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ABSTRACT. Let S be an unramified regular local ring having mixed charac-
teristic p > 0 and R the integral closure of S in a pth root extension of its
quotient field. We show that R admits a finite, birational module M such that
depth(M) = dim(R). In other words, R admits a maximal Cohen-Macaulay
module.

1. INTRODUCTION

Let Riybe a Noetherian local ring. In considering the local homological conjec-
tures over R, one may reduce to the situation where Ruis a finite extension of an
unramified regular local ring S. Therefore, it is a natural point of departure to
assume that Rus the integral closure of Syin a “well-behaved” algebraic extension
of its quotient field. Certainly, when Svhas mixed characteristic p > 0, one ought to
consider the case that Rus the integral closure of Sin an extension of its quotient
field obtained by adjoining the pth root of an element of S. This was done in [Ko]
where it was shown that Siis a direct summand of R, i.e., the Direct Summand
Conjecture holds for the extension SYC R. In this note we show that a number of
the other local homological conjectures hold for such Riby showing that Riyadmits
a finite, birational module Mysatistying depth(M) = dim(R) (see [H]). In other
words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily
free over S. Aside from regularity, one of the crucial points in the mixed character-
istic case seems to be that S/pSis integrally closed. By contrast, using an example
from [HM], Roberts has noted that even if Stis a Cohen-Macaulay UFD and Rufs
the integral closure of Syn a quadratic extension of quotient fields, R needn’t admit
a finite, S-free module at all (see [R]). For the example in question, Sthas mixed
characteristic 2, yet S/2Sus not integrally closed.

2. PRELIMINARIES

In this section we will establish our notation and present a few preliminary
observations. Throughout, SYwill be a Noetherian normal domain with quotient
field L. We assume char(L) = 0. Fix p ¢ Z to be a prime integer and suppose
that either pyis a unit in Sior that pSyis a (proper) prime ideal and S/pSyis
integrally closed. Let fiye Sybe an element that is not a pth power and select W1
an indeterminate. Write F(W) := WP — f+« S[W], a monic irreducible polynomial
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and let Rydenote the integral closure of Siin K= L(w), for wya root of F(W).
Thus Rus the integral closure of S[w].

Our strategy in this paper is to exploit the fact that Ryean be realized as J !
for a suitable ideal JYC S[w]. The study of birational algebras of the form J~!
seems to have captured the attention of a number of researchers during the last
few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]).
Since J~! inherits Sy from S[w], this means that in attempting to “construct” R,
if the candidate is J ! for some .J, then only the condition R; must be checked.

The following proposition summarizes some of the conditions relating Riyto J~!
for suitable Jythat we will call upon in the next section. Parts (i) and (ii) of
the proposition were inspired by the main results in [V] and Proposition 3.1 in
[KU]. Special cases of part (iii) of the proposition have apparently been known to
algebraic geometers for a long while. For some historical comments and fascinating
variations, the interested reader should consult [KU].

Proposition 2.1. Let Aybe a Noetherian domain satisfying So and assume that
A’, the integral closure of A, is a finite A-module.

(i) Suppose {Pi,...,P,} are the height one primes of Aifor which Ap, is not a
DVR. If for each 1 <i < n, rad(J;) = P; and (J; ")p, = Al then A" = J71,
for b= J1 0N .

(i) If A# A', then A’ = J=1, for some height one unmized ideal JYC A. More-
over, if Aiis Gorenstein in codimension one, then A" = J~! for a unique
height one unmized ideal Jysatisfying J - J~—1 = Jy= (J~1)7L.

(iil) Suppose that A = B/(F) for FYe Byu principal prime and J C Buis a grade
two ideal arising as the ideal of n x nyminors of an (n + 1) X n wnatriz ¢.
Assume further that Fye J and set Ji= J/(F). Let Ay, ... ,Apy1 denote
the signed minors of ¢, write F ¢= by A1 + -+ byr1An11 and let ¢’ denote
the (n+1) x (n+1) matriz obtained by augmenting the column of bl;s to ¢ (so
Fyis the determinant of ¢'). Then J~! can be generated as an A-module by
{ 11/01, -, ¥Ynt1n+1/0n+1 = 1}, where ,,; denotes the image in Avof the
(i,1)th cofactor of ¢' and 0; denotes the image of A; in Ay{which we assume
to be non-zero). Moreover, p.d.g(J) = p.d.g(J~ 1) = 1.

