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ON THE EXISTENCE OF MAXIMAL COHEN-MACAULAY 

MODULES OVER p th ROOT EXTENSIONS 

DANIEL KATZ 

(Communicated by Wolmer V. Vasconcelos) 

Abstract. Let S be an unramified regular local ring having mixed charac-
teristic p >  0 and  R  the integral closure of S in a pth root extension of its 
quotient field. We show that R admits a finite, birational module M such that 
depth(M) =  dim(R). In other words, R admits a maximal Cohen-Macaulay 
module. 

1. Introduction 

Let R be a Noetherian local ring. In considering the local homological conjec-
tures over R, one may reduce to the situation where R is a finite extension of an 
unramified regular local ring S. Therefore, it is a natural point of departure to 
assume that R is the integral closure of S in a “well-behaved” algebraic extension 
of its quotient field. Certainly, when S has mixed characteristic p > 0, one ought to 
consider the case that R is the integral closure of S in an extension of its quotient 
field obtained by adjoining the pth root of an element of S. This was done in [Ko] 
where it was shown that S is a direct summand of R, i.e., the Direct Summand 
Conjecture holds for the extension S � R. In this note we show that a number of 
the other local homological conjectures hold for such R by showing that R admits 
a finite, birational module M satisfying depth(M) =  dim(R) (see [H]). In other 
words, R admits a maximal Cohen-Macaulay module. Such a module is necessarily 
free over S. Aside from regularity, one of the crucial points in the mixed character-
istic case  seems to be that  S=pS is integrally closed. By contrast, using an example 
from [HM], Roberts has noted that even if S is a Cohen-Macaulay UFD and R is 
the integral closure of S in a quadratic extension of quotient fields, R needn’t admit 
a finite, S-free module at all (see [R]). For the example in question, S has mixed 
characteristic 2, yet S=2S is not integrally closed. 

2. Preliminaries 

In this section we will establish our notation and present a few preliminary 
observations. Throughout, S will be a Noetherian normal domain with quotient 
field L. We assume char(L) = 0.  Fix  p  2  Z  to be a prime integer and suppose
that either p is a unit in S or that pS is a (proper) prime ideal and S=pS is 
integrally closed. Let f 2 S be an element that is not a pth power and select W 
an indeterminate. Write F (W ) :=  W p  −  f  2  S[W ], a monic irreducible polynomial 
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and let R denote the integral closure of S in K := L(!), for ! a root  of  F (W ). 
Thus R is the integral closure of S[!]. 

Our strategy in this paper is to exploit the fact that R can be realized as J−1

for a suitable ideal J � S[!]. The study of birational algebras of the form J−1

seems to have captured the attention of a number of researchers during the last 
few years, albeit in notably different contexts (see [EU], [Ka], [KU], [MP] and [V]). 
Since J−1 inherits S2 from S[!], this means that in attempting to “construct” R, 
if the candidate is J−1 for some J , then only the condition R1 must be checked. 

The following proposition summarizes some of the conditions relating R to J−1 

for suitable J that we will call upon in the next section. Parts (i) and (ii) of 
the proposition were inspired by the main results in [V] and Proposition 3.1 in 
[KU]. Special cases of part (iii) of the proposition have apparently been known to 
algebraic geometers for a long while. For some historical comments and fascinating 
variations, the interested reader should consult [KU]. 

Proposition 2.1. Let A be a Noetherian domain satisfying S2 and assume that 
A0 , the integral closure of A, is a finite A-module. 

(i) Suppose fP1; : : : ; Png  are the height one primes of A for which APi is not a
DVR. If for each 1 � i � n, rad(Ji) =  Pi  and (Ji 

−1)Pi = AP 
0 

i 
, then  A0  =  J−1  ,

for J := J1 \ � � � \ Jn.
(ii) If A =6 A0, then  A0  =  J−1  , for some height one unmixed ideal J � A. More-

over, if A is Gorenstein in codimension one, then A0 = J−1 for a unique
height one unmixed ideal J satisfying J � J−1 = J = (J−1)−1  .

(iii) Suppose that A = B=(F ) for F 2 B a principal prime and J̃  � B is a grade
two ideal arising as the ideal of n � n minors of an (n + 1)  � n  matrix °.

