PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 9, Pages 2601–2609 S 0002-9939(99)04880-7 Article electronically published on April 15, 1999

ON THE EXISTENCE OF MAXIMAL COHEN-MACAULAY MODULES OVER pth ROOT EXTENSIONS

DANIEL KATZ

(Communicated by Wolmer V. Vasconcelos)

ABSTRACT. Let S be an unramified regular local ring having mixed characteristic p>0 and R the integral closure of S in a pth root extension of its quotient field. We show that R admits a finite, birational module M such that depth(M)=dim(R). In other words, R admits a maximal Cohen-Macaulay module.

1. Introduction

Let $R\psi$ be a Noetherian local ring. In considering the local homological conjectures over R, one may reduce to the situation where $R\psi$ s a finite extension of an unramified regular local ring S. Therefore, it is a natural point of departure to assume that Ru is the integral closure of Su in a "well-behaved" algebraic extension of its quotient field. Certainly, when Suhas mixed characteristic p>0, one ought to consider the case that $R\psi$ s the integral closure of $S\psi$ n an extension of its quotient field obtained by adjoining the pth root of an element of S. This was done in [Ko] where it was shown that $S\psi$ a direct summand of R, i.e., the Direct Summand Conjecture holds for the extension $S\psi \subseteq R$. In this note we show that a number of the other local homological conjectures hold for such $R\psi$ showing that $R\psi$ admits a finite, birational module M_{ℓ} satisfying depth(M) = dim(R) (see [H]). In other words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily free over S. Aside from regularity, one of the crucial points in the mixed characteristic case seems to be that $S/pS\psi$ s integrally closed. By contrast, using an example from [HM], Roberts has noted that even if $S\psi$ is a Cohen-Macaulay UFD and $R\psi$ is the integral closure of Sun a quadratic extension of quotient fields, R needn't admit a finite, S-free module at all (see [R]). For the example in question, Su has mixed characteristic 2, yet $S/2S\psi$ s not integrally closed.

2. Preliminaries

In this section we will establish our notation and present a few preliminary observations. Throughout, $S\psi$ will be a Noetherian normal domain with quotient field L. We assume char(L)=0. Fix $p\notin\mathbb{Z}$ to be a prime integer and suppose that either $p\psi$ a unit in $S\psi$ or that $pS\psi$ is a (proper) prime ideal and $S/pS\psi$ integrally closed. Let $f\psi \in S\psi$ an element that is not a pth power and select $W\psi$ an indeterminate. Write $F(W):=W^p-f\notin S[W]$, a monic irreducible polynomial

Received by the editors August 26, 1997 and, in revised form, November 26, 1997. 1991 Mathematics Subject Classification. Primary 13B21, 13B22, 13H05, 13H15.

and let $R\psi$ denote the integral closure of $S\psi$ in $K\psi = L(\omega)$, for $\omega\psi$ a root of F(W). Thus $R\psi$ is the integral closure of $S[\omega]$.

Our strategy in this paper is to exploit the fact that $R\psi$ can be realized as J^{-1} for a suitable ideal $J\psi\subseteq S[\omega]$. The study of birational algebras of the form J^{-1} seems to have captured the attention of a number of researchers during the last few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]). Since J^{-1} inherits S_2 from $S[\omega]$, this means that in attempting to "construct" R, if the candidate is J^{-1} for some J, then only the condition R_1 must be checked.

The following proposition summarizes some of the conditions relating $R\psi$ o J^{-1} for suitable $J\psi$ that we will call upon in the next section. Parts (i) and (ii) of the proposition were inspired by the main results in [V] and Proposition 3.1 in [KU]. Special cases of part (iii) of the proposition have apparently been known to algebraic geometers for a long while. For some historical comments and fascinating variations, the interested reader should consult [KU].

Proposition 2.1. Let $A\psi be$ a Noetherian domain satisfying S_2 and assume that A', the integral closure of A, is a finite A-module.

