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1. Introduction 

Throughout we let (T ,m,k) denote a commutative Noetherian local ring with max-
imal ideal m and residue field k. We let  I ⊆ T be an ideal generated by a regular 
sequence of length c and set R�T/I. In the important paper [1], Avramov add-
resses the following question. Given a finitely generated R-module M , when does M 
have finite projective dimension over a ring of the form T/J , where  J is generated 
by part (or all) of a set of minimal generators for I? He gives a fairly complete an-
swer to this question that is expressed in terms of the geometry of varieties in affine 
space defined by annihilators of certain graded modules derived from resolutions 
over R. In an attempt to understand these ideas more fully, we became interested 
in the idea that one might answer the question at hand by using data about M (or 
its syzygies) coming from T , in particular, information gleaned from various Fitting 
ideals defined over T . The following theorem from Section 3 is one of our main results. 
We use Fitt T (M ) to denote the Fitting ideal of M . 

Theorem. Suppose M has a rank over R. Then  M is free over R if  and only if  
Fitt T (M ) is grade unmixed. 

Recall that an ideal in a Noetherian ring is grade unmixed if all of its associated 
primes have the same grade. The theorem has two immediate consequences if the ring 
T satisfies Serre’s condition Sc+1. The first is the suprising fact that the Fitting ideal 
of any non-free R-module with a rank has embedded components, and the second is 
that M has finite projective dimension over R if and only if the Fitting ideals over T 
of sufficiently high syzygies of M over R are (height) unmixed. 
Carrying the theme of Fitting ideals determining finite projective dimension fur-

ther, in the fourth section we show how the Fitting ideal of a high syzygy of M 
determines whether or not M has finite projective dimension over intermediate 
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complete intersections of codimension c− 1. The relevance of this comes from the 
fact that if k is algebraically closed, M has finite projective dimension over R if 
and only if it has finite projective dimension over every intermediate complete in-
tersection of codimension c− 1. Thus, if M does not have finite projective dimension 
over R, it becomes of interest to determine over which, if any, intermediate complete 
intersections M has finite projective dimension. In Section 3, we show that, at least 
in codimension c− 1, again the answer is determined by Fitting ideals. 

2. Preliminaries 

In this section we fix our notation and provide a few preliminary results, including 
an elementary presentation of a generalization of the result implicit in [1] that  
finite projective dimension over R is determined in codimension one. We assume 
throughout that c� 2. We will often assume that M has a positive rank. This means 
that for some r > 0 and  all  P ∈ Ass (R), MP is a free RP -module of rank r. We fix  
d�depth(R) and  δ�depth(M ) and assume throughout that δ� d. We also fix a  
minimal presentation 

φ 
Tm −−−−→ Tn −→ M −→ 0, 

so that the Fitting ideal of M is the ideal In(φ) generated by the n× n minors of 
the map φ with respect to some (equivalently an arbitrary) choice of bases for the 
two free modules. We denote this ideal by Fitt T (M ), or by Fitt (M ) when the ring is 
clear. In fact, Fitt T (M ) is independent of the presentation of M and respects change 
of rings. In particular, if T maps onto the ring S and M is also an S-module, then 
Fitt S (M ) =  In(φ)S. By Ω  iR(M ) we denote an ith syzygy of M over R. The Fitting 
ideals of all choices of ith syzygies are the same. By the term ‘intermediate complete 
intersection of codimension t’ we mean a ring of the form T/J , where  J is generated 
by a set of t minimal generators for I and 1 � t� c− 1. Finally, we refer the reader 
to [5] as a source for basic facts about Fitting ideals, complexes and free resolutions. 
Now we turn to a proof of the fact that M has finite projective dimension over 

R if and only if M has finite projective dimension over every intermediate complete 
intersection of codimension one. We first require a lemma, interesting in its own 
right. 

Lemma 2· 1. Let T , R be as above and let M be any finitely generated R-module. 
Assume c=2, h∈ I\ mI and set S�T/hT . Assume that pd S (M ) = 1  and that M has no 
free summands over R and write I�(f, h)T , Z� Ω1 

T (M ) with Z ⊆ Tn . Then, writing 
“¯” to denote images in  Z ⊗ T k, f · ej belongs to the span of { h · e1, . . . , h · en} , for all 
1 � j � n, where ej denotes the jth standard basis element of T . Moreover, let A be the 
n× n transition matrix over k whose columns consist of the coefficients resulting from 
expressing f · ej in terms of the h · ei and for g a minimal generator of I, set Sg �T/gT . 
Then the following are equivalent: 
(i) pd (M ) <∞ (i.e., pd (M ) = 1);  Sg Sg 

(ii) { g · ej } , 1 � j � n, are linearly independent in Z ⊗ T k; 
(iii) µ(Ω 1 

Sg 
(M )) = n. 

Furthermore, if for some unit λ, g is equivalent to f − λh modulo m I, (i)–(iii) are 
equivalent to 

(iv) A− λIn has maximal rank, i.e., λ is not an eigenvalue of A. 
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Proof. Let ψ be an n× n matrix with entries in m such that 

ψ⊗1S0 −−→ Sn −−−−→ Sn −−→ M −−→ 0 

is exact. Then h,det (ψ) forms a regular sequence of length two in T . Since the ideal 
(h, det (ψ))T and the ideal of n × n minors of the matrix (ψ | h · In) have the  same  
radical, the latter has grade two. It follows readily from the Buchsbaum–Eisenbud 
exactness criteria that 