Proof. To prove (i), note that Jo = A'Q for all height one primes Q C A. Since J !

and A’ are birational and satisfy Ss, we obtain J~! = A’. For the first statement
in (i), we may, by part (i), consider the case where Atis a one-dimensional local
ring which is not a DVR. Let Qulenote the maximal ideal of A. Then QQ~' C Q.
Since it always holds that QuC QQ !, we have Q # QQ~!. Therefore Q! is a
finite ring extension properly containing Av(since for any ideal J, (JJ )~ is a
ring). If Q= = A’, we're done. If not, then since Q! inherits Sy from A, Q!
contains a height one prime Pyfor which (Q~1)p is not a DVR. Thus P! is a
finite ring extension properly containing Q~'. An easy calculation shows that P~!,
considered over Q7 !, equals (QP)~!, considered over A. Iterating this process
shows we eventually obtain A’ = J~!, for some J ¢ A. Now suppose that Arjis
Gorenstein in codimension one. Then Ig = ((I71)71)g, for all ideals [yC A and all
height one primes Q C A. Therefore, Ins= (I=1)~!, for all height one, unmixed ideals
IyC A. In particular, this holds for J. Moreover, if J—! = A’ = K1, for K #eight
one and unmixed, then Jy= K. Finally, since J~!is aring, (J-J71).-J~t = J.-J71
soJ-J7LC(J Y=t =J. Thus, J-J~! = J, as desired. For (iii), the description of
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the generators for J—1 follows either from [MP], Proposition 3.14 or [KU], Lemma
2.5. For the second part of (iii), see [KU], Proposition 3.1. |

Returning to our basic set-up, we note that since Svis a normal domain, S{w|
satisfies Serre’s condition S3. Moreover, since char(S) = 0, R i8 a finite S-module.
Thus Proposition 2.1 applies. In Section 3 we will identify the ideal JyC S[w] for
which J~! = R. In the meantime, we observe that if p is not a unit in S, then there
is a unique height one prime in Sfw] containing p. Suppose p | f. Then P #= (w,p)
is clearly the unique height one prime in S|w] containing p. Moreover, S[w|p is a
DVR if and only if p#f f. Suppose p{ f. If f i$ not a pth power modulo pS, then f
is not a pth power over the quotient field of S/pSu{since S/pSiis integrally closed)
and it follows that F(W) is irreducible mod pS. Thus (p, F(W)) is the unique
height two prime in S[W] containing F(W) and p, so pS[w] is the unique height
one prime in S[w] containing p. If f # h? mod pS, then F(W) = (W + h)? mod pSy
and it follows that (w — h, p)S[w] is the unique height one prime in S[w] containing
p. Thus, in all cases, there exists a unique height one prime in S[w] lying over pS.
For the remainder of the paper, we call this prime P. Suppose fiy= hP + gp, so
P ¢ (w— h,p)S|w]. Write P = (Wi~ h,p)S[W] for the preimage of Pyin S[W].
Then

FW)=W? —h? —gp= (WP ..+ BP~1) - (Wep h) — gp.
In S[W], WP=1 4 ... + h»~1 = ph?~1 modulo (Wi~ h), so WP~ 4 ...+ h»~1 ¢ P.

Thus, F(W) € P2 if and only if py| g. In other words, in all cases, Pp is not
principal if and only if fy= h? + p?g, for some h, gy S.

3. THE MAIN RESULT

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and
3.3 will enable us to describe the ideal JYC S[w] for which Ri= J~1. We will then
see in the proof of Theorem 3.8 that the module we seek has the form 11, for some
ideal IyC J.

Lemma 3.1. Suppose pilis not a unit in S, h € S\pSiand p = 2k + 1. Set
k

Co=3 (1) @ (W h)! [WP™27 = h2=27),

j=1
C" = CY (p(Wip- b))~ and P := (p, Wiy~ h) - S[W]. Then C' & P.