˜Assume further that F 2 J̃  and set J := J=(F ). Let  Δ1; : : : ;Δn+1 denote
the signed minors of °, write  F  := b1Δ1 + � � �+  bn+1Δn+1 and let °0 denote
the (n+1)� (n+1)  matrix obtained by augmenting the column of b0 is to ° (so
F is the determinant of °0). Then J−1 can be generated as an A-module by
f 1,1=�1; : : : ;  n+1,n+1=�n+1 = 1g, where  i,i denotes the image in A of the
(i; i)th cofactor of °0 and �i denotes the image of Δi in A (which we assume
to be non-zero). Moreover, p:d:B (J) =  p:d:B (J−1) = 1.

Proof. To prove (i), note that JQ 
−1 = A0 Q for all height one primes Q � A. Since  J−1

and A0 are birational and satisfy S2, we  obtain  J−1  =  A0  . For the first statement 
in (ii), we may, by part (i), consider the case where A is a one-dimensional local 
ring which is not a DVR. Let Q denote the maximal ideal of A. Then  QQ−1 � Q. 
Since it always holds that Q � QQ−1, we  have  Q  =  QQ−1 . Therefore Q−1 is a 
finite ring extension properly containing A (since for any ideal J , (JJ−1)−1  is a 
ring). If Q−1 = A0 , we’re done. If not, then since Q−1 inherits S2 from A, Q−1

contains a height one prime P for which (Q−1)P is not a DVR. Thus P−1 is a 
finite ring extension properly containing Q−1 . An easy calculation shows that P−1 , 
considered over Q−1, equals  (QP )−1 , considered over A. Iterating this process 
shows we eventually obtain A0 = J−1, for  some  J  �  A. Now suppose that A is 
Gorenstein in codimension one. Then IQ = ((I−1)−1)Q, for all ideals I � A and all 
height one primes Q � A. Therefore, I = (I−1)−1  , for all height one, unmixed ideals 
I � A. In particular, this holds for J . Moreover, if J−1 = A0 = K−1, for  K  height 
one and unmixed, then J = K. Finally, since J−1 is a ring, (J �J−1) �J−1 = J �J−1 , 
so J �J−1 � (J−1)−1 = J . Thus,  J �J−1  =  J , as desired. For (iii), the description of 
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the generators for J−1 follows either from [MP], Proposition 3.14 or [KU], Lemma 
2.5. For the second part of (iii), see [KU], Proposition 3.1. 

Returning to our basic set-up, we note that since S is a normal domain, S[!] 
satisfies Serre’s condition S2. Moreover, since char(S) =  0,  R  is a finite S-module. 
Thus Proposition 2.1 applies. In Section 3 we will identify the ideal J � S[!] for
which J−1 = R. In the meantime, we observe that if p is not a unit in S, then there 
is a unique height one prime in S[!] containing p. Suppose p j f . Then  P  := (!; p) 
is clearly the unique height one prime in S[!] containing p. Moreover, S[!]P is a 

2DVR if and only if p - f . Suppose p - f . If  f  is not a pth power modulo pS, then  f
is not a pth power over the quotient field of S=pS (since S=pS is integrally closed) 
and it follows that F (W ) is irreducible mod pS. Thus  (p; F (W )) is the unique 
height two prime in S[W ] containing F (W ) and  p, so  pS[!] is the unique height 
one prime in S[!] containing p. If  f  � hp  mod pS, then  F (W )  � (W  −h)p  mod pS 
and it follows that (!− h; p)S[!] is the unique height one prime in S[!] containing 
p. Thus, in all cases, there exists a unique height one prime in S[!] lying  over  pS.
For the remainder of the paper, we call this prime P . Suppose f = hp + gp, so
P  = (! − h; p)S[!]. Write P̃ := (W − h; p)S[W ] for the preimage of P in S[W ].
Then

F (W ) =  W p  − hp  − gp = (W p−1  + � � �+  hp−1)  � (W − h)  − gp:

In S[W ], W p−1 + � � �+  hp−1  � php−1 modulo (W − h), so W p−1 + � � �+  hp−1  2 P̃ .
Thus, F (W ) 2 P̃ 2 if and only if p j g. In other words, in all cases, PP is not

2principal if and only if f = hp + p g, for  some  h; g 2 S. 