− h · In 

ψ (ψ|h·In )
T 2n0 −−→ Tn −−−−−−−−→ −−−−→ Tn −−→ M −−→ 0 

is also exact. Therefore µ(Z) = 2n and Z is spanned by the columns of ψ and h · In. 
Now suppose some f · ej does not belong to the span of the h · ei, say  f · e1. Then  
there exists an n × n matrix ψ = (f · e1 ∗ ) such that Z is spanned by the columns of 
ψ and h · In. Therefore, since Fitt T (M ) has grade two, 

ψ�⊗1S0 −−→ Sn −−−−→ Sn −−→ M −−→ 0 

is exact. If we tensor with R, we get a short exact sequence 

(0 ∗)
0 −−→ Tor S 

1 (M, R) −−→ Rn −−−−→ Rn −−→ M −−→ 0, 

so Tor S 
1 (M, R) has a free summand. On the other hand, if one computes Tor S 

1 (M, R) 
by taking a minimal resolution of R as an S-module and tensoring with M , one notes 
that Tor S 

1 (M, R) is isomorphic to M . Thus, M has a free summand over R and this 
is a contradiction. It follows that all of the f · ej belong to the span of the h · ei. This  
proves the first statement in the lemma and yields the existence of the matrix A. 
To prove the equivalence of statements (i)–(iv), suppose (i) holds. Since the rings 

S and Sg have the same depth, it follows from the Auslander–Buchsbaum formula 
that pd Sg 

(M ) = 1. Then exactly the same proof as above shows that there is an 
n× n matrix α with entries in m such that (α | g · In) minimally presents M over T . 
Thus { g · ej } , 1  � j � n, is part of a minimal generating set for Z, so (ii) holds. Now 
suppose (ii) holds. Since µ(Z) = 2n and the g · ej are part of a minimal generating set 
for Z, there exists an n× n matrix β such that (β | g · In) presents  M over T . But 
rad(Fitt T (M )) = rad((det (β), g)T ) has grade two, so det (β) is a non-zerodivisor on 
Sg , and therefore 

β
0 −−→ Sg

n −−→ Sg
n −−→ M −−→ 0 

is exact. Thus, (i) and (ii) are equivalent. The proof of the equivalence of (i) and (iii) 
is similar, so (i)–(iii) are equivalent. Finally, if g is equivalent to f − λh modulo m I, 
then A − λ · In is the matrix of coefficients expressing the g · ej in terms of the h · ei, 
so the equivalence of (ii) and (iv) is immediate. Thus (i)–(iv) are equivalent and the 
proof of the lemma is complete. 

Let g ∈ I be a minimal generator. If g is any other minimal generator having the 
same image as g in I⊗ T k, then since  I · Tn ⊆ Z, the images of the g · ej in Z⊗ T k agree 
with the images of the g · ej . Thus, Lemma 2· 1 shows that M has finite projective 
dimension over T/(g) if and  only  if  M has finite projective dimension over T/(g ) 
(which we expect, by (3.9) in [1]). Moreover, if the image of g in I ⊗ T k is not a unit 
multiple of h, then, up to images in I ⊗ T k, g = f − λh for an appropriate unit λ. 
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This means that for the case c= 2, we have determined the intermediate complete 
intersections of codimension c− 1 over which  M has finite projective dimension and 
that these rings correspond to the elements of k that are not eigenvalues of the 
transition matrix A. 
With the previous lemma in hand, we may give an elementary proof of the following 

result from [1]. While this result is not stated explicitly, it follows readily from (3·9) 
in [1] and elementary properties of cones in affine space. 

Corollary 2·2. Suppose that k is algebraically closed. Let R be as above and M be 
any R-module. Then the following are equivalent: 
(i) pd R(M ) <∞; 
(ii) pd S (M ) <∞, for all intermediate complete intersections S; 
(iii) pd S (M ) <∞, for all codimension c− 1 intermediate complete intersections S; 
(iv) pd S (M ) <∞, for all intermediate hypersurfaces S. 

Proof. We prove that (i)–(iv) are equivalent by induction on c. Assume for the 
moment that the base case c= 2 holds and that (i)–(iv) are equivalent for all rings 
R , where  R is an intermediate complete intersection of codimension d< c  (with 
d replacing c in (i)–(iv)). Now take c> 2. That (i) implies (ii) follows easily from 
reverse induction on depth(M ), starting with the case depth (M ) = depth (R). That 
(ii) implies (iii) is trivial. To see that (iii) implies (iv), let T be any intermediate 
complete intersection of codimension one. Then, we can regard R as a T -module and 
as such, it has codimension c− 1. Any intermediate complete intersection between 
T and R of codimension c− 2 corresponds to an intermediate complete intersection 
of codimension c− 1 between T and R, so  M has finite projective dimension over 
such a ring, by hypothesis. Therefore by induction, M has finite projective dimension 
over T . Finally, suppose (iv) holds. Fix T , an intermediate complete intersection 
of codimension c− 1. Condition (iv) and the induction hypothesis imply that M has 
finite projective dimension over T . This is true for all such T , so that if  S is any 
intermediate complete intersection of codimension c− 2, the c= 2 case applied to S 
and R shows that M has finite projective dimension over R. 
Now, to prove the base case, suppose c= 2. Then (i) implies (ii) as before. Moreover, 

conditions (ii)–(iv) are all the same. So assume (ii) holds. Replacing M with a high 
syzygy over R, we may further assume depth (M ) = depth (R). Therefore, we want 
to show that M is free over R. Write M = G   N , where  G is a free R-module and 
N has no free summand over R. Suppose N�0. Write I = (f, h)T and note that 
for S�T/(h), pd S (N ) = 1. We now apply the lemma to N . Since  k is algebraically 
closed, we can find λ∈ k an eigenvalue for the transition matrix A in 2·1. Thus, for 
Sg in 2·1, pd Sg 

(N ) =  ∞, which contradicts the assumption (ii). So N =0  and  M is 
free, as required. 