Proof. Note that since pulivides (?) for all 1 < jy< k, C’ is a well-defined element
of S[W]. Now, C’ ¢ P if and only if the residue class of ¢’ modulo Wi~ h, as an

element of S, does not belong to pSuf and only if 2?21(_1)j+1 ) %jl(p —2j), as
an element of S, is not divisible by p. Since

k
Z(_l)jﬂ <p> pp1
i=1 J

is divisible by piand AP~ is not divisible by p, it is enough to show that

0 ()

j=1
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is not divisible by p, as an element of S. However,
k . k
i1 (PY 25 i1 (p—1 k1 (2K
S (L2 S (M) = o ()
o i) Jg—1 k
Because p does not divide (2,5) in Z, p does not divide (Qkk) as an element of Sifsince
pSiet S). Thus C' & P, as claimed. |

For the next lemma, we borrow the following terminology from [Kap]. We shall
say that fye Siis “square-free” if ¢S, = fS, for all height one prime ideals gyc S
containing f. Since F'(w) - R @ S[w] and w ¢F'(w) = p - f, it follows from the
discussion in Section 2 that if fiis square-free, then either Riy= S[w] or P 4s the
only height one prime for which S[w]p is not a DVR.

Lemma 3.2. Suppose fie Silis square-free and S[w] # Ry(thus piis not a unit in
S). Then R = P~1. Moreover, Riis a free S-module.

Proof. We first consider the case p > 2. Since S[w] is not integrally closed, we have
fit= h? +ptly, for some h not divisible by p and g4 0in S. Thus, P % (w—h, p)S|w].
It follows from the proof and statement of Proposition 2.1 that P~! is a ring and
that P~! is generated as an S[w]-module by {1,7}, for

(G

LN~ peipiot _ 9P
Z. p—ipi—-l — 2 2
Tl/;:p ;w -

Therefore P~1 = S[w,7]. If we show that S[w, 7| satisfies Ry, then Sw,7] = R,
since P! satisfies Sy (as an S[w]-module and as a ring). Since fiis square-free, it
suffices to show that Pg 1'is a DVR for each height one Q C P! containing p. To
do this, we find an equation satisfied by mover S[w]. On the one hand,

(W—h) - m=0-(w—h)+g-pi

On the other hand,
pT= (W —h)P72 (W = h) + <,

where cipdenotes the image in S[w] of the element C’ € S[W] defined in Lemma
3.1. Therefore, by the standard determinant argument, Tysatisfies

UT) :=T? - P g(w — h)P~?
over Slw]. Now, let m: S[W,T] — S|w, 7] denote the canonical map and set
Hiyr= ker(rw) and let QYC Sfw, 7] be any height one prime containing p. Then
Q cgrresponds to a height three prime Q' C S[W,T] containing pyand H. Since
P @Q and HYC Q', Wip- haand T? — C' T~ g(Wap- h)P~2 belong to Q'. Therefore,
Q' = (p,Wi- h,T) or Q" = (p, Wip- h, Tip- C"). Suppose Q' = (p, Wi~ h,T'). Then
Q= (p,w— h,7)S[w, 7]. We have

2 — - g(w —h)P7> =0 and p(r¢ Y= (w— h)P~L.
By Lemma 3.1, ¢ Q, so 7 % ¥ Q, and it follows that Qg = (w % h)g. Now
suppose Q' = (p, Wip- h, T~ C'). Then Q = (p,w — h, 7»- ¢')S|w, 7]. Since
2 — - glw —h)P"> =0 and (w—h) -Te=g-p,

it follows that Qg = (p)g (since T¥# @, by Lemma 3.1). Thus, in either case, Qg
is principal, so R = S[w, 7] = P71,
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The proof is similar if py= 2 and f ¥ h? + 4g, with 2 f h. One notes that
P! = Slw, 7] = S[r], for 7 := 252 and that rysatisfies {(T) := 7% — hT — g. To
show R = S[7], one uses the fact that [(T) and I'(T) are relatively prime over the
quotient field of S/285.

To see that R is a free S-module, we first note that R is clearly generated as an
S-module by the set {1,w, ... ,wP™ ! 7 7w,... ,7wP~1}. However, 7w = pg-1+h-T.
This implies that 7w’ belongs to the S-module generated by {1,w, ... ,wP~!, 7}, for
all 1 <4 <p—1. Moreover, since

WPl =—pP Ll —pP 2 — o —heWP 24 pT

we may dispose of wP~! as well. Thus, R is generated as an S-module by the set
{1l,w,... ,wP=2 7}. Since these elements are clearly linearly independent over S,
R is a free S-module. O

Lemma 3.3. Suppose fi= \a®, with a € S @ prime element, A a unit in S ¥nd
2 <e<p Ifpi®not a unit in S, assume ay= p. Then there exist integers
1 <51 <89 <+ < 8.1 < p satisfying

(i) se—i<p—si,1<i<e—1.