- (i) Suppose $\{P_1, \ldots, P_n\}$ are the height one primes of Ayfor which A_{P_i} is not a DVR. If for each $1 \leq i \leq n$, $rad(J_i) = P_i$ and $(J_i^{-1})_{P_i} = A'_{P_i}$, then $A' = J^{-1}$, for $J\psi = J_1 \cap \cdots \cap J_n$.
- (ii) If $A \neq A'$, then $A' = J^{-1}$, for some height one unmixed ideal $J\psi\subseteq A$. Moreover, if $A\psi$ is Gorenstein in codimension one, then $A' = J^{-1}$ for a unique height one unmixed ideal $J\psi$ satisfying $J \cdot J^{-1} = J\psi = (J^{-1})^{-1}$.
- (iii) Suppose that A = B/(F) for $F \psi \in B \psi n$ principal prime and $\tilde{J} \subseteq B \psi is$ a grade two ideal arising as the ideal of $n \times n \psi minors$ of an $(n+1) \times n \psi matrix \phi$. Assume further that $F \psi \in \tilde{J}$ and set $J \psi = \tilde{J}/(F)$. Let $\Delta_1, \ldots, \Delta_{n+1}$ denote the signed minors of ϕ , write $F \psi = b_1 \Delta_1 + \cdots + b_{n+1} \Delta_{n+1}$ and let ϕ' denote the $(n+1) \times (n+1)$ matrix obtained by augmenting the column of b'_i s to ϕ (so $F \psi is$ the determinant of ϕ'). Then J^{-1} can be generated as an A-module by $\{1,1/\delta_1,\ldots,\psi_{n+1,n+1}/\delta_{n+1}=1\}$, where i, denotes the image in $A \psi i$ the (i,i)th cofactor of ϕ' and δ_i denotes the image of Δ_i in $A \psi$ (which we assume to be non-zero). Moreover, $p.d._B(J) = p.d._B(J^{-1}) = 1$.

Proof. To prove (i), note that $J_Q^{-1} = A_Q'$ for all height one primes $Q \subseteq A$. Since J^{-1} and A' are birational and satisfy S_2 , we obtain $J^{-1} = A'$. For the first statement in (ii), we may, by part (i), consider the case where $A\psi$ s a one-dimensional local ring which is not a DVR. Let $Q\psi$ lenote the maximal ideal of A. Then $QQ^{-1} \subseteq Q$. Since it always holds that $Q\psi \subseteq QQ^{-1}$, we have $Q \notin QQ^{-1}$. Therefore Q^{-1} is a finite ring extension properly containing $A\psi$ (since for any ideal J, $(JJ^{-1})^{-1}$ is a ring). If $Q^{-1} = A'$, we're done. If not, then since Q^{-1} inherits S_2 from A, Q^{-1} contains a height one prime $P\psi$ for which $(Q^{-1})_P$ is not a DVR. Thus P^{-1} is a finite ring extension properly containing Q^{-1} . An easy calculation shows that P^{-1} , considered over Q^{-1} , equals Q^{-1} , considered over Q^{-1} , and Q^{-1} is a Gorenstein in codimension one. Then $Q^{-1} = Q^{-1} = Q^{-1}$

the generators for J^{-1} follows either from [MP], Proposition 3.14 or [KU], Lemma 2.5. For the second part of (iii), see [KU], Proposition 3.1.

Returning to our basic set-up, we note that since $S\psi$ is a normal domain, $S[\omega]$ satisfies Serre's condition S_2 . Moreover, since char(S) = 0, R is a finite S-module. Thus Proposition 2.1 applies. In Section 3 we will identify the ideal $J\psi\subseteq S[\omega]$ for which $J^{-1} = R$. In the meantime, we observe that if p is not a unit in S, then there is a unique height one prime in $S[\omega]$ containing p. Suppose $p \mid f$. Then $P \not\models (\omega, p)$ is clearly the unique height one prime in $S[\omega]$ containing p. Moreover, $S[\omega]_P$ is a DVR if and only if $p\psi \nmid f$. Suppose $p \nmid f$. If $f \not \models$ not a pth power modulo pS, then fis not a pth power over the quotient field of S/pS (since S/pS is integrally closed) and it follows that F(W) is irreducible mod pS. Thus (p, F(W)) is the unique height two prime in S[W] containing F(W) and p, so $pS[\omega]$ is the unique height one prime in $S[\omega]$ containing p. If $f \not\equiv h^p \mod pS$, then $F(W) \equiv (W \not\equiv h)^p \mod pS\psi$ and it follows that $(\omega - h, p)S[\omega]$ is the unique height one prime in $S[\omega]$ containing p. Thus, in all cases, there exists a unique height one prime in $S[\omega]$ lying over pS. For the remainder of the paper, we call this prime P. Suppose $f\psi = h^p + gp$, so $P \notin (\omega - h, p)S[\omega]$. Write $\tilde{P} := (W\psi - h, p)S[W]$ for the preimage of $P\psi$ in S[W]. Then

$$F(W) = W^p - h^p - gp = (W^{p-1} + \dots + h^{p-1}) \cdot (W \psi \cdot h) - gp.$$

In S[W], $W^{p-1} + \cdots + h^{p-1} \equiv ph^{p-1}$ modulo $(W\psi - h)$, so $W^{p-1} + \cdots + h^{p-1} \in \tilde{P}$. Thus, $F(W) \in \tilde{P}^2$ if and only if $p\psi \mid g$. In other words, in all cases, P_P is not principal if and only if $f\psi = h^p + p^2g$, for some $h, g\psi \in S$.