Example. Here is an example showing how the corollary can fail if the residue 
field is not algebraically closed. Set T�Z2[[x, y]] and I�(x2, y2)T . Thus, R= T/I  is 
zero-dimensional, so no R-module has finite projective dimension unless it is a free 
R-module. To see that a module has finite projective dimension over every intermedi-
ate hypersurface between T and R, by the comments following Lemma 2·1, it suffices 
to check that it has finite projective dimension over the three intermediate hyper-
surfaces determined by the polynomials x2, y2 and x2 + y2. Let  M be the module 
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presented over R by the matrix α�( x y ). A straightforward calculation shows 

x+y x 2 20 y 0that over each of these hypersurfaces, the columns of the matrix (x 
2 ) are  in  0 x2 0 y 

the span of the the columns of α. Thus, α presents M over the given hypersurfaces. 
On the other hand, det (α) =  x2 + xy + y2, which is a non-zerodivisor in the given rings. 
Therefore, M has projective dimension one over each of these rings, and therefore 
over every intermediate complete intersection of codimension one. Moreover, it is 
interesting to note that if one takes h�y2 and f�x2 as in 2· 1, then the trans-
ition matrix A= (01 1

1 ). The characteristic polynomial of A is λ2 + λ+1,  so  A has no 
eigenvalues over Z2. 

3. Finite projective dimension in codimension c 

In this section we prove one of our main results, Theorem 3· 2, which says that 
M is free over R if  and only if Fitt  T (M ) is grade unmixed. This has the surprising 
consequence that if T satisfies Sc+1, then  every finitely generated non-free module M 
over R with a rank has the property that Fitt T (M ) has an embedded component. 
A test for finite projective dimension over R then follows readily from the theorem. 
The results in this section (and the next) rely heavily upon the following crucial 
proposition. 

Proposition 3· 1. Let M be a finitely generated R-module, rank (M ) =  r. Suppose 
that h�h1, . . . , hc−1 is part of a minimal generating set for I and set S�T/(h). Then  
pd S (M ) = 1  if  and only if  In(φ) + (h) =  Ir + (h). 

Proof. We first note that since MP is free of rank r for all P ∈ Ass(R) =  Ass(T/I), 
Fitt T (MP ) =  Fitt  T (RP

r ) =  IP
r . Since  Ass  (T/I) =  Ass(T/Ir), it follows that In(φ) ⊆ Ir , 

so In(φ) + (h) ⊆ Ir + (h) always holds.  
Suppose pd S (M ) = 1. Then there exists an n× n matrix ψ over T such that 

ψ⊗1S0 −−→ Sn −−−−→ Sn −−→ M −−→ 0, 

is exact. Thus, In(ψ)S = In(φ)S, by invariance of Fitting ideals. Therefore, 
(In(φ), h)T = (∆, h)T , where ∆ = det (ψ) is a non-zero divisor on S. Take  P in 
Ass (T/(In(φ), h)). Then P ∈ Ass (T/(∆, h)), so depth (TP ) =  c. Since  In(φ) and  I have 
the same nilradical, P contains I, so  P ∈ Ass(T/I). Thus, In(φ)P = IP

r , so  
(Ir, h)P ⊆ (In(φ), h)P . Since this holds for all P ∈ Ass (T/(In(φ), h)), we have Ir + 
(h) ⊆ In(φ) + (h), which gives what we want. 
Conversely, suppose that (In(φ), h)T = (Ir, h)T . Then, writing I = (h, l)T , for  

some l, (Ir, h) = (lr, h). Therefore In(φ) is principal modulo (h). It follows that 
(In(φ), h) = (∆, h) and  that  ∆  ≡ λlr modulo (h), for some n× n minor ∆ of φ and 
unit λ. Let  ψ be the n× n submatrix of φ whose determinant is ∆. Over S, let  N 
denote the cokernel of ψ. In other words, we have an exact sequence 

ψ⊗1S0 −−→ Sn −−−−→ Sn −−→ N −−→ 0. 

Since the submodule of Sn spanned by the columns of ψ is contained in the one 
spanned by the columns of φ, it follows that N maps surjectively onto M . Let  K 
denote the kernel of this map. We show K = 0, which will complete the proof. 
Take P ⊆ T such that P ∈ Ass (N ). It is enough to show that KP =0.  By  the  

Auslander–Buchsbaum formula, depth(SP ) =  pd  SP 
(NP ) + depth (NP ) = 1. Since P 

contains lS, this implies that P ∈ Ass (T/I). It follows that MP and (Sr/l · Sr)P are 
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isomorphic as SP -modules. Now, aside from the original presentation matrix φ, MP 

is also presented over SP by the matrix l · Ir. By invariance of Fitting ideals, we have 
In−i(φ)SP = lr−iSP , for  i=0, . . . , r. Since ann(NP ) = (∆SP : SP In−1(ψ)) (see [4]), we 
have 

lSP = (lrSP :SP l
r−1) = (∆SP :SP In−1(φ)) ⊆ (∆SP :SP In−1(ψ)) = ann(NP ), 

so l annihilates NP . Therefore, we may regard NP and KP as RP -modules. Since 
MP is free over RP , NP = MP   KP , as  RP -modules, and also as SP -modules. Thus, 
Fitt SP (NP ) =  Fitt  SP (MP )· Fitt SP (KP ). Since Fitt SP (NP ) =  Fitt  SP (MP ), it follows 
that Fitt SP (KP ) =  SP , so  KP = 0, which completes the proof of the proposition. 

We may now state and prove the main result of this section. 