(i) R=J7! for J:= (w1, w2a,... ,wa%%? a*"1)S[w].

Proof. We begin by noting that either condition in the hypothesis implies that
Q := (w,a)S[w] is the only height one prime for which S[w]qg is not a DVR. Now,
since p and e are relatively prime, we can find positive integers v and v such that

u

Il =wu-p+(-v)-e If weset 7 %= %5 then 7 = A\7"w and 77 = A7%a. It
follows that S[w,7] = S[r] = R, since either p is a unit and a is square-free or py
is not a unit and (7,p)S[r] = 7S[r]. Thus, {1,7,...,7¢"!} generate R as an S[w]-
module. Since u and e are relatively prime, the set {uj}i<j<c—1, when reduced
mod e, equals the set {i}1<i<e—1. This will enable us to replace the generators
{1,7,...,7¢71} by {1,1@%, . ,%gf—j} To elaborate, given 1 < i < e — 1, there is
a unique 1 < j; < e— 1 such that uj; = (mod e). Write uj; = t;e+1, t; > 0. Then

(1+ve)j; = puj; = tiep + ip,

so (vj;)e + ji = (tip)e + ip. If we write ipy= s;e + r, with 0 < r < e, then
uniqueness of the euclidean algorithm gives vj; = t;p + s; and ri¢= j;. Thus,
i = ZZZ = # and ip = s;e+ j;. For i = e—1, this yields s._1 < p. Moreover,
p = (six1—8i)e+(Jir1—7i), 50 8;41—5; > 0. Similarly, ep = (se_i+8;)e~+ (Je—i+Ji),
S0 Se_i + 8; < p. Thus, s1,...,S._1 have the required numerical properties.

e—1

aly a
’ Kle—1y%e—1

appropriate powers of A allows us to use {1,1;&)5&1, . ,%%} as a generating set
for R over S[w]. In Proposition 2.1 take A := S[w], B := S[W], F := F(W) and J
the ideal of (e — 1) x (e — 1) signed minors of the e x (e — 1) matrix

We now have {1,7,...,7¢71} = {1, ¢, .. }. Multiplying by

—a 0 . 0 0
Weer  —ap - 00
0 We=2 ... 0 0
6= :
0 0 We2  —qq)
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with 14+ o+---+ ;=3 for1<i<e—1. Toobtain ¢, we augment ¢ by the
column whose transpose is (W?~¢,0,...,0,(—1)%Aa) (so det(¢') = F(W)). Then
J~1 is generated as an S[w]-module by {1, 2% ... ,3—@f—j} Thus, R = S[w,7] =
J=t for J = (w1, w¥2a,...,a°" ), as desired. O

For a proof of the next lemma, see [Ka], Lemma 4.1.

Lemma 3.4. In S[W] consider the ideals H := (We , W¢-1ay,... , Wa,_1,a;)
and K = (W't Wh=1by, ... Wb, _1,b;), where

(i) ex >ep—1>--->e1 and fr > fr1 > > f1.

(i) a1 |ag |-+ |ag and by | by | --- | bs.

(ili) Each a; and b; is a product of prime elements.

(iv) For alli and j, a; and b; have no prime factor in common.
Then there exist integers gs > -+ > g1 and products of primes ¢y | ca | -+ | ¢cs such
that HN K = (W9 W9 -1¢q,... ,W9cs_1,cs). Moreover, H, K and H N Kvuare
all grade two perfect ideals.

Lemma 3.5. Let A be a domain and I C Jiideals such that J=1 is a ring. Then
I71 is a Jt-module if and only if I=t = (I - J=Y)~L. In particular, if x € Jand
x-J VY CJ, then (x - J~1)7 is a J~-module.