3. The main result

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and 3.3 will enable us to describe the ideal $J \not \sqsubseteq S[\omega]$ for which $R \not \models J^{-1}$. We will then see in the proof of Theorem 3.8 that the module we seek has the form I^{-1} , for some ideal $I \not \sqsubseteq J$.

Lemma 3.1. Suppose p\(\psi \)s not a unit in S, $h \in S \setminus pS \neq and p = 2k + 1$. Set

$$C\psi = \sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j\psi} (W\psi h)^{j} [W^{p-2j} - h^{p-2j}],$$

 $C':=C\psi\left(p(W\psi-h)\right)^{-1}\ and\ \tilde{P}:=(p,W\psi-h)\cdot S[W].\ Then\ C'\not\in\tilde{P}.$

Proof. Note that since $p\psi$ divides $\binom{p}{j}$ for all $1 \leq j\psi \leq k$, C' is a well-defined element of S[W]. Now, $C' \not\in \tilde{P}$ if and only if the residue class of C' modulo $W\psi - h$, as an element of S, does not belong to $pS\psi$ f and only if $\sum_{j=1}^k (-1)^{j+1} \binom{p}{j} \frac{h^{p-1}}{p} (p-2j)$, as an element of S, is not divisible by p. Since

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p}{j} h^{p-1}$$

is divisible by p_qand h^{p-1} is not divisible by p, it is enough to show that

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p - 2j}{j} \frac{2j}{p}$$

is not divisible by p, as an element of S. However,

$$\sum_{j=1}^{k} (-1)^{j+1} \binom{p \psi}{j} \frac{2j\psi}{p\psi} = 2 \cdot \sum_{j=1}^{k} (-1)^{j+1} \binom{p-1}{j-1} = (-1)^{k+1} \binom{2k}{k} \cdot \psi$$

Because p does not divide $\binom{2k}{k}$ in \mathbb{Z} , p does not divide $\binom{2k}{k}$ as an element of $S\psi$ since $pS\psi\neq S$). Thus $C'\not\in \tilde{P}$, as claimed.

For the next lemma, we borrow the following terminology from [Kap]. We shall say that $f\psi \in S\psi$ s "square-free" if $qS_q = fS_q$ for all height one prime ideals $q\psi \subseteq S$ containing f. Since $F'(\omega) \cdot R \not \supseteq S[\omega]$ and $\omega \psi F'(\omega) = p \cdot f$, it follows from the discussion in Section 2 that if $f\psi$ s square-free, then either $R\psi = S[\omega]$ or P is the only height one prime for which $S[\omega]_P$ is not a DVR.

Lemma 3.2. Suppose $f \psi \in S \psi$ is square-free and $S[\omega] \neq R \psi$ (thus $p \psi$ is not a unit in S). Then $R = P^{-1}$. Moreover, $R \psi$ is a free S-module.

Proof. We first consider the case p > 2. Since $S[\omega]$ is not integrally closed, we have $f \not \models h^p + p \not \models q$, for some h not divisible by p and $g \not \models 0$ in S. Thus, $P \not \models (\omega - h, p) S[\omega]$. It follows from the proof and statement of Proposition 2.1 that P^{-1} is a ring and that P^{-1} is generated as an $S[\omega]$ -module by $\{1, \tau\}$, for

$$\tau \not = \frac{1}{p} \cdot \sum_{j=1}^{p} \omega^{p-j} h^{j-1} = \frac{g \cdot p}{\omega - h} \cdot \psi$$

Therefore $P^{-1} = S[\omega, \tau]$. If we show that $S[\omega, \tau]$ satisfies R_1 , then $S[\omega, \tau] = R$, since P^{-1} satisfies S_2 (as an $S[\omega]$ -module and as a ring). Since $f\psi$ square-free, it suffices to show that P_Q^{-1} is a DVR for each height one $Q \subseteq P^{-1}$ containing p. To do this, we find an equation satisfied by $\tau\psi$ over $S[\omega]$. On the one hand,

$$(\omega - h) \cdot \tau \psi = 0 \cdot (w - h) + g \cdot p.\psi$$

On the other hand,

$$p \cdot \tau \psi = (\omega - h)^{p-2} \cdot (\omega - h) + c' \psi p$$

where $c \psi$ denotes the image in $S[\omega]$ of the element $C' \in S[W]$ defined in Lemma 3.1. Therefore, by the standard determinant argument, $\tau \psi$ satisfies

$$l(T) := T^2 - c' \mathcal{T} \psi \ a(\omega - h)^{p-2}$$

over $S[\omega]$. Now, let $\pi\psi$: $S[W,T] \to S[\omega,\tau]$ denote the canonical map and set $H\psi = \ker(\pi)$ and let $Q\psi \subseteq S[\omega,\tau]$ be any height one prime containing p. Then Q corresponds to a height three prime $Q' \subseteq S[W,T]$ containing $p\psi$ and H. Since $P \nsubseteq Q$ and $H\psi \subseteq Q'$, $W\psi = h\psi$ and $T^2 - C'T\psi = g(W\psi = h)^{p-2}$ belong to Q'. Therefore, $Q' = (p, W\psi = h, T)$ or $Q' = (p, W\psi = h, T\psi = C')$. Suppose $Q' = (p, W\psi = h, T)$. Then $Q = (p, \omega - h, \tau)S[\omega, \tau]$. We have

$$\tau^2 - c'\psi \psi + g(\omega - h)^{p-2} = 0 \quad \text{and} \quad p(\tau \psi c')\psi = (\omega - h)^{p-1}.$$