3. The main result

In this section we will present our main result, Theorem 3.8. Lemmas 3.2 and 
3.3 will enable us to describe the ideal J � S[!] for which R = J−1 . We will then 
see in the proof of Theorem 3.8 that the module we seek has the form I−1, for  some
ideal I � J . 

Lemma 3.1. Suppose p is not a unit in S, h 2 SnpS and p = 2k + 1. Set� �kX 
C := (−1)j+1 p

j 
(W � h)j [W p−2j − hp−2j ];

j=1 

C 0 := C � (p(W − h))−1 and P̃  := (p;W − h) � S[W ]. Then  C0  62 P̃ .� � 
Proof. Note that since p divides p for all 1 � j � k, C0 is a well-defined element j 

of S[W ]. Now, C 0 62 P̃  if and only if the residue class of C0 modulo W − h, as  anPk �
p
�

hp−1
element of S, does  not  belong  to  pS if and only if (−1)j+1 (p− 2j), as j=1 j p 
an element of S, is not divisible by p. Since� �kX

(−1)j+1 p
hp−1

j
j=1 

is divisible by p and hp−1 is not divisible by p, it is enough to show that � �Xk
p 2j

(−1)j+1

j p
j=1 
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is not divisible by p, as an element  of  S. However, � � � � � �k kX p 2j X p− 1 2k
(−1)j+1 = 2  �  (−1)j+1 = (−1)k+1 : 

j p j − 1 k
j=1 j=1 � � � �

2k 2kBecause p does not divide k in Z, p does not divide k as an element of S (since 
pS 6= S). Thus C0 62 P̃ , as claimed.

For the next lemma, we borrow the following terminology from [Kap]. We shall 
say that f 2 S is “square-free” if qSq = fSq  for all height one prime ideals q � S
containing f . Since  F 0(!)  �  R  �  S[!] and  !  �  F 0(!) =  p �  f , it follows from the 
discussion in Section 2 that if f is square-free, then either R = S[!] or  P  is the 
only height one prime for which S[!]P is not a DVR. 

Lemma 3.2. Suppose f 2 S is square-free and S[!] =6 R (thus p is not a unit in 
S). Then R = P−1 . Moreover, R is a free S-module. 

Proof. We first consider the case p > 2. Since S[!] is not integrally closed, we have 
2f = hp +p 6g, for  some  h not divisible by p and g = 0  in  S. Thus,  P  = (!−h; p)S[!]. 

It follows from the proof and statement of Proposition 2.1 that P−1 is a ring and 
that P−1 is generated as an S[!]-module by f1; ˝g, for  X1  

p  
g � p

!p−j hj−1˝ = � = : 
p ! − h

j=1 

Therefore P−1 = S[!; ˝ ]. If we show that S[!; ˝ ] satisfies R1, then  S[!; ˝ ] =  R,
since P−1 satisfies S2 (as an S[!]-module and as a ring). Since f is square-free, it 
suffices to show that PQ 

−1 is a DVR for each height one Q � P−1 containing p. To
do this, we find an equation satisfied by ˝ over S[!]. On the one hand, 

(! − h) � ˝ = 0  �  (w −  h) +  g �  p: 
On the other hand, 

p � ˝ = (! −  h)p−2  �  (! −  h) +  c  0  �  p;
0where c denotes the image in S[!] of the element C0 2 S[W ] defined in Lemma 

3.1. Therefore, by the standard determinant argument, ˝ satisfies 

l(T ) :=  T 2  −  c  0T  −  g(! −  h)p−2

over S[!]. Now, let ˇ : S[W;T ] ! S[!; ˝ ] denote the canonical map and set 
H := ker(ˇ) and let Q � S[!; ˝ ] be any height one prime containing p. Then
Q  corresponds to a height three prime Q0 � S[W;T ] containing p and H . Since
P  �  Q  and H � Q0 , W − h and T 2 − C0T − g(W − h)p−2 belong to Q0 . Therefore, 
Q0 = (p;W − h; T ) or  Q0  = (p;W − h; T − C 0). Suppose Q0 = (p;W − h; T ). Then 
Q = (p; ! − h; ˝)S[!; ˝ ]. We have 

˝2 − c 0˝ − g(! − h)p−2 = 0  and  p(˝  −  c  0) = (! −  h)p−1:

0 0By Lemma 3.1, c 62 Q, so  ̋  −  c  62 Q, and it follows that QQ = (!  −  h)Q. Now
suppose Q0 = (p;W − h; T − C 0). Then Q = (p; ! − h; ˝ − c0)S[!; ˝ ]. Since 

˝2 − c 0˝ − g(! − h)p−2 = 0  and  (! −  h)  �  ̋  =  g �  p;
it follows that QQ = (p)Q  (since ˝ 62 Q, by Lemma 3.1). Thus, in either case, QQ

is principal, so R = S[!; ˝ ] =  P−1  .  
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The proof is similar if p = 2  and  f  =  h2  + 4g, with  2  - h. One notes that 
P−1 = S[!; ˝ ] =  S[˝ ], for ˝ := h+ω and that ˝ satisfies l(T ) :=  T 2  − hT − g. To2 
show R = S[˝ ], one uses the fact that l(T ) and  l0(T ) are relatively prime over the 
quotient field of S=2S. 

To see that R is a free S-module, we first note that R is clearly generated as an 
S-module by the set f1; !; : : : ; !p−1; ˝; ˝!; : : : ; ˝!p−1g. However, ˝! =  pg �1+h �˝ .  
This implies that ˝!i  belongs to the S-module generated by f1; !; : : : ; !p−1; ˝g, for
all 1 � i � p− 1. Moreover, since 

!p−1 = −hp−1 � 1 − hp−2 � ! − � � � − h � !p−2  +  p � ˝;
we may dispose of !p−1 as well. Thus, R is generated as an S-module by the set 
f1; !; : : : ; !p−2; ˝g. Since these elements are clearly linearly independent over S, 
R is a free S-module. 

Lemma 3.3. Suppose f = �ae, with  a 2  S  a prime element, � a unit in  S  and 
2 � e < p. If  p  is not a unit in S, assume a = p. Then there exist integers 
1 � s1 < s2  < � � � < se−1  < p satisfying 

(i) se−i � p− si, 1 � i � e − 1. 
e−2(ii) R = J−1 for J := (!se−1 ; !se−2  a; : : : ; !s1  a ; ae−1)S[!].  

Proof. We begin by noting that either condition in the hypothesis implies that 
Q := (!; a)S[!] is the only height one prime for which S[!]Q is not a DVR. Now, 
since p and e are relatively prime, we can find positive integers u and v such that 

au 
�−u! �−v1 =  u �  p + (−v)  �  e. If  we  set  ̋  := 

ωv , then  ̋ e  =  and ˝p = a. It
follows that S[!; ˝ ] =  S[˝ ] =  R, since either p is a unit and a is square-free or p 
is not a unit and (˝; p)S[˝ ] =  ̋ S[˝ ]. Thus, f1; ˝; : : : ; ˝e−1g  generate R as an S[!]-
module. Since u and e are relatively prime, the set fujg1�j�e−1, when reduced 
mod e, equals the set fig1�i�e−1. This will enable us to replace the generators 

λa λae−1 f1; ˝; : : : ; ˝e−1g  by f1; ; : : : ;  e−1 g. To elaborate, given 1 � i � e − 1, there isωs1 ωs 

a unique 1 � ji � e−1 such that uji � i (mod e). Write uji = tie+ i, ti � 0. Then 

(1 + ve)ji = puji = tiep+ ip;

so (vji)e + ji = (tip)e +  ip. If  we  write  ip = sie + r, with  0  �  r < e, then
uniqueness of the euclidean algorithm gives vji = tip + si and r = ji. Thus,

uji i 

˝ ji a a= 
ωvji 

= and ip = sie+ ji. For  i =  e−1, this yields se−1 < p. Moreover, 
λti ωsi 

p = (si+1 −si)e+(ji+1 −ji), so si+1 −si > 0. Similarly, ep = (se−i  +si)e+(je−i +ji), 
so se−i + si � p. Thus,  s1; : : : ; se−1  have the required numerical properties. 

ae−1aWe now have f1; ˝; : : : ; ˝e−1g  =  f1;  ; : : : ;  g. Multiplying byλt1 ωs1 λte−1 ωse−1 

λa λae−1
appropriate powers of � allows us to use f1; ; : : : ;  e−1 g as a generating setωs1 ωs 

for R over S[!]. In Proposition 2.1 take A := S[!], B := S[W ], F := F (W ) and  J̃
the ideal of (e − 1) � (e − 1) signed minors of the e� (e− 1) matrix 10 BBBBBBB@ 

−a 0 � � �  0 0 
Wαe−1 −a � � �  0 0 

Wαe−20 � � �  0 0 

CCCCCCCA 
° = . . . ... . . . ... . . .