Theorem 3·2. Let M be a finitely generated R-module having rank r. Then  M is free 
over R if  and only if  Fitt T (M ) is grade unmixed. 

Proof. If M is a free R-module, then Fitt T (M ) =  Fitt  T (Rr) =  Ir . Thus, Fitt T (M ) is  
a perfect ideal, and perfect ideals are grade unmixed. Conversely, suppose Fitt T (M ) 
is grade unmixed. Then any prime P associated to Fitt T (M ) is a grade  c prime 
containing I and is therefore an associated prime of I. But the proof of Proposition 3·1 
shows that Fitt  T (M )P = IP

r for any such prime P , therefore, Fitt T (M ) =  Ir. As we  
˜would like to invoke Corollary 2·2, we pass to a faithfully flat extension T of T 

having algebraically closed residue field (see [6, 19·7·1·3]). Note that we still have 
˜ R̃ � ˜ ˜the equality Fitt T̃ (M ⊗T T ) =  IrT̃ . Setting T/IT̃ , we have that  R is faithfully 

˜ ˜flat over R. If  M ⊗R R were free over R, then  M would be free over R and we would 
˜be done. Thus, we may assume T = T . 

Now, let h�h1, . . . , hc−1 be any c− 1 elements in I forming part of a min-
imal generating. Since Fitt T (M ) =  Ir , In(φ) + (h) =  Ir + (h), so by Proposition 3·1, 
pd T/(h)(M ) = 1. Since this holds for all choices of h, Corollary 2·2 implies that 
M has finite projective dimension over R. Moreover, since depth T/(h)(M ) = depth 
(T/(h)) − 1, depth (M ) = depth(R), so M is free over R. 

The proof of Theorem 3·2 gives a little more than we have stated. We record this 
as a corollary for future reference. 

Corollary 3·3. Suppose that M has rank r. The following are equivalent: 
(i) M is a free R-module; 
(ii) Fitt T (M ) is grade unmixed; 
(iii) Fitt T (M ) and I have the same associated primes; 
(iv) Fitt T (M ) =  Ir . 

Corollary 3·4. Suppose T that satisfies Serre’s condition Sc+1 and M has rank r. 
If M is not free over R, then  Fitt T (M ) has embedded associated primes. In fact, the 
minimal primes over In−r(φ) are embedded primes of Fitt T (M ). 

Proof. The first statement follows immediately from the theorem. For the second 
statement, by (20·7) in [5], Ir · In−r(φ) ⊆ In(φ) =  Fitt  T (M ). On the one hand, since 
MP is free of rank r over R for all P ∈ Ass(R), In−r(φ)R is not contained in any 
P ∈ Ass (R), so height (In−r(φ)) > c= height (Fitt T (M )). On the other hand, since 
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In(φ) ⊆ Ir , Corollary 3· 3 gives that (In(φ) :  Ir) defines the locus of primes for which 
M is not free over R, so (In(φ) :  Ir) and  In−r(φ) have the same radical. Thus, if P 
is a prime in T minimal over In−r(φ), IP

r is not contained in In(φ)P , so the  PP -
primary ideal In−r(φ)P consists of zero divisors modulo Fitt T (M )P . Therefore, P is 
an embedded associated prime of Fitt T (M ). 

The next corollary is an immediate consequence of Theorem 3· 2, and gives a 
criterion for M to have finite projective dimension over R in terms of a Fitting ideal 
defined over T . 

Corollary 3· 5. Suppose that T satisfies Serre’s condition Sc+1. Then  M has fi-
nite projective dimension over R if  and only if  Fitt T (Ω dR 

−δ (M )) has no embedded 
primes. 

Remark. In principle, one would like to have a formula for the Fitting ideal of 
Ωd−δ 

R (M ) in Corollary 3· 5, but this seems to require an explicit description of the 
R syzygies of M , which is tantamount to invoking constructions along the lines of 
Eisenbud–Shamash (see [2, section 9]). Unfortunately, these constructions are iter-
ative and do not readily lead to closed form expressions. Another approach, also 
iterative, is to use a construction from homological algebra that yields a free resolu-
tion of the first module in a short exact sequence of modules, given free resolutions 
of the other two terms. Applying this to the short exact sequence of T -modules 
0 → Ω1 

R(M ) → Rn → M → 0, the first map in the resulting resolution for Ω 1 
R(M ) can 

then be taken as a presentation from which the Fitting ideal can be calculated. We 
sketch the construction, for the reader’s convenience. Let (F, φi) be a free resolution 
of M over T and (G, ψi) be a free resolution of I over T , e.g., the Koszul complex. 
Then the augmentation of the acyclic complex G ⊗ F0 maps onto M , so the compar-
ison theorem gives a map of complexes G ⊗ F0 →α 

F. Let  (H,  i) be the mapping cone 
of α. Then  H is an acylic complex. If we truncate this complex to 

ρ3 (φ2|α1) · · ·  −−→ H3 −−−−→ F2   (G1 ⊗ F0) −−−−→ F1, 

then we still have an acylic complex, and it is easy to see that the map (φ2 | α1) gives  
a presentation for Ω1 

R(M ). Thus, we have a free resolution of Ω1 
R(M ) as a  T -module. 

One can now iterate this construction to produce free resolutions and Fitting ideals 
over T of higher R syzygies of M . It should be noted that even if we just want the 
matrices presenting the Ω iR(M ) over  T , this construction shows that we need to know 
the maps further along in the T resolutions of the Ω jR(M ), for j < i. 

We conclude this section with some examples. The first example illustrates the 
conclusion of Theorem 3· 2 (and its corollaries) and the next three examples illustrate 
the extent to which the hypotheses in Theorem 3· 2 are required. 