By Lemma 3.1, $c' \psi \notin Q$, so $\tau \notin c' \notin Q$, and it follows that $Q_Q = (\omega \notin h)_Q$. Now suppose $Q' = (p, W \psi - h, T \psi - C')$. Then $Q = (p, \omega - h, \tau \psi - c') S[\omega, \tau]$. Since

$$\tau^2 - c' \psi \psi - g(\omega - h)^{p-2} = 0 \quad \text{and} \quad (\omega - h) \cdot \tau \not = g \cdot p,$$

it follows that $Q_Q = (p)_Q$ (since $\tau \not \in Q$, by Lemma 3.1). Thus, in either case, Q_Q is principal, so $R = S[\omega, \tau] = P^{-1}$.

The proof is similar if $p\psi=2$ and $f \neq h^2+4g$, with $2 \nmid h$. One notes that $P^{-1}=S[\omega,\tau]=S[\tau], \text{ for } \tau:=\frac{h+\omega}{2} \text{ and that } \tau \text{ satisfies } l(T):=T^2-hT-g.$ To show $R = S[\tau]$, one uses the fact that l(T) and l'(T) are relatively prime over the quotient field of S/2S.

To see that R is a free S-module, we first note that R is clearly generated as an S-module by the set $\{1, \omega, \dots, \omega^{p-1}, \tau, \tau\omega, \dots, \tau\omega^{p-1}\}$. However, $\tau\omega = pg \cdot 1 + h \cdot \tau$. This implies that $\tau\omega^i$ belongs to the S-module generated by $\{1, \omega, \ldots, \omega^{p-1}, \tau\}$, for all $1 \le i \le p-1$. Moreover, since

$$\omega^{p-1} = -h^{p-1} \cdot 1 - h^{p-2} \cdot \omega - \dots - h \cdot \omega^{p-2} + p \cdot \tau,$$

we may dispose of ω^{p-1} as well. Thus, R is generated as an S-module by the set $\{1, \omega, \ldots, \omega^{p-2}, \tau\}$. Since these elements are clearly linearly independent over S, R is a free S-module.

Lemma 3.3. Suppose $f\psi = \lambda a^e$, with $a \in S$ in prime element, λ a unit in S in A2 < e < p. If p is not a unit in S, assume $a \neq p$. Then there exist integers $1 \le s_1 < s_2 < \cdots < s_{e-1} < p$ satisfying

- (i) $s_{e-i} \leq p s_i$, $1 \leq i \leq e 1$. (ii) $R = J^{-1}$ for $J := (\omega^{s_{e-1}}, \omega^{s_{e-2}} a, \dots, \omega^{s_1} a^e \psi^2, a^{e-1}) S[\omega]$.

Proof. We begin by noting that either condition in the hypothesis implies that $Q := (\omega, a)S[\omega]$ is the only height one prime for which $S[\omega]_Q$ is not a DVR. Now, since p and e are relatively prime, we can find positive integers u and v such that $1 = u \cdot p + (-v) \cdot e$. If we set $\tau : \# \frac{a^u}{\omega^v}$, then $\tau^e = \lambda^{-u}\omega$ and $\tau^p = \lambda^{-v}a$. It follows that $S[\omega,\tau] = S[\tau] = R$, since either p is a unit and a is square-free or $p\psi$ is not a unit and $(\tau, p)S[\tau] = \tau S[\tau]$. Thus, $\{1, \tau, \dots, \tau^{e-1}\}$ generate R as an $S[\omega]$ module. Since u and e are relatively prime, the set $\{uj\}_{1\leq j\leq e-1}$, when reduced mod e, equals the set $\{i\}_{1 \leq i \leq e-1}$. This will enable us to replace the generators $\{1, \tau, \ldots, \tau^{e-1}\}$ by $\{1, \psi_{\overline{\omega^{s_1}}}^{\lambda a}, \ldots, \psi_{\overline{\omega^{s_e-1}}}^{a^{e-1}}\}$. To elaborate, given $1 \leq i \leq e-1$, there is a unique $1 \leq j_i \leq e-1$ such that $uj_i \equiv i \pmod{e}$. Write $uj_i = t_i e + i$, $t_i \geq 0$. Then