0 0 � � �  Wα2 −a 
0 0 � � �  0  Wα1

https://�hT�g.To
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with 1 + 2 + � � �+  i  =  si, for  1  � i � e− 1. To obtain °0, we  augment  ° by the 
column whose transpose is (W p−c; 0; : : : ; 0; (−1)e�a) (so  det(°0) =  F (W )). Then 
J−1 λa λae−1

is generated as an S[!]-module by f1; ωs1 ; : : : ; ωse−1 g. Thus,  R =  S[!; ˝ ] =
J−1  for J = (!se−1  ; !se−2  a; : : : ; ae−1), as desired. 

For a proof of the next lemma, see [Ka], Lemma 4.1. 

Lemma 3.4. In S[W ] consider the ideals H := (W ek ;W ek−1  a1; : : : ;W
e1  ak−1; ak)  

and K := (W ft ;W ft−1  b1; : : : ;W
f1  bt−1; bt), where  

(i) ek > ek−1  > � � � > e1  and ft > ft−1  > � � � > f1.
(ii) a1 j a2 j � � � j ak  and b1 j b2 j � � � j bt.
(iii) Each ai and bj is a product of prime elements.
(iv) For all i and j, ai and bj have no prime factor in common.

Then there exist integers gs > � � � > g1  and products of primes c1 j c2 j � � � j cs  such 
that H \K = (W gs  ;W gs−1  c1; : : : ;W

g1  cs−1; cs). Moreover, H, K and H \K are 
all grade two perfect ideals. 

Lemma 3.5. Let A be a domain and I � J ideals such that J−1 is a ring. Then 
I−1 is a J−1-module if and only if I−1 = (I � J−1)−1  . In particular, if x 2 J and 
x � J−1 � J , then  (x � J−1)−1  is a J−1-module. 

Proof. We first observe (I �J−1)−1 is always a J−1-module. Indeed, y 2 (I �J−1)−1

implies I � J−1y � R. Thus  J−1J−1y =  J−1y �  I−1, so  (I � J−1)(J−1y) � R and 
J−1y � (I �J−1)−1 . Therefore, (I �J−1)−1 is a J−1-module and the first statement 
follows easily from this. For the second statement, we note that if x �J−1 � J , then
for I := x � J−1 , I � J−1 = x � J−1J−1 = x � J−1 = I. Thus,  I−1  = (I � J−1)−1, so
I−1  is a J−1-module by the first statement. 

Remark 3.6. Proposition 2.2 in [Ko] states that R is a free S-module, if S is an 
unramified regular local ring and p j f . The proof shows that R is a free S-module 
just under the assumption that f can be written as a product of primes and S=pS is 
a domain. In [Ko], Proposition 1.5, it is shown that if S is a UFD, then there exists 
a free  S-module F � R such that pR is contained in F . Thus,  if  p is a unit in S, 
then R is also a free S-module. Finally, if f is square-free, R is a free S-module by 
Lemma 3.2. We record these facts in a common setting in the following proposition. 
For a version of the proposition for pnth root extensions, see [Ka], Theorem 4.2. 

Proposition 3.7. In addition to our standing hypotheses, assume that S is a UFD. 
Then R is a free S-module in each of the following cases: 

(i) p is a unit in S.
(ii) p is not a unit and either p j f or f is square-free. 

We are now ready for our theorem. 

Theorem 3.8. Assume that S is a regular local ring. Then there exists a finite, 
birational R-module M satisfying depthS(M) =  dim(R). In other words, M is a 
maximal Cohen-Macaulay module for R. 

