideals domaihB = xB for
somex. We claim thakBis reflexive. LeC = B~! = Homg(B,R) be the conductor
of B/R.Cis also an ideal d,C = yB, and therefore "1 = y~'B~1 = y~1C, which
shows thaC~! = B. This shows thatL™1)~* c (R™)1n((xB) )1 =L. The
last assertion follows immediately by setting L =1I. O

We can interpret the above result as an annihilation of Koszul cohomology. Let
| = (ai,...,am) and let K denote the Koszul complex

2 m

O—>R—>Rm—>/\Rm—>-~—>/\Rm—>O,



with differentiald(w) = zAw, wherez= a;e; + - - - +anem. One sees that = |z,
andB! = Rz. Thus(I71)~! is the annihilator oH!. On the other han#i! =
Hm_1 = Exti(R/I,R). Let us raise a related issug: 1)1 is just the annihilator

of Exts(R/I,R), so one might want to consider the following question which is
obviously relevant only if the rinBis not Gorenstein. LdR be a Cohen-Macaulay
geometric integral domain and lebe a height unmixed ideal of codimensmris
annExty(R/I,R))=annHn_g) always contained if? Notice that the annihilator

of the last non-vanishing Koszul homology can be identified vittd : 1) for J an
ideal generated by a maximal regular sequence ihsitlais follows since the last
non-vanishing Koszul homology is isomorphic fa () /J.

We thank Bernd Ulrich for allowing us to reproduce the following result [U],
which grew out of conversations at MSHBefkeley)

Theorem 2.15 (Ulrich) Let (R,m) be a Cohen-Macaulay local ring, let | be an
m-primary ideal and let X= | be a complete intersection. Then @ : 1) C I.

In particular the annihilator of the last non-vanishing Koszul homology of | is
contained in the integral closure of I.

Proof. We may assume thatht htl. We may also assume thihas a canonical
module w. We first prove:

Lemma 2.16 Let A be an Artinian local ring with canonical modueand let
| C Abe anideal. Then @(0:al)=10w.

Proof. Note that 0 (0 :al) = Wr/o;- To showlw = wr o, Note that the socle
of lwis 1-dimensional as it is contained in the soclexoHence we only need to
show that w is faithful overR/0:1. Letx € anrklw, thenxlw = 0, hencexl =0,
hence x 0:1. O

Returning to the proof of Theorem 2.15, it suffices to show(thatl : 1))w C lw.
But(J:(J:1))wCIw:, (J:rl). So it suffices to shodw:, (J:rl) C lw. Re-
placing R,w by R/J, wr/; = w/Jw we have to show Q,:(0 r 1) C lw, which
holds by Lemma 2.16. O

3 Variations on a theorem of Burch

Theorem 3.1 below is a variation of Burch'’s theorem mentioned in the introduction,
and strengthens it in the cdses integrally closed. We then deduce a number of
corollaries.

Theorem 3.1 Let (R,m) be a local ring, | an integrally closed R-ideal having
height greater than zero and M a finitely generated R-module. ¥dt,tset J:=
ann(Tor;(R/I,M)). Let(F., ;) be a minimal free resolution of M. ithage:) is
contained in mdg=_1, then

image@: r1r;)Nsoclef 1/IF_1) =0.




Proof. Take ue k_; such that its residue class modulzelongs to

image: r1g,)Nsocleq-1/1F-1).

Thenu = ¢¢(v) +w, forve R andw € IF,_;. For allx € m, ¢;(xv) =0 modulo
IFi_1. Thus for allj € J, there existz € k.1 such thatd;,1(z) = jxv modulo
IF:. It follows that we can writgxv = ¢1(z) +wo, for wp € IF;. Therefore,
jxu= o¢(jxv) + jxw = ¢¢(Wp) + jxw. By hypothesis, we ggku € mJIF, for all
j € J and allx € m. Therefore, by cancellationc IR _1. But sincd is integrally
closed, e IF;_1, which gives what we want. O

In the following corollaries, we retain the notation from Theorem 3.1.

Corollary 3.2 Suppose | is integrally closed andprimary. Ifimagef;) is con-
tained in mJR_1, then:

(a) imagef:) C IF—1.
(b) 4R C imagefr.).

Proof. For (a), if image@: 1g;) were not zero, then it would contain a non-zero
socle element, sincei$ m-primary. This contradicts Theorem 3.1, agltolds.

For (b), it follows from (a) that To¢¥(R/I,M) = R /(image®i+1) + |F), sokk is
contained in imagé1) + |F:, and p) follows via Nakayama’s Lemma. O

The next corollary shows that integrally closegbrimary ideals can be used to
test for finite projective dimension.

Corollary 3.3 Suppose that | is integrally closed andprimary. Then M has
projective dimension less than t if and onlyfdfi;(R/I,M) = 0.

