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Abstract 

Let I = (b1, ... , b9 )R (g ~ 2) be an ideal in a Noetherian ring R, let K be the kernel of the 
natural homomorphism from R9 =R[Xi, ... ,X9 ] onto S=R[tl] (the restricted Rees ring of R with 
respect to/), and let J = ({b;)0 - bjX;; 1 :Si < j S g})R9 . Then the main results in this paper 
strengthen two known results in the literature by showing: if bi, . .. , b9 is a regular sequence, then 
K = J and, for all n ~ l,Ass(R9/J") =Ass(R9 /K); and, if b1, ... ,b9 is an asymptotic sequence, 
then Ka= Ja and, for all n ~ I, Ass(R9/(J")a) =Ass(R9/Ka) = {P;P is a minimal prime divisor 
of K}, where La denotes the integral closure of the ideal L. © 1997 Elsevier Science B.V. 

AMS Classification: Primary: 13Al5, 13B20; secondary: 13B99, 13C99 

1. Introduction 

With the notation of the abstract, Micali showed in [7, Lemma 2, p. 42] that if 
b1, ... ,bg is a regular sequence, then K = J, and that the converse holds if R is an 
integral domain. Also, Rees showed in [12, (2.1)] that if height((b1, ... ,bg)R)=g 2: 2 
and Risa quasi-unmixed local ring, then Ka=Ja and Ass(Rg/(P)a)=Ass(Rg/Ka) for all 
n 2: 1. Now it is shown in [6, Lemma 5.3] that an ideal of the principal class (that is, 
an ideal of height g that can be generated by g elements) in a quasi-unmixed local ring 
is generated by an asymptotic sequence, so with this in mind, both results are concerned 
with Ker(Rg ---; R[tl]) when I is generated by a sequence (a regular sequence, for 
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Micali's theorem; an asymptotic sequence, for Rees' theorem). Therefore each of these 
results suggests a sharpened version of the other. Namely, Rees' result suggests that 
the conclusion for Micali's theorem should be K =J and Ass(R9/Jn) =Ass(R9/K) for 
all n 2 1. And Micali 's result suggests that the conclusion for Rees' theorem should 
be valid when b1, ... , b9 is an asymptotic sequence in an arbitrary Noetherian ring and 
that ( some form of) a converse should be true. The main theorems in this paper show 
that both such sharpened versions hold. 

In Section 2 we mention some of the nice structure of (R9 )P and the nice behavior of 
Jp and Kp, where PE Ass(R9/P) (for some n 2 1) and J ¢. PnR, and then we prove 
three results which are used to shorten the proofs of Theorem 3.2 and Theorem 4.3. 

In Section 3 the emphasis is on strengthening the conclusion of Micali's theorem, 
and it is shown in Theorem 3.2 that if b1, ... , b9 is a regular sequence, then K =J and 
Ass(R9/Jn) = Ass(R9/K) for all n 2 1. Then a corollary shows that if R is Cohen­
Macaulay (resp., an integral domain, a Cohen-Macaulay integral domain and J is a 
normal ideal), then the form ring of R9 with respect to J is Cohen-Macaulay (resp., 
an integral domain, an integrally closed Cohen-Macaulay integral domain), and if R 
is either Cohen-Macaulay or an integrally closed integral domain, then the restricted 
Rees ring of R9 with respect to J has the same property. 

Finally, in Section 4, Rees' theorem is strengthened in Theorem 4.3 by showing 
that if I is generated by an asymptotic sequence in an arbitrary Noetherian ring, then 
Ja = Ka = Rad(K) and Ass(R9/(P)a) = Ass(R9/Ka) = {P;P is a minimal prime 
divisor of K} for all n 2 1. Finally, a converse of this result is also proved. 

2. Preliminaries on Ker(Rg -> R(tl)) 

In this brief section we introduce the notation that will be used in the remainder of 
this paper, and then mention some of the nice structure of (R9 )p and the nice behavior 
of Jp and Kp, where P E Ass(R9/Kn) UAss(R9/P) for some n 2 1 and J 't P n R. 

Since most of these results are known to experts, proofs will generally be omitted. 
We begin by specifying the notation. 

2.1. Notation. The following notation is fixed for the remainder of this paper: b1, ... , b9 

(g 2 2) are elements in a Noetherian ring R, and K = Ker(R9 --i- S), where R9 = 
R[X1, ... ,X9] and S = R[tbi, ... , tb9] is the restricted Rees ring of R with respect to 

I = (b1, .. . , b9 )R. (Here we assume that K is the kernel of the natural homomorphism rx. 
from R9 onto S, so rx. is the R -homomorphism such that rx.(X;) = tb; for i = I, ... , g.) 
Also, wi,J = b;J{_j - b1X; for 1 ~ i < j ~ g, J = ({w;,1; I ~ i < j ~ g})R9 , and 

= ({w;,1,w1,k; I~ i < j,j < k ~ g})R9 for j = 1, ... ,g. Finally, z1, ... ,zh are theH1 
prime divisors of zero in R, ordered so that z1, ... ,zd ( 1 ~ d ~ h) are the minimal 
prime divisors of zero, and if b1 is not nilpotent, then A1 = (R9 )br 

The following remark summarizes several well-known and/or easily proved facts 
concerning K, J and the rings A1 = (R9 )br 
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2.2. Remark. With Notation 2.1, the following hold: 
(2.2.1) If b1 is not nilpotent, then H1A1 = JA1 = KA1 is generated by the regular 

sequence X1 - (cifc1 )X;, ... ,J0-1 - (c1-ifc1 )X;,)0+1 - (c1+ifc1 )X;, ... ,Xg - (c9 /c1 )X;, 
where c; is the image of b; in A1. 