Proof. By Proposition 3.7, R is a free S-module, and therefore Cohen-Macaulay, 
unless we assume that p is not a unit in S, p - f and f is not square-free. In 
particular, we may assume that f is not a unit in S. Factor  f as a unit � times prime 
elements ai, say  f =  �ae1 � � � aer  . We may assume that for 1 � t � r, 1  < ei  < p,1 r 
if 1 � i � t and ei = 1,  if  t < i �  r. Set  Qi  := (!; ai)S[!] for  1  �  i �  t. For
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each 1 � i � t choose s(i; 1) < � � � < s(i; ei − 1) satisfying the conclusion of Lemma 
:= (!s(i,ei −1); !s(i,ei −2) ei −2 ei−13.3 over S[!]Qi and set Ji ai; : : : ; !

s(i,1)a ; ai  )S[!].i 

Thus, RQi = (Ji  
−1)Qi  for all i. We now have two cases to consider. Suppose first

that f is not a pth power modulo p2S. We will show that R is Cohen-Macaulay. 
By our discussion in section two, Q1; : : : ; Qt  are exactly the height one primes 
Q � S[!] for which S[!]Q is not a DVR, so by Proposition 2.1 and Lemma 3.3, 
R = J−1 for J := J1 \ � � � \ Jt. Set  B  := S[W ](W,N ) (for N , the maximal ideal of 
S) and use “tilde” to denote pre-images in B. By Lemma 3.4, J̃  � B is a grade two
perfect ideal. Therefore, p:d:B (J) =  p:d:B (J−1) = 1, by Proposition 2.1(iii). Thus, 
depthB(J−1) =  dim(B) − 1, so depthS(R) =  dim(R), which is what we want. 

2Suppose that f is a pth power modulo p2S. Write  f  =  hp  +  p g, for  h; g 2 S, 
p - h. Then  P  = (!  −  h; p). Moreover, P and Q1; : : : ; Qt  are the height one
primes Q � S[!] for which S[!]Q is not a DVR. By Proposition 2.1 and Lemma 
3.2, R = J−1, for  J  := J1 \ � � � \ Jt  \ P . Now, as in the proof of Lemma 3.3, 

ei−1
λiai λi aiJ−1 is generated as an S[!]-module by the set f1;

ωs(i,1) ; : : : ; ωs(i,ei −1) g, where,i 
ei−1for each i, �i := 

Qr
i6=j=1 �a

e
j 

j . Thus  Ki  = (!p−s(i,1); !p−s(i,2)ai; : : : ; ai  )S[!],
ei −1for Ki := a � J−1 and 1 � i � t. By Lemma 3.3, Ki � Ji, so upon settingi i 

I := K1 \ � � � \Kt  \P , it follows from Lemma 3.5 that I−1 is a J−1-module (since 
this holds locally for every height one prime in S[!]). Taking M := I−1 , we will 
show that M is the required module. For this, we claim that Ĩ  � B is a grade two
perfect ideal. If the claim holds, 1 = p:d:B (I) =  p:d:B (I−1) =  p:d:B (M). Thus 
depthB(M) =  dim(B) − 1, so depthS (M) =  dim(R), which is what we want. 

To prove the claim, we set K̃ := K̃1 \ � � � \ K̃t  and consider the short exact 
sequence 

0 −−−−! B=Ĩ  −−−−! B=K̃ �B=P̃  −−−−! B=(K̃ + P̃ ) −−−−! 0:

˜Since K is a grade two perfect ideal (by Lemma 3.4), the Depth Lemma and the
Auslander-Buchsbaum formula imply that Ĩ  is a grade two perfect ideal, once we

e1 −1 et −1show depth(B=(K̃+P̃ )) = dim(B)−3. Set a := a � � � a . We now argue that1 t 

K̃+ P̃ = (a; p;W−h). If we can show this, clearly depth(B=(K̃+ P̃ )) = dim(B)−3
and we will have verified the claim. Take k̃ 2 K̃ and consider its image k in
K � S[!]. Select Q � S[!], a height one prime. If Q = Qi, for  some  1  �  i  �  t,

ei −1J−1then k 2 (a = aRQi . If  Q  6=  Qi  for any 1 � i � t, then clearlyi i )Qi 

k 2 aRQ = RQ. It follows that k 2 aR \ S[!]. In other words, k is integral over 
the principal ideal aS[!]. Therefore, the image of k in S[!]=(! − h; p) =  S=pS 
is integral over the principal ideal generated by the image of a. Since  S=pS is 
integrally closed, the image of k in S=pS is a multiple of the image of a. Therefore, 
˜ ˜ 2 ˜k 2 (a; p;W − h) in  S[W ]. It follows that K � (a; p;W − h). Since a K, we
obtain K̃ + P̃ = (a; p;W − h), which is what we want. This completes the proof of
Theorem 3.8. 