Proof. The hypothesis implies thdt= R. Therefore, imagé() is automatically
contained imJR_;. By part(b) of Corollary 3.2k C imagef:.1), soR =0, by
Nakayama’'s Lemma. O

Corollary 3.4 Let JC R be anideal and | an integrally closedprimary ideal. If
JCm(lJ:1NJ), then ICI.

Proof. Apply Corollary 3.2 with M= R/Jandt = 1. O
Corollary 3.5 Suppose that R is reduced and M has infinite projective dimension

over R. Then for all & 1, the entries of; do not belong ten-annM). In partic-
ular, each map in the minimal resolution of k has an entry not belonging.to m



Proof. Let| be anym-primary integrally closed ideal. If the entriesigfbelong to
m-annM), then imagef;) is contained imJFR_;. By Corollary 3.2, imagel)
is contained inF_1. But the intersection of the integrally closedprimary ide-
als is zero, therefore, image| = 0, contrary to the hypothesis & Thus, the
conclusion of the corollary holds.

The last statement follows in the caddis regular from the fact that the Koszul
complex on a minimal set of generators of the maximal ideal gives a resolution of
k. If Ris not regular, thek has infinite projective dimension, and the result follows
at once from the first statement. O

In regard to the above corollary, it is well-known that the Koszul complex of a
minimal set of generators of the maximal ideal is part of a minimal resolution of
in all cases, so for the maps occuring in the minimal resolution up to the dimension
of the ring, the last statement is clear. The new content of the last statement is for
the maps past the dimension of the ring.

Corollary 3.6 Suppose | is integrally closed ande AssR/I). If imagef:) is
contained inm}k_1, e.g.,Torr(R/1,M) = 0, then either M has projective dimen-
sion less than+ 1 or me Ass(Tori_1(R/1,M)).

Proof. SupposeM has projective dimension greater than or equaHd. Then
R_1 # 0. By hypothesis, the soclefgf 1/1F_1 is non-zero, so a non-zero element
uin this socle goes to zero under, 1gr/. But the theorem implies that the im-
age of u in Tar.1(R/I,M) remains non-zero, so the result holds. O

4 The conormal module

We end the article with a result in the spirit of our investigation. More precisely
we show that the conormal modul@? is faithful for a special class of Cohen-
Macaulay ideals.

Theorem 4.1 Let (R,m) be a Gorenstein local ring and | a Cohen-Macaulay al-
most complete intersection. lgebe a matrix minimally presenting |. K(lp) is a
complete intersection, theil? is a faithful R/I-module.

Proof. Let g denote the height df, write n =g+ 1 for the minimal number of
generators of = (ay,...,an). We may assume that the ideals generated by any
g of theg’s are complete intersection ideals. legtwith 1 <i < n, denote the
n-tuple(0,...,0,1,0,...,0) where 1 is in théth position. Finally, note tha is
the canonical module of R/I

Let us consider the exact sequence

0—3(1) — Hy > (R/)" 25 1/12 - 0,

whered(1) is the kernel of the natural surjection Sy — 12, see [SV]. Notice
that for anye’ = y riej + By € Hi, wherey riaj = 0, one ha$(¢) = (r;+1)e1 +



..+ (ry+1)en while for any element ifR/1)" one hast((r1 +1)e;+ ...+ (rn+
1)en) =rias+...+ran+12. Apply (—)" = Homg(—,Hs) to the above exact
sequence. We obtain

0— (1/12)Y ™ Hom((R/1)", H1) 25 Hom(H1, Hy) = R/l — 3(1)" — 0.

To conclude it will be enough to show thatI@)" is faithful.

First, we claim that the image 6f belongs to4(¢)/1. In fact, any element of
Hom((R/I)",H;1) can be written as a combination of elementary homomorphism
of the form

&Gi((1+1)e) =¢ &Gi((1+1)ej) =0, ifi#j,
with € = Y rje; + By € Hy, wherey rja; = 0. Thus, for any’sc H; we have

(8"(&))(€) =&i(B(e") =& (S (rj+1)ey) = (rf+1)e.

Observe thatr{ +1)e = (rj+1)€" in Hy. Indeedyie —rie’ = 3 (r{rj —rir})ej +By.
Buty (rirj —rir})e;j is a syzygy of the complete intersecti@s, ..., 4, .. .,an) and
thus it is a Koszul syzygy of the smaller ideal: hence it B;inIn conclusion,
8" (&) is nothing but multiplication by; +1 € 11(¢)/I. Given thate andi were
chosen arbitrarily one has that the image‘ofstl;(¢) /1.