$$(1+ve)j_i = puj_i = t_iep + ip,$$

so $(vj_i)e + j_i = (t_ip)e + ip$. If we write $ip\psi = s_ie + r$, with $0 \le r < e$, then uniqueness of the euclidean algorithm gives $vj_i = t_i p + s_i$ and $r\psi = j_i$. Thus, $\tau^{j_i} = \frac{a^{uj_i}}{\omega^{vj_i}} = \frac{a^i}{\lambda^{t_i}\omega^{s_i}}$ and $ip = s_i e + j_i$. For i = e - 1, this yields $s_{e-1} < p$. Moreover, $p = (s_{i+1} - s_i)e + (j_{i+1} - j_i)$, so $s_{i+1} - s_i > 0$. Similarly, $ep = (s_{e-i} + s_i)e + (j_{e-i} + j_i)$,

so $s_{e-i} + s_i \leq p$. Thus, s_1, \ldots, s_{e-1} have the required numerical properties. We now have $\{1, \tau, \ldots, \tau^{e-1}\} = \{1, \frac{j_1 \cdot a}{\chi^{t_1} \omega^{s_1}}, \ldots, \frac{j_r \cdot a^{e-1}}{\chi^{t_{e-1}} \omega^{s_{e-1}}}\}$. Multiplying by appropriate powers of λ allows us to use $\{1, \frac{j_r \cdot a}{\chi^{s_1} \omega^{s_1}}, \ldots, \frac{j_r \cdot a^{e-1}}{\chi^{s_{e-1}}}\}$ as a generating set for R over $S[\omega]$. In Proposition 2.1 take $A := S[\omega]$, B := S[W], F := F(W) and \tilde{J} the ideal of $(e-1) \times (e-1)$ signed minors of the $e \times (e-1)$ matrix

$$\phi = \begin{pmatrix} -a\psi & 0 & \cdots & 0 & 0 \\ W^{\alpha_{e-1}} & -a\psi & \cdots & 0 & 0 \\ 0 & W^{\alpha_{e-2}} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & W^{\alpha_2} & -a\psi \\ 0 & 0 & \cdots & 0 & W^{\alpha_1} \end{pmatrix}$$

with $_1+_2+\cdots+_i=s_i$, for $1\leq i\leq e-1$. To obtain ϕ' , we augment ϕ by the column whose transpose is $(W^{p-c},0,\ldots,0,(-1)^e\lambda a)$ (so $det(\phi')=F(W)$). Then J^{-1} is generated as an $S[\omega]$ -module by $\{1,\frac{\lambda a}{\omega^{s_1}},\ldots,\frac{\lambda a^{e-1}}{\omega^{s_{e-1}}}\}$. Thus, $R=S[\omega,\tau]=J^{-1}$ for $J=(\omega^{s_{e-1}},\omega^{s_{e-2}}a,\ldots,a^{e-1})$, as desired.

For a proof of the next lemma, see [Ka], Lemma 4.1.

Lemma 3.4. In S[W] consider the ideals $H := (W^{e_k}, W^{e_{k-1}}a_1, \dots, W^{e_1}a_{k-1}, a_k)$ and $K := (W^{f_t}, W^{f_{t-1}}b_1, \dots, W^{f_1}b_{t-1}, b_t)$, where

- (i) $e_k > e_{k-1} > \cdots > e_1$ and $f_t > f_{t-1} > \cdots > f_1$.
- (ii) $a_1 | a_2 | \cdots | a_k \text{ and } b_1 | b_2 | \cdots | b_t$.
- (iii) Each a_i and b_j is a product of prime elements.
- (iv) For all i and j, a_i and b_j have no prime factor in common.

Then there exist integers $g_s > \cdots > g_1$ and products of primes $c_1 \mid c_2 \mid \cdots \mid c_s$ such that $H \cap K = (W^{g_s}, W^{g_{s-1}}c_1, \ldots, W^{g_1}c_{s-1}, c_s)$. Moreover, H, K and $H \cap K$ are all grade two perfect ideals.

Lemma 3.5. Let A be a domain and $I \subseteq J$ ψ ideals such that J^{-1} is a ring. Then I^{-1} is a J^{-1} -module if and only if $I^{-1} = (I \cdot J^{-1})^{-1}$. In particular, if $x \in J$ ψ and $x \cdot J^{-1} \subseteq J$, then $(x \cdot J^{-1})^{-1}$ is a J^{-1} -module.