Proof. We first observe (I-J~1)~! is always a J~!-module. Indeed, y € (I-J~1)~!
implies I - J~'y C R. Thus J-'J ly=J 1y C It so (I -J 1) (J ty) C Rand
J7ly C(I-J71)~L. Therefore, (I-J71)7!isa J~'-module and the first statement
follows easily from this. For the second statement, we note that if zz-J~! C J, then
for l'=a-J Y 1-Jt'=2-J ' =g.-J =1 Thus, "' =(I-J1)7} so
I~'is a J~'-module by the first statement. O

Remark 3.6. Proposition 2.2 in [Ko| states that R is a free S-module, if Syis an
unramified regular local ring and p | f. The proof shows that R is a free S-module
just under the assumption that f can be written as a product of primes and S/pS is
a domain. In [Ko|, Proposition 1.5, it is shown that if S is a UFD, then there exists
a free S-module ' C R such that pR is contained in F'. Thus, if p is a unit in S,
then R is also a free S-module. Finally, if f is square-free, R is a free S-module by
Lemma 3.2. We record these facts in a common setting in the following proposition.
For a version of the proposition for p™th root extensions, see [Ka], Theorem 4.2.

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD.
Then R is a free S-module in each of the following cases:

(i) p is a unit in S.

(i) p is not a unit and either p | for filis square-free.

We are now ready for our theorem.

Theorem 3.8. Assume that Siis a reqular local ring. Then there exists a finite,
birational R-module Musatisfying depths(M) = dim(R). In other words, Miis a
mazimal Cohen-Macaulay module for R.

Proof. By Proposition 3.7, R is a free S-module, and therefore Cohen-Macaulay,
unless we assume that p is not a unit in S, pt frand fiis not square-free. In
particular, we may assume that f is not a unit in S. Factor f as a unit \ times prime
elements a;, say f = Aaf'---a%. We may assume that for 1 <t <r, 1 <e; < p,
ifl<i<tande =1,ift <i<r. Set@; := (w,a;)S[w] for 1 < ¢ < ¢. For
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each 1 <4 < taphoose s(i,1) < --- < s(i,e; — 1) satisfying the conclusion of Lemma
3.3 over S[w]g, and set J; := (w3(he—1) s(hei=2g, B gfh=2 g% Gy
Thus, Rg, = (J; ')g, for all i. We now have two cases to consider. Suppose first
that fiis not a pth power modulo p?S. We will show that Riis Cohen-Macaulay.
By our discussion in section two, @Q1,...,Q: are exactly the height one primes
QYT S[w] for which S[w]g is not a DVR, so by Proposition 2.1 and Lemma 3.3,
Riy= J~ ! for Jp= Jy N --- N Jp. Set B #= S[W]w,ny (for N, the maximal ideal of
S) and use “tilde” to denote pre-images in B. By Lemma 3.4, J C Bifis a grade two
perfect ideal. Therefore, p.d.5(J) = p.d.g(J~1) = 1, by Proposition 2.1(iii). Thus,
depthp(J~1) = dim(B) — 1, so depths(R) = dim(R), which is what we want.
Suppose that fyis a pth power modulo p2S. Write f % h? + p2g, for h, gye S,
pYt h. Then P =% (w 4 h,p). Moreover, Pyand Q1,...,Q: are the height one
primes QYT S[w] for which Sw]g is not a DVR. By Proposition 2.1 and Lemma
3.2, Ry= J~! for J¢= J N---NJ;NP. Now, as in the proof of Lemma 3.3,

e;—1
-1 g Aia; Aia;”
J; " is generated as an S[w]-module by the set {1, Sy, ... vwsu,cqz—l)}’ where,

for each i, \; = H;éj:l /\ajj. Thus K; = (wP=*01 wp=s0:2)g, . a%1)S[w],
for K; := aﬁ_l . JZ-_1 and 1 < < t. By Lemma 3.3, K; C J;, so upon setting
Ip= K1 N---NK;N P, it follows from Lemma 3.5 that I~! is a J~!-module (since
this holds locally for every height one prime in S[w]). Taking M= I~ we will
show that Muis the required module. For this, we claim that I C Bujs a grade two
perfect ideal. If the claim holds, 1 = p.d.g(I) = p.d.g(I"') = p.d.g(M). Thus
depthp(M) = dim(B) — 1, so depths(M) = dim(R), which is what we want.