Notice that the number of generatord ) is strictly smaller tham. So we
can say that the image @f is given say by8"(£>),...,0V(&n)). Write, for some

¢ € R/I,
0'(&1) = 3 c6"(&)

Hencef; — ¥i-2Ci & € Ker(8Y) = Im(m") so that we can finge (1/12)¥ such that

G- Yca&=m'(y=yom
The restriction of these homomorphisms to the first component of FRyi{(H1)
gives an homomorphism froR/I to H;. Now, something that annihilatgsvould
also annihilate the restriction, but that restriction is faithful. O

Remark 4.2 From the proof of Theorem 4.1 we also obtain that Hgh(H1) =
R/L(¢). In addition, ifli(¢) is Cohen-Macaulay of codimensignthen by the
theorem of Hartshorne-Ogus we have @) (which isSy) is Cohen-Macaulay
and therefore depthil? >d —g—2.

Unfortunately, there is not much hope to stretch the proof of Theorem 4.1 as
the following example shows.

Example 4.3 Let R be the localized polynomial ring[x,y]y). The ideall =
(x> —y°, x*%,xy*) is such that?: | = (I,x3y?). In this casédi(¢) = (x,y)? so that
(1) = u(l1(9)) = 3.



5 More Questions

We end by considering some other closely related questions which came up during
the course of this investigation. We ldie anm-primary ideal of the local ring
minimally generated by elements, and lek be the annihilator of thith Koszul
cohomology of lwith respect to a minimal generating set.of |

Set d equal to the dimension of R.4s3- - - J,_q contained in 1-d?

Notice that the Koszul homology ofvanishes for values larger than- d,
so that the product above represents all the interesting annihilators of the Koszul
homology ofl. Furthermore, a postive answer to this question gives a positive
answer to our main question. This follows since efatontainsl. Along any
discrete valuatiow, this means that(l) > v(J) for all i. A positive answer to the
guestion above implies that

n—d

Zv(Ji) > (n—=d)v(l) > r_]ztjv(.]i).

It would follow thatv(J;) = v(I) for alli, implying thatJ; C I for all 1<i <n-—d.
Conversely, ifJ C T for all 1<i <n-—d, then clearlyd; - J,--- J,_g is contained
in In-d, so the above question is equivalent to sayingJhatl for all 1<i <
n—d. This form of the question suggests using homotopies to compare the Koszul
complex of a set of generatorslofith the free resolution df However, we have
not been able to use this idea to settle the question.

Another question which arose during our work is the following:

Let n be the number of minimal generators ofraprimary ideal | in
a Cohen-Macaulay local ring R with infinite residue field, and let d be
the dimension of the ring. For every j<dj < n—1, choose j general
minimal generators of I, and lef Be the ideal they generate. Let Kl
denote thén— j)th Koszul homology of a minimal set of generators of
I. Is

Ann(Hn,j) - Jj : (Jj : |) cl?

We have positive answers to this question for the two extrefnesd and
j =n—1,in the latter case assuming integrally closed.

Acknowledgments

C. Huneke and W.V. Vasconcelos gratefully acknowledge partial support from the
National Science Foundation.



References

[AH]

[BE]

[B]

[CHV]

[deJ]

[E]

[EHV]

[ES]

[G]

[GH1]

[GH2]

[GL]

[SV]

[U]
V]

L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embed-
ding, Math. Z. 175 (1980), 249-260.

D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolu-
tions, and some structure theorems for ideals of codimension 3, Amer. J.
Math. 99 (1977), 447-485.

L. Burch, On ideals of finite homological dimension in local rings, Math.
Proc. Camb. Phil. Soc. 74 (1968), 941-948.

A. Corso, C. Huneke and W.V. Vasconcelos, On the integral closure of
ideals, Manuscripta Math. 95 (1998), 331-347.

T. de Jong, An algorithm for computing the integral closure, J. Symbolic
Comput. 26 (1998), 273-277.

D. EisenbudCommutative Algebra with a View Toward Algebraic Geome-
try, Graduate Texts in Math., vol. 150, Springer, New York, 1995.

D. Eisenbud, C. Huneke and W.V. Vasconcelos, Direct methods for primary
decomposition, Invent. Math 110 (1992), 207-235.

D. Eisenbud and B. Sturmfels, Binomial ideals, Duke MatB4J1996),
1-45.

S. Goto, Integral closedness of complete-intersection ideals, J. of Algebra
108 (1987), no. 1, 151-160.

S. Goto and F. Hayasaka, Finite homological dimension and primes as-
sociated to integrally closed ideals, Proc. Amer. Math. $80.(2002),
3159-3164.

S. Goto and F. Hayasaka,Finite homological dimension and primes associ-
ated to integrally closed ideals II, J. Math. Kyoto UAR/(2002), 631-639.

T.H. Gulliksen and G. Levirilomology of Local Rings, Queen’s Papers in
Pure and Applied Math. 200, Queen’s University, Kingston, 1967.

A. Simis and W.V. Vasconcelos, The syzygies of the conormal module,
American J. Math. 103 (1981), 203-224.

B. Ulrich, Personal communication.

W.V. Vasconcelos, Computing the integral closure of an affine domain,
Proc. Amer. Math. Soc. 113 (1991), 633-638.