2 3 −Example. Let k be a field and T�k[[x, y, z]]. Set set f�xz − y , g�x z2, 
I�(f, g)T and R�T/I. Then  R is a one-dimensional complete intersection do-
main of codimension 2. For M�k, by Theorem 3· 2 we expect the Fitting ideal of 
Ω1 

R(M ) =  m R to have an embedded associated prime. The construction in the remark 
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above readily gives the following presentation over T 
  

y z 0 0 x2        − x 0 − z y 0     
0 − x − y − x − z 

T 5 −−−−−−−−−−−−−−−−−−−−−−→ T 3 −−→ Ω1 
R(M ) −−→ 0. 

Thus, Fitt T (Ω1 
R(M )) = m · I, and  m is an embedded associated prime. 

Example. Theorem 3· 2 fails for c= 1. Indeed, let k be a field and x, y, z be inde-
terminates over k. Set  T�k[[x, y, z]], f�xz − y2, I�fT  and R�T/I. Let  M be 
defined as the cokernel of the map from R2 to R2 given by the image of the matrix 
( y x 

x y ). Then depth (M ) = depth (R) (since  M is just Ω2 
R(k)) and M has infinite pro-

jective dimension over R. On the other hand, it is easy to see that the same matrix 
presents M over T , so Fitt  T (M ) =  I is unmixed. 

Example. Theorem 3· 2 fails if I is not generated by a regular sequence. Let k be 
an infinite field and T be the polynomial ring in n · m variables over k, localized at 
its homogenous maximal ideal. Let φ be the corresponding generic n× m matrix 
and assume m>n and n� 2, so that I�In(φ) is not a complete intersection. Let M 
denote the cokernel of φ over T and take R�T/I. Then  M is a perfect T -module, so 
depth (M ) = depth (R). Moreover, M is torsion-free over R, but not free over R, even  
though Fitt T (M ) =  In(φ) is unmixed. (For details, see [3].) 

Example. Theorem 3· 2 fails if M does not have a rank. Indeed, just take any case 
in which R has dimension zero, i.e., T is Cohen-Macaulay and I is  generated by a  
maximal regular sequence. Then for any R-module M , Fitt  T (M ) is  m-primary and 
therefore unmixed. 

4. Finite projective dimension in codimension c− 1 

In this section we demonstrate further connections between the Fitting ideals of 
modules over R and the property of having finite projective dimension. Let M be an 
R-module. In our proof of Theorem 3· 2, we made crucial use of Corollary 2· 2 which  
guarantees that M has finite projective dimension over R if and only if M has finite 
projective dimension over every intermediate complete intersection of codimension 
c− 1 (if  k is algebraically closed). Thus we adopt the view in this section that it 
is of interest to know whether or not M has finite projective dimension over any 
intermediate complete intersection of codimension c− 1, and if so, how are these 
rings determined. In fact, one answer to this question is given by (3· 9) in [1], where 
finite projective dimension over intermediate complete intersections is determined 
by the support variety of M . We will mention this in a remark below, but for now our 
goal remains to express this property in terms of various Fitting ideals. 
As one can generally replace M by  a high syzygy over  R, some of the proofs of our 

results focus on modules M satisfying depth (M ) = depth (R). Note that in this case, 
were M to have finite projective dimension over R or any intermediate complete 
intersection, then M would have finite projective dimension over T and thus M 
would be a perfect T -module. Before getting to the main result of this section, we 
begin with a lemma which tells us about the resolution of such an M over T . 

Lemma 4· 1. Let M be a perfect T module of grade c. Assume there exists a regu-
lar sequence h1, . . . , hc−1 ∈ ann(M ) such that for S�T/(h1, . . . , hc−1)T , M has finite 
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projective dimension over S. Then: 
(i) there exists an n × n matrix ψ over T such that the minimal resolution for M 
over T is C ⊗T K, where C is the complex 0 →Tn → 

ψ 
T → 0 and K is the Koszul 

complex on the hi; 
(ii) let g1, . . . , gc−1 ∈ ann (M ) be a regular sequence and suppose there exists an 

n × m matrix α over T such that the matrix (α | g1 · In |  · · ·  | gc−1 · In) is a 
minimal presentation of M over T . Then  m= n and for S �T/(g1, . . . , gc−1)T , 
pd S� (M ) <∞. 

Proof. For (i), since M has projective dimension c over T , by the Auslander-
Buchsbaum formula depth(M ) = depth(T )−c. But depth(S) = depth (T )−(c− 1), so 
it follows from the Auslander-Buchsbaum formula that pd S (M ) = 1. Since ann S (M ) 
contains a non-zerodivisor, it follows that there exists an n×nmatrix ψ over T such 
that 

ψ⊗S 1S0 −−→Sn −−−−→ Sn −−→M −−→ 0, 

is exact. Therefore, h1, . . . , hc−1,det (ψ) form a regular sequence in T . If we set  
J�(h1, . . . , hc−1)T and N� coker (ψ), then we have that Tor Ti (T/J,N ) = 0,  for  all  
i> 0. Since this Tor may also be computed as the homology of C ⊗T K, (i) follows. 
For (ii), the n× cn matrix (ψ |h1 · In |  · · ·  |hc−1 · In) is a minimal presentation for 

M over T , since  C ⊗T K is a minimal resolution of M over T . Thus, µ(Ω1 
T (M )) = cn, 

so the number of columns in the matrix (α | g1 · In |  · · ·  | gc−1 · In) equals cn, so  m= n. 
Therefore, α ⊗S� 1S� provides a minimal presentation of M over S . On the other 
hand, the hypothesis on M implies that the grade of the ideal of n×n minors of 
(α | g1 · In |  · · ·  | gc−1 · In) is  c. It follows easily from this that g1, · · · , gc−1,det (α) form  
a regular sequence. Thus, 

α⊗S � 1S �0 −−→ (S )n −−−−−→ (S )n −−→M −−→ 0, 

is exact, so pd S� (M ) <∞. 