Proof. We first observe $(I \cdot J^{-1})^{-1}$ is always a J^{-1} -module. Indeed, $y \in (I \cdot J^{-1})^{-1}$ implies $I \cdot J^{-1}y \subseteq R$. Thus $J^{-1}J^{-1}y = J^{-1}y \subseteq I^{-1}$, so $(I \cdot J^{-1})(J^{-1}y) \subseteq R$ and $J^{-1}y \subseteq (I \cdot J^{-1})^{-1}$. Therefore, $(I \cdot J^{-1})^{-1}$ is a J^{-1} -module and the first statement follows easily from this. For the second statement, we note that if $x \cdot J^{-1} \subseteq J$, then for $I := x \cdot J^{-1}$, $I \cdot J^{-1} = x \cdot J^{-1}J^{-1} = x \cdot J^{-1} = I$. Thus, $I^{-1} = (I \cdot J^{-1})^{-1}$, so I^{-1} is a I^{-1} -module by the first statement.

Remark 3.6. Proposition 2.2 in [Ko] states that R is a free S-module, if $S\psi$ is an unramified regular local ring and $p \mid f$. The proof shows that R is a free S-module just under the assumption that f can be written as a product of primes and S/pS is a domain. In [Ko], Proposition 1.5, it is shown that if S is a UFD, then there exists a free S-module $F \subseteq R$ such that pR is contained in F. Thus, if p is a unit in S, then R is also a free S-module. Finally, if f is square-free, R is a free S-module by Lemma 3.2. We record these facts in a common setting in the following proposition. For a version of the proposition for p^n th root extensions, see [Ka], Theorem 4.2.

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD. Then R is a free S-module in each of the following cases:

- (i) p is a unit in S.
- (ii) p is not a unit and either $p \mid f\psi$ or $f\psi$ is square-free.

We are now ready for our theorem.

Theorem 3.8. Assume that $S\psi$ is a regular local ring. Then there exists a finite, birational R-module $M\psi$ satisfying $depth_S(M) = dim(R)$. In other words, $M\psi$ is a maximal Cohen-Macaulay module for R.

 each $1 \leq i \leq t$ /whoose $s(i,1) < \cdots < s(i,e_i-1)$ satisfying the conclusion of Lemma 3.3 over $S[\omega]_{Q_i}$ and set $J_i := (\omega^{s(i,e_i-1)}, \omega^{s(i,e_i-2)}a_i, \dots, \omega^{s(i,1)}a_{\ell}^{e_i})^{-2}, a_i^{e_i-1})S[\omega]$. Thus, $R_{Q_i} = (J_i^{-1})_{Q_i}$ for all i. We now have two cases to consider. Suppose first that f/ ψ is not a pth power modulo p^2S . We will show that R/ ψ is Cohen-Macaulay. By our discussion in section two, Q_1, \dots, Q_t are exactly the height one primes Q/ ψ $\subseteq S[\omega]$ for which $S[\omega]_Q$ is not a DVR, so by Proposition 2.1 and Lemma 3.3, R/ ψ = J^{-1} for J/ ψ = $J_1 \cap \cdots \cap J_t$. Set $J_i = I$ for J/ $I_i = I$ for J/ I_i

Suppose that $f\psi$ is a pth power modulo p^2S . Write $f \neq h^p + p^2g$, for $h, g\psi \in S$, $p\psi \nmid h$. Then $P \neq (\omega \psi h, p)$. Moreover, $P\psi$ and Q_1, \ldots, Q_t are the height one primes $Q\psi \subseteq S[\omega]$ for which $S[\omega]_Q$ is not a DVR. By Proposition 2.1 and Lemma 3.2, $R\psi = J^{-1}$, for $J \psi = J_1 \cap \cdots \cap J_t \cap P$. Now, as in the proof of Lemma 3.3, J_i^{-1} is generated as an $S[\omega]$ -module by the set $\{1, \frac{\lambda_i a_i}{\omega^{s(i,1)}}, \ldots, \frac{\lambda_i a_i^{e_i-1}}{\omega^{s(i,e_i-1)}}\}$, where, for each $i, \lambda_i := \prod_{i \neq j=1}^r \lambda a_j^{e_j}$. Thus $K_i = (\omega^{p-s(i,1)}, \omega^{p-s(i,2)} a_i, \ldots, a_i^{e_i-1}) S[\omega]$, for $K_i := a_i^{p_i-1} \cdot J_i^{-1}$ and $1 \leq i\psi \leq t$. By Lemma 3.3, $K_i \subseteq J_i$, so upon setting $I\psi = K_1 \cap \cdots \cap K_t \cap P$, it follows from Lemma 3.5 that I^{-1} is a J^{-1} -module (since this holds locally for every height one prime in $S[\omega]$). Taking $M\psi = I^{-1}$, we will show that $M\psi$ is the required module. For this, we claim that $\tilde{I} \subseteq B\psi$ s a grade two perfect ideal. If the claim holds, $1 = p.d._B(I) = p.d._B(I^{-1}) = p.d._B(M)$. Thus $depth_B(M) = dim(B) - 1$, so $depth_S(M) = dim(R)$, which is what we want.