Remark 3.9. Of course if S is an unramified regular local ring, S fulfills our standing 
hypotheses, so Theorem 3.8 applies. However, the theorem also applies to certain 
ramified regular local rings. For instance, take T to be the ring Z[X1; : : : ; Xd]  
localized at (p;X1; : : : ; Xd) and let H 2 Z[X1; : : : ; Xd] be any polynomial in 
(X1; : : : ; Xd)2  for which Zp[X1; : : : ; Xd]=(H) is an integrally closed domain. If 
we set S := T=(p − H), then S is a ramified regular local ring and S=pS is an 
integrally closed domain. 
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We close with an example where R is not a free S-module, yet R admits a finite, 
birational module which is a free S-module. The example is an unramified variation 
of Koh’s Example (2.4). 

Example 3.10. Let S be an unramified regular local ring having mixed character-
istic 3 and take x; y 2 S such that 3; x; y  form part of a regular system of parame-

4ters. Set a := xy4 + 9,  b  := x y + 9  and  f  := ab2, so  !3  =  f  =  ab2 = h3 + 9g, for
3 2h =  x y  . From Lemmas 3.2 and 3.3 it follows that R = (Q \  P )−1  for Q := (!; b) 

and P := (! − h; 3). Set J := Q \ P . We first show that R = J−1 is not a free 
S-module. Suppose to the contrary that J−1 is free over S. As in the proof of 
Theorem 3.8, set B := S[W ](N,W ) and use “tilde” to denote pre-images in B. Since
J−1  is free over S, we have  p:d:B (J−1) =  1,  so  J−1  is a grade one perfect B-module. 

˜By [KU, Proposition 3.6], J is a grade one perfect B-module, so J is a grade two
perfect ideal. On the other hand, depthB(B=J̃) = 1 +  depthB(B=(Q̃ + P̃ )). But,

2Q̃+ P̃ = (W;x4y; x3y ; 3)B, so  B=(Q̃+ P̃ ) =  S=(3; x4y; x3y2)S, which is easily seen
to have depth equal to depth(S) − 3 =  depth(B) − 4. This is a contradiction, so it 
must hold that R is not a free S-module. 

abNow, Q−1 is generated as an S[!]-module by f1; ω g. If  we  set  K  := b � Q−1 ,
then K = (!2; b)S[!]. The proof of Theorem 3.8 shows that M := (K \ P )−1

is a finite, birational R-module satisfying depthS(M) =  dim(R). In other words, 
M is an R-module which is free over S. To calculate a basis for M , one  must
calculate K \ P and then use Proposition 2.1. We leave it to the reader to check 

2that K \ P = (!2  −  h2  −  9x y3; b(! −  h); 3b). Therefore, K \ P = I2(°) for  0 1−b 0@° =  ! +  h −3  A  :
−3x2y3 ! −  h  

The augmented matrix that determines (K \ P )−1 = M is the 3 � 3 matrix 0 1 −b 0 ! @ 2 3A ;! + h −3 x y 
2 3−3x y ! − h t 

5 5where t is defined by the equation x y = ab + 3t. By Proposition 2.1, M is 
generated as an S[!]-module by the set f1; 
  ; �g, for  

2 2 2 3−3t− x y3(! − h) ! −bt+ 3x y3! !2  +  !h+ h2 + 9x y
:= = ; � := = : 

!2 − h2 − 9x2y3 b b(! − h) 3b 

If we show that f1; 
  ; �g  also generate M as an S-module, then since they are clearly 
linearly independent over S, they form a basis for M as an S-module. To see that 
f1; 
  ; �g  generate M as an S-module, it suffices to show that !; ! � and ! � � can 
be expressed as S-linear combinations of f1; 
  ; �g. This clearly holds for !. Using

2 3  6 49x y = bx2y3 − x y , we  obtain  

!2
2! �  = =  −x y  3  �  1  −  h �  + 3  �  �:

b 
5Since !3 = h3 + 9g  and g = x y5 + bxy4 + b2, we  get  

2! � � = (3xy 4 + 3b)  �  1 + 3x y  3  �  +  h �  �; 
and the example is complete. 
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