The next lemma is a generalization of the first part of Lemma 2·1. We omit the 
proof as it is analogous to the proof of its counterpart. 

Lemma 4·2. Assume that M is an R-module that does not have a summand isomorphic 
to R. Set  Z�Ω1 

T (M ) ⊆Tn . Assume h1, . . . , hc−1 are part of a minimal generating set for 
I and pd S (M ) = 1, for  S�T/(h) . Take  f ∈ I such that f together with the hi generate 
I. Then the images of f · ej , 1 � j � n, belong to the span of the images of the hi · ej , 
1 � i � c− 1, as vectors in Z ⊗T k. 

The next theorem is the main result of this section. It tells us in terms of Fitting 
ideals when M has finite projective dimension over at least one intermediate complete 
intersection of codimension c− 1. 

Theorem 4·3. Suppose that k is infinite and M does not have finite projective dimen-
sion over R. Let  Ω�Ωd

R 
−δ + 1(M ) denote the d− δ +1  syzygy in a minimal free resolution 

of M over R and assume rank(Ω) = r. Write  W for the subspace of Ir ⊗T k spanned by 
the image of Fitt T (Ω). Then the following are equivalent: 
(i) M has finite projective dimension over some intermediate complete intersection of 
codimension c− 1; 
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(ii) dim k(W ) � 1; 
(iii) dim k(W ) = 1. 

Proof. Without loss of generality, we may replace M by Ω and assume rank(M ) =  r, 
depth (M ) = depth(R) and  that  M has no summand isomorphic to R (see [2, 
1·2·5]. Now suppose h1, . . . , hc−1 ∈ I are part of a minimal generating set for I and 
pd S (M ) <∞, for  S�T/(h1, . . . , hc−1)T . Then pd  S (M ) = 1, so by Proposition 3·1, 
In(φ) + (h) =  Ir + (h), which implies In(φ)�m Ir . Indeed, suppose In(φ) ⊆ m Ir . 
Then Ir ⊆ (h, mIr)T . By Nakayama’s Lemma, Ir ⊆ (h), a contradiction. Thus 
In(φ) � m Ir, so dim  k(W ) � 1. 
Conversely, suppose dim k(W ) � 1. Let p∈ In(φ)\m Ir and write p for the image 

of p in W . Now, we can think of Ir ⊗T k as the degree r piece of the fiber ring 
F of I, which is a polynomial ring in c variables over k. Thus p is a homogenous 
form of degree r. Since  k is infinite, we may perform a change of variables in F to 
assume that there is a linear form l in F such that p = (l )r + q , for  q a form of  
degree r not having (l )r as one of its monomials. Let h1, . . . , hc−1 be linear forms in 
F such that F = k[h1, . . . , hc−1, l  ] and  let  h1, . . . , hc−1 denote their pre-images in I. 
Then h1, . . . , hc−1 form part of a minimal generating set for I, and by construction, 
(p) + (h) =  Ir + (h). Thus In(φ) + (h) =  Ir + (h), so M has finite projective dimension 
over the complete intersection S�T/(h), by Proposition 3·1. Thus (i) and (ii) are 
equivalent. It remains to show that (ii) implies (iii). 
Suppose dim k(W ) � 1. Then there is an n×n submatrix ψ of φ such that det ψ 

has a non-zero image in W . We now make the following claim: 

Claim. For each 1 � i� r − 1, In−i(ψ) ⊆m Ir−i . 

Before proving the Claim, we note that for each i, invariance of higher order Fitting 
ideals gives In−i(ψ) ⊆ Ir−i (since MP is free of rank r for all P ∈ Ass (R)). We now 
prove the claim by induction on i. Suppose i=1  and  In−1(ψ)�m Ir−1. Without loss 
of generality, we may assume that the determinant of the (n−1) × (n−1) submatrix 
ψ of ψ consisting of the first n − 1 rows and columns does not belong to mIr−1. 
Then the images p and q of det (ψ) and det (ψ ) in the fiber ring F are forms of degree 
r and r − 1. Because k is an infinite field, we may find linear forms h1, . . . , hc−1 in 
F such that p and q have non-zero images in F/(h ). Let f ∈F be a linear form in 
F such that F = k[f , h1, . . . , hc−1]. Then as in the previous paragraph, M has finite 
projective dimension over the the intermediate complete intersection S�T/(h). In 
fact, the minimal resolution for M over S is given by 

ψ⊗S 1S0 −−→Sn −−−−→ Sn −−→M −−→ 0, 

where as elements of S, det  (ψ ⊗S 1S ) =  uf r and det (ψ ⊗S 1S ) =  vf r−1, for units 
u, v. Let  s1, . . . , sn ∈S denote the elements along the nth column of ψ ⊗S 1S . Then  
uf r = det(ψ ⊗S 1S ) =  s1δ1 + · · ·  + sn−1δn−1 + sn det (ψ ⊗S 1S ), for suitable minors δi 

of ψ ⊗S 1S . Since each δi is divisible by f r−1 in S (since In−1(φ) ⊆ Ir−1), we obtain 
uf = s1t1 + · · ·  + sn−1tn−1 + snv. It follows that after elementary row operations we 
may assume that ψ ⊗S 1S still has ψ ⊗S 1S as the upper left (n− 1) × (n− 1) block 
and f as its (n, n)-entry. Thus we obtain a presentation (necessarily minimal) over T 
for M of the form 