To prove the claim, we set K = f(l N---N f(t and consider the short exact
sequence

0 B/I B/K ® B/JP —— B/(K +P) —— 0.

Since Kuis a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the
Auslander-Buchsbaum formula imply that ITisa grade two perfect ideal, once we
show depth(B/(K +P)) = dim(B)—3. Set a := af ™" ---a@~". We now argue that
K+P = (a,p, W —h). If we can show this, clearly depth(B/(K + P)) = dim(B)—3
and we will have verified the claim. Take k € K and consider its image kiin
KyC Sfw]. Select QYT S[w], a height one prime. If Q= Q;, for some 1 < i & ¢,
then kyc (afp™'J, g, = aRg,. If Q # Q; for any 1 < )< ¢, then clearly
kye aRg = Rg. It follows that kye aR N S[w]. In other words, ks integral over
the principal ideal aS[w]. Therefore, the image of kyin S[w]/(wip- h,p) = S/pSy
is integral over the principal ideal generated by the image of a. Since S/pStis
integrally closed, the image of kin S/pSiis a multiple of the image of a. Therefore,
kye (a,p, Wi- h) in S[W]. It follows that KyC (a,p, Wi~ h). Since a € K, we
obtain K + P = (a, p, Wi h), which is what we want. This completes the proof of
Theorem 3.8. O

Remark 3.9. Of course if S is an unramified regular local ring, Sfulfills our standing
hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain
ramified regular local rings. For instance, take TWto be the ring Z[Xy,... , X4
localized at (p, Xi,...,Xq) and let Hye Z[X;,...,X4] be any polynomial in
(X1,...,X4)? for which Z,[Xy,...,X4]/(H) is an integrally closed domain. If
we set Sir= T/(pw H), then Siis a ramified regular local ring and S/pSuis an
integrally closed domain.
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We close with an example where Rijs not a free S-module, yet Riadmits a finite,
birational module which is a free S-module. The example is an unramified variation
of Koh’s Example (2.4).

Example 3.10. Let Sibe an unramified regular local ring having mixed character-
istic 3 and take xz, yye Sysuch that 3, x, y form part of a regular system of parame-
ters. Set ay= xy* + 9, be= 2y + 9 and fo= ab?, so w? = f & ab® = h3 + 9g, for
h = x3y*) From Lemmas 3.2 and 3.3 it follows that R = (Q N P)~! for Q := (w,b)
and Pii= (wi- h,3). Set Jih= Q N P. We first show that Ri= J~! is not a free
S-module. Suppose to the contrary that J~! is free over S. As in the proof of
Theorem 3.8, set Bip= S[W](n,w) and use “tilde” to denote pre-images in B. Since
J~1is free over S, we have p.d.g(J~!) = 1, s0 J~! is a grade one perfect B-module.
By [KU, Proposition 3.6], Juis a grade one perfect B-module, so Juis a grade two
perfect ideal. On the other hand, depthp(B/J) = 1+ depthp(B/(Q + P)). But,
Q+P = (W,z'y,2%y2,3)B, so B/(Q+ P) = S/(3, 2%y, 2*y?)S, which is easily seen
to have depth equal to depth(S) — 3 = depth(B) — 4. This is a contradiction, so it
must hold that Riis not a free S-module.

Now, Q~! is generated as an S[w]-module by {1,1%9}. If we set K #=b-Q1,
then Ky= (w? b)S[w]. The proof of Theorem 3.8 shows that M= (Kyn P)~!
is a finite, birational R-module satisfying depths(M) = dim(R). In other words,
Mu/is an R-module which is free over S. To calculate a basis for M, one must
calculate Ky PJand then use Proposition 2.1. We leave it to the reader to check
that Ky Py= (w? — h? — 92293, b(w — h), 3b). Therefore, K N Py= I5(¢) for

—b 0
b= w+n =3
322> w—h
The augmented matrix that determines (K0 P)~! = Mufis the 3 x 3 matrix

—byp 0 wih
w+h -3 2%yd]|,
322y w—h ta)

where tiis defined by the equation x°y%) = abit 3t. By Proposition 2.1, Mujis
generated as an S[w]-module by the set {1,v48}, for

-3t — 2%y (w — h) _wy bt + 3z2yPw B w? + wh + A% + 922%y3

ooy b YT Thwon) 3by)

If we show that {1,y#} also generate Mias an S-module, then since they are clearly
linearly independent over S, they form a basis for Myas an S-module. To see that
{1,748} generate Myas an S-module, it suffices to show that w,w - and w - dean
be expressed as S-linear combinations of {1,y#}. This clearly holds for w. Using
922y = ba?y® — 2%y# we obtain
w —w—2——x2 31 —h- +3-6
Since w3 = h? + 9gwnd gy= 259 + bay? + b, we get
w- o= (3zy®+3b) -1+ 32%% +h-00

and the example is complete.

Y
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