To prove the claim, we set $\tilde{K}:=\tilde{K}_1\cap\cdots\cap\tilde{K}_t$ and consider the short exact sequence

$$0 \longrightarrow B/\tilde{I} \longrightarrow B/\tilde{K} \oplus B/\tilde{P} \longrightarrow B/(\tilde{K} + \tilde{P}) \longrightarrow 0.$$

Since $K\psi$ is a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the Auslander-Buchsbaum formula imply that \tilde{I} is a grade two perfect ideal, once we show $depth(B/(\tilde{K}+\tilde{P}))=dim(B)-3$. Set $a:=a^{ept}_{V}^{-1}\cdots a^{ept}_{V}^{-1}$. We now argue that $\tilde{K}+\tilde{P}=(a,p,W-h)$. If we can show this, clearly $depth(B/(\tilde{K}+\tilde{P}))=dim(B)-3$ and we will have verified the claim. Take $\tilde{k}\in \tilde{K}$ and consider its image $k\psi$ in $K\psi\subseteq S[\omega]$. Select $Q\psi\subseteq S[\omega]$, a height one prime. If $Q\psi=Q_i$, for some $1\leq i\not\subseteq t$, then $k\psi\in (a^{ept}_{V}^{-1}J_i^{-1})_{Q_i}=aR_{Q_i}$. If $Q\not=\psi Q_i$ for any $1\leq i\psi\leq t$, then clearly $k\psi\in aR_Q=R_Q$. It follows that $k\psi\in aR\cap S[\omega]$. In other words, $k\psi$ is integral over the principal ideal $aS[\omega]$. Therefore, the image of $k\psi$ in $S[\omega]/(\omega\psi-h,p)=S/pS\psi$ is integral over the principal ideal generated by the image of a. Since $S/pS\psi$ is integrally closed, the image of $k\psi$ in $S/pS\psi$ a multiple of the image of a. Therefore, $\tilde{k}\psi\in (a,p,W\psi-h)$ in S[W]. It follows that $\tilde{K}\psi\subseteq (a,p,W\psi-h)$. Since $a\in \tilde{K}$, we obtain $\tilde{K}+\tilde{P}=(a,p,W\psi-h)$, which is what we want. This completes the proof of Theorem 3.8.

Remark 3.9. Of course if S is an unramified regular local ring, $S\psi$ ulfills our standing hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain ramified regular local rings. For instance, take $T\psi$ to be the ring $\mathbb{Z}[X_1,\ldots,X_d]$ localized at (p,X_1,\ldots,X_d) and let $H\psi\in\mathbb{Z}[X_1,\ldots,X_d]$ be any polynomial in $(X_1,\ldots,X_d)^2$ for which $\mathbb{Z}_p[X_1,\ldots,X_d]/(\overline{H})$ is an integrally closed domain. If we set $S\psi=T/(p\psi H)$, then $S\psi$ is a ramified regular local ring and $S/pS\psi$ is an integrally closed domain.

We close with an example where $R\psi$ s not a free S-module, yet $R\psi$ admits a finite, birational module which is a free S-module. The example is an unramified variation of Koh's Example (2.4).

Example 3.10. Let $S\psi$ an unramified regular local ring having mixed characteristic 3 and take $x,y\not\in S\psi$ such that 3,x,y form part of a regular system of parameters. Set $a\psi=xy^4+9$, $b\psi=x^4y+9$ and $f\psi=ab^2$, so $\omega^3=f\psi=ab^2=h^3+9g$, for $h=x^3y^2\psi$ From Lemmas 3.2 and 3.3 it follows that $R=(Q\cap P)^{-1}$ for $Q:=(\omega,b)$ and $P\psi=(\omega\psi-h,3)$. Set $J\psi=Q\cap P$. We first show that $R\psi=J^{-1}$ is not a free S-module. Suppose to the contrary that J^{-1} is free over S. As in the proof of Theorem 3.8, set $B\psi=S[W]_{(N,W)}$ and use "tilde" to denote pre-images in B. Since J^{-1} is free over S, we have $p.d._B(J^{-1})=1$, so J^{-1} is a grade one perfect B-module. By [KU, Proposition 3.6], $J\psi$ s a grade one perfect B-module, so $\tilde{J}\psi$ s a grade two perfect ideal. On the other hand, $depth_B(B/\tilde{J})=1+depth_B(B/(\tilde{Q}+\tilde{P}))$. But, $\tilde{Q}+\tilde{P}=(W,x^4y,x^3y^2,3)B$, so $B/(\tilde{Q}+\tilde{P})=S/(3,x^4y,x^3y^2)S$, which is easily seen to have depth equal to depth(S)-3=depth(B)-4. This is a contradiction, so it must hold that $R\psi$ s not a free S-module.