[∗ f · en |h1 · In |  · · ·  |hc−1 · In]. 
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It follows that the image of f · en is not in the span of the images of the hi · ej in 
Z ⊗T k, for  Z�Ω1 

T (M ). But this contradicts Lemma 4·2. Therefore, we must have 
In−1(ψ) ⊆m Ir−1 and the case i= 1 of the Claim has been shown. 
Now suppose that i> 1 and  In−i(ψ)�m Ir−i . Then there exists an (n− i) × (n− i) 

minor of ψ whose image w in F corresponds to a non-zero form of degree r − i. 
As before, we select linear forms h1, . . . , hc−1 ∈F such that p and w are non-zero 
in F/(h ). Then, for S�T/(h), M has finite projective dimension over S and its 
resolution is given by ψ ⊗S 1S . For  f such that I = (f, h), 

f i−1 · In−i(ψ ⊗S 1S ) ⊆ In−1(ψ ⊗S 1S ) 

over S, by (20·7) in [5]. Thus, 

f i−1 · In−i(ψ) ⊆ In−1(ψ) + (h) ⊆m Ir−1 + (h). 

It follows immediately from this that f i−1 · In−i(ψ) ⊆m Ir−1 + (h)Ir−2. This implies 
that (f i−1) ·w is zero in F/(h ), which is a contradiction. Thus, In−i(ψ) ⊆m Ir−i, for  
all i in the required range and the Claim has been verified. 
To complete the proof that dim k(W ) = 1, we take any h1, . . . , hc−1 forming part 

of a minimal generating set for I such that for S�T/(h), M has finite projective 
dimension over S and its minimal resolution is given by ψ⊗S 1S . Then by Lemma  4·1, 
we may assume that φ= (ψ |h1 · In |  · · ·  |hc−1 · In). Thus, In(φ) is generated by det (ψ) 
together with the ideals hi · In−i(ψ), for i=1, . . . , n. By the Claim, In−i(ψ) ⊆m Ir−i 

for 1 � i� r − 1. Therefore hi · In−i(ψ) ⊆m Ir, for  1  � i� r − 1. For r� i� n, we  
clearly have that hi · In−i(ψ) ⊆m Ir . It now follows that the image of det (ψ) in  W 
spans W , so dim  k(W ) = 1 as desired. This completes the proof of the theorem. 

Remark. In Theorem 4·3 we cannot replace Ωd
R 
−δ + 1(M ) by Ωd

R 
−δ(M ) if we wish to  

include the stronger statement that dim k(W ) = 1. This is because Ωd
R 
−δ + 1(M ) does 

not have a free summand, while Ωd
R 
−δ(M ) could. Indeed, suppose δ = d and we could 

write M = N  R as R-modules. If it were the case that the dimension of the image 
of Fitt T (N ) in  Ir−1 ⊗T k were one, then since Fitt T (M ) =  Fitt  T (N ) · I, it would  
follow that the dimension of the image of Fitt T (M ) in  Ir ⊗T k would be c. However, 
the proof of the theorem shows that taking Ω dR 

−δ(M ) suffices for the equivalence of 
(i) and (ii). 

The results we have obtained about finite projective dimension in codimension 
c− 1 take particularly nice forms when we assume the depth (M ) = depth (R). For in 
this case we just have to consider the Fitting ideal of M itself. The next two corollar-
ies summarize what we have obtained for such a module. The first of these corollaries 
tells when M has finite projective dimension over some intermediate complete inter-
section of codimension c− 1 and relates it to another well-known condition, while 
the second tells how to obtain all other codimension c− 1 intermediate complete in-
tersections over which M has finite projective dimension, once we know of one such 
ring. 

Corollary 4·4. Let k be infinite and M be an R-module having rank r, infinite 
projective dimension and no free summand. If depth(M ) = depth(R), the following are 
equivalent: 
(i) M has finite projective dimension over some intermediate complete intersection of 
codimension c− 1; 
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(ii) M has a periodic resolution over R; 
(iii) Fitt T (M )�m Ir . 

Proof. The equivalence of (i) and (ii) is well known, and follows from the results in 
[1] (c.f.  (3·12) and (4·5)). That (i) and (iii) are equivalent follows from Theorem 4·3 
and the remark above. 

For M in Corollary 4·4, if Fitt T (M )�m Ir, then Theorem 4·3 shows how to obtain 
a ring in codimension c− 1 over which  M has finite projective dimension. Let ∆ be 
a maximal minor of φ not in mIr . Then any minimal generating set f, h1, . . . , hc−1 

having the property that ∆ = λf r + g, where  g ∈ Ir � (h) +  m Ir , for a unit λ, is such  
that M has finite projective dimension over T/(h). If f1, . . . , fc is the original set of 
generators, then such a generating set can be gotten by taking the generating set 
f1, f2 − 2f1, . . . , fc − cf1, for appropriate units i. 
We will use the following notation in the next corollary. Let f, h1, . . . , hc−1 be a 

minimal generating set for I and assume pd S (M ) = 1,  for  S�T/(h). Let g1, . . . , gc−1 

also be part of a minimal generating set for I and write Sg for T/(g). For each 
1 � i � c − 1, we can write gi = αif + βi,1h1 + · · ·  + βi,c−1 ·hc−1 + p, with the  αi, βr,s 

units and p∈m I. By Lemma 4·2, the images of the f · ej belong to to the span of 
the images of the hi · ej in Z ⊗T k, for  Z� Ω1 

T (M ) ⊆Tn. Let  A1, . . . , Ac−1 be n×n 
matrices over k such that in Z ⊗T k the equation f · In = h1 ·A1 + · · ·  + hc−1 ·Ac − 1 

holds. Let A(α, β) denote the (c− 1)n× (c− 1)n matrix consisting of (c− 1) × (c− 1) 
blocks arranged so that the (i, j)th block is the n×n matrix αi ·Aj + βij · In. Then  
A(α, β) is the matrix of coefficients obtained by expressing the images in Z ⊗T k of 
the vectors gi · ej in terms of the images of the vectors hi · ej . 

Corollary 4·5. In addition to the notation and assumptions of the preceding para-
graph, suppose that M is an R-module of rank r having no free summand. Suppose 
further that depth (M ) = depth (R). Fix a maximal minor ∆ of φ not in m Ir . Then the 
following are equivalent: 
(i) pd Sg 

(M ) <∞; 
(ii) the image of the set {gi · ej }i,j in Z ⊗ k is linearly independent; 
(iii) µ(Ω 1 

Sg 
(M )) = n; 

(iv) A(α, β) has maximal rank; 
(v) (∆) + (g) =  Ir + (g); 
(vi) the image of ∆ in the fiber ring of I is not in the ideal generated by the images of 

the gi. 

Proof. Using Lemma 4·1, the proof of the equivalence of (i)–(iv) is essentially the 
same as the proof of the second statement in Lemma 2·1. Now assume (i) holds, so 
that M has projective dimension one over Sg. As in the proof of Proposition 3·1, there 
is an n×nmatrix ψ over T such that ψ⊗1Sg gives the minimal resolution of M over 
Sg and Ir + (g) = (det (ψ)) + (g). By Theorem 4·3, det (ψ) =  λ∆+  t, where  λ is a unit 
and t∈m Ir . Thus, Ir + (g) = (λ∆+  t, g) ⊆ (∆, g) +  m Ir , so (v) holds, by Nakayama’s 
lemma. That (v) implies (i) follows from Proposition 3·1. The equivalence of (i) and 
(vi) follows from the proof of Theorem 4·3. 

Note that it follows from Corollary 4·5 that the intermediate complete intersections 
of codimension c− 1 over which  M has finite projective dimension are precisely those 
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whose ideal generators give rise to a transition matrix A(α, β) over  k having maximal 
rank. 
When k is algebraically closed, we have the following complementary statement 

to Theorem 4·3. In Proposition 4·6, we retain the notation and hypotheses from 
Theorem 4·3. 

Proposition 4·6. Assume k is algebraically closed. There exist h1, . . . , hc−1 in I, part  
of a minimal generating set, so that for S�T/(h), M has infinite projective dimension 
over S if  and only if  dim(W ) < dim k(Ir ⊗T k). 

Proof. Indeed, by Corollary 2·2, M has infinite projective dimension over 
some such S if and only if M has infinite projective dimension over R if 
and only if Ω dR 

−δ + 1(M ) has infinite projective dimension over R if and only if 
Fitt T (Ω dR 

−δ + 1(M )) ⊂ Ir (by Corollary 3·3) if and only if dim k(W ) < dim k(Ir ⊗T k). 

Several of our results can be interpreted in terms of the support variety of M . 
To do this, we recall the definition and some facts established in [1]. For the sake of 
convenience, we will also assume that k is algebraically closed. Let V denote the affine 
space over k determined by the vector space I⊗T k. If one fixes a minimal generating 
set f1, . . . , fc for I, one obtains a basis for V . Any  h∈ I\m I determines a point (or line 
through the origin) in V and similarly, any subset h1, . . . , ht of a minimal generating 
set determines a linear subvariety. Without going into detail, the support variety X 
of M is the algebraic subset of V defined by the homogenous ideal in the polynomial 
ring of Eisenbud operators that annihilates the graded module Ext ∗ 

R(M,k). More 
concretely, it follows from (3.9)–(3.11) in [1] that  X consists of the points in V that 
correspond to the intermediate hypersurfaces over which M has infinite projective 
dimension. 

Corollary 4·7. Suppose k is algebraically closed. Taking syzygies from a minimal 
free resolution of M over R, assume that s� rank(Ωd

R 
−δ(M )) and r� rank(Ωd

R 
−δ + 1(M )). 

Let U and W respectively denote the images of the Fitting ideals over T of these modules 
in the vector spaces Is ⊗T k and Ir ⊗T k. Then the following statements hold for the 
support variety X of M . 
(i) dim(X) = 0  if  and only if  dim k(U ) =  dim  k(Is ⊗T k). 
(ii) dim(X) = 1  if  and only if  dim k(W ) = 1. 
(iii) dim(X) > 1 if  and only if  dim k(U ) < dim k(Is ⊗T k) and dim k(W ) = 0. 

Proof. From the preceding paragraph, dim (X) equals zero if and only if M has 
finite projective dimension over R, and from Corollary 3·3, this holds if and only if 
Fitt T (Ωd

R 
−δ(M )) = Is . For (ii), by the geometry of cones in affine space, dim(X) = 1  if  

and only if there exists a (c − 1)-dimensional linear subvariety L that intersects X 
only at the origin. The latter happens if and only if there is a (c−1)-dimensional linear 
variety L so that every line in L intersects X at the origin, which in turn happens 
if  and only if  M has finite projective dimension over each of the corresponding 
hypersurfaces (by the comments above). By Corollary 2·2, this happens if and only 
if M has finite projective dimension over the intermediate complete intersection of 
codimension c− 1 corresponding to L, and therefore (ii) holds by Theorem 4·3. The 
equivalence in (iii) is an immediate consequence of (i), (ii) and Theorem 4·3. 
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