Now, Q^{-1} is generated as an $S[\omega]$ -module by $\{1, \psi_{\overline{\omega}}^{ab}\}$. If we set $K : \not \models b \cdot Q^{-1}$, then $K\psi = (\omega^2, b)S[\omega]$. The proof of Theorem 3.8 shows that $M\psi := (K\psi \cap P)^{-1}$ is a finite, birational R-module satisfying $depth_S(M) = dim(R)$. In other words, $M\psi$ is an R-module which is free over S. To calculate a basis for M, one must calculate $K\psi \cap P\psi$ and then use Proposition 2.1. We leave it to the reader to check that $K\psi \cap P\psi = (\omega^2 - h^2 - 9x^2y^3, b(\omega - h), 3b)$. Therefore, $K \cap P\psi = I_2(\phi)$ for

$$\phi = \begin{pmatrix} -b & 0\\ \omega + h & -3\\ -3x^2y^3 & \omega - h \end{pmatrix} \psi.$$

The augmented matrix that determines $(K\psi \cap P)^{-1} = M\psi$ is the 3 × 3 matrix

$$\begin{pmatrix} -b\psi & 0 & \omega\psi \\ \omega + h & -3 & x^2y\psi \\ -3x^2y\psi & \omega - h & t\psi \end{pmatrix},$$

where $t\psi$ is defined by the equation $x^5y\bar{\psi} = ab\psi + 3t$. By Proposition 2.1, $M\psi$ is generated as an $S[\omega]$ -module by the set $\{1, \gamma \not\!\!\!\!/ b\}$, for

$$:= \frac{-3t - x^2y^3(\omega - h)}{\omega^2 - h^2 - 9x^2y^3} = \frac{\omega\psi}{b}, \qquad \delta\psi = \frac{-bt + 3x^2y^3\omega}{b(\omega - h)} = \frac{\omega^2 + \omega h + h^2 + 9x^2y^3}{3b\psi}.\psi$$

If we show that $\{1,\gamma,\emptyset\}$ also generate $M\psi$ s an S-module, then since they are clearly linearly independent over S, they form a basis for $M\psi$ s an S-module. To see that $\{1,\gamma,\emptyset\}$ generate $M\psi$ s an S-module, it suffices to show that ω,ω and $\omega \cdot \delta\psi$ can be expressed as S-linear combinations of $\{1,\gamma,\emptyset\}$. This clearly holds for ω . Using $9x^2y^3\psi = bx^2y^3 - x^6y^4\psi$, we obtain

$$\omega \cdot = \frac{\omega^2}{b\psi} = -x^2 y^3 \psi \, 1 - h \cdot + 3 \cdot \delta.$$

Since $\omega^3 = h^3 + 9q$ and $q \not= x^5 y^5 + bxy^4 + b^2$, we get

$$\omega \cdot \delta \not= (3xy\psi + 3b) \cdot 1 + 3x^2y\psi + h \cdot \delta \psi$$

and the example is complete.

ACKNOWLEDGEMENTS

I would like to thank both the referee and Craig Huneke for their helpful comments on how to improve the readability of this paper.

References

- [EU] D. Eisenbud and B. Ulrich, Modules that are finite birational algebras, Illinois Jl. Math 141 No. 1 (1997), 10-15. CMP 97:08
- [H] M. Hochster, Topics in the homological theory of modules over commutative rings, C.B.M.S. Reg. Conf. Ser. in Math., vol. 24, A.M.S., Providence, RI, 1975. MR 51:8096
- [HM] M. Hochster and J.E. McLaughlin, Splitting theorems for quadratic ring extensions, Illinois Jl. Math. 127 No. 1 (1983), 94-103. MR 85c:13015
- [Kap] I. Kaplansky, Commutative Rings II, University of Chicago, Lecture Notes.
- [Ka] D. Katz, P^n th root extensions in mixed characteristic p, preprint (1997).
- [KU] S. Kleiman and B. Ulrich, Gorenstein algebras, symmetric matrices, self-linked ideals, and symbolic powers, Trans. AMS 349 (1997), 4973–5000. MR 98c:13019
- [Ko] J. Koh, Degree p extensions of an unramified regular local ring of mixed characteristic p > 0, J. of Algebra 99 (1986), 310-323. MR 87j:13027
- [MP] D. Mond and R. Pellikaan, Fitting ideals and multiple points of analytic mappings, Springer Lecture Notes in Mathematics 1414 (1989), 107-161. MR 91e:32035
- [R] P. Roberts, Abelian extensions of regular local rings, Proc AMS 78, No 3 (1980), 307-319.
 MR 81a:13017
- [V] W. Vasconcelos, Computing the integral closure of an affine domain, Proc. AMS 113 (1991), 633-638. MR 92b:13013

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045 $E\text{-}mail\ address$: dlk@math.ukans.edu