(2.2.2) K has exactly h prime divisors, say P1, ... ,Ph, and they may be subscripted 
so that P1, ... ,Pd are its minimal prime divisors and P1 nR = z1 for j = I, ... ,h. 

(2.2.3) If PE Ass(Rg/Kn)uAss(Rg/Jn) for some n 2 1 and if/ rt z = PnR, say 
b1 (/'. z, then z E Ass(R) and for all m 2 1 it holds that PE Ass(Rg/Km)nAss(Rg/r) n 
Ass(R9/HT)-

(2.2.4) If P1, ... ,Pd are as in (2.2.2) and if I rt P1 U ... UPd, then {P1, .. ,,Pd},;;; 

Ass(Rg/J) and, with T1 = (R9 )p1 for j = I, ... ,d, it holds that T1/z1T1 is a regular 
local ring of altitude g-1 and (r)aTJ = (Kn)aTJ = (P/)aTJ = (P/T1)a = (P/,z1)T1 

for all n 2 1. (Here, Ga denotes the integral closure of an ideal G.) 

In Remark 2.3 we prove three results that will help shorten the proofs of the main 
results in Sections 3 and 4. 

2.3. Remark. 
(2.3.1) Let A= {P; PE Ass(Rg/r) for some n 2 1} and assume that I rt P for 

all PE A. Then, for all n 2 1, P = Kn and Ass(Rg/Kn) = Ass(Rg/r) = Ass(Rg/K) = 

A= {P I , ... ,Ph}, where the P; (i = 1, ... ,h) are as in (2.2.2). 
(2.3.2) Let B = {P; PE Ass(Rg/(P)a) for some n 2 1} and assume that/ rt P for 

all P E B. Then, for all n 2 1, (P)a = (Kn)a and Ass(Rg/(Kn)a) = Ass(R9 /(Jn)a) = 

Ass(R9 /Ka) = B = {P1, ... ,Pd}, where the P; (i = 1, ... ,d) are as in (2.2.2). (Note: 

By (4.1.1), B =A*(J) is the set of asymptotic prime divisors of J.) 

(2.3.3) If B is as in (2.3.2) and if/ rt P for all P E B, then Ka = Ja = Rad(K). 

Proof. For (2.3.1), fix n 2 1 and note that if/ rt U{P; P E Ass(Rg/P)}, then 
(2.2.3) shows that each P in Ass(Rg/P) is in Ass(Rg/Km) for all m 2 1. Therefore, 
Ass(Rg/Jn),;;; Ass(Rg/Kn), so Kn(Rg)P = P(R9 )p for all PE Ass(Rg/Jn) (by (2.2.1), 
since (Rg)P = (A1)PA1 for some j = I, ... ,g), so it follows that Kn i;;; P. Therefore 
Kn = P, since the opposite inclusion is clear, hence it follows that if / rt P for all 
P E A, then for all n 2 1 it holds that Kn = P and A = Ass(Rg/P) = Ass(Rg/Kn). 

In particular, A = Ass(Rg/J) = Ass(Rg/K), and Ass(Rg/K) = {P1, ... ,Ph} by (2.2.2). 
For (2.3.2), it is shown in [11, (2.4)] that if P E Ass(Rg/(P)a) for some n 2 1, 

then P E Ass(Rg/(Jm)a) for all m 2 n, so [6, Proposition 3.17] shows that P E 

Ass(Rg/Jm) for all large m. Therefore, if/ rt P, then Km(Rg)P = Jm(Rg)P for all m 

2 1 (by (2.2.1 ), since (Rg )P = (A1)PAJ for some j = I, ... ,g), hence (Km(Rg )P )a = 

(r(Rg )p )a for all m 2 1. It follows from this that if, for some n 2 1, I rt LJ{P; 

P E Ass(Rg/(P)a)}, then (Kn)a ,;;; (n{(Kn(Rg)P )a; P E Ass(Rg/(P)a)}) n Rg = 
(n{(P(Rg)P )a; P E Ass(Rg/(P)a)}) n Rg = (P)a, Therefore (Kn)a = (P)a, since 
the opposite inclusion is clear, so it follows that if I rt P for all P E B, then (Kn )a 

= (P)a for all n 2 1, hence Ass(R9/(Kn)a) = Ass(Rg/(P)a) for all n 2 1. Also, it 
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follows from (2.2.2) that each P; (i = l, ... ,d) is a minimal prime divisor of K, so 
each is inAss(Rg/(Kn)a) for all n 2 1, so it follows that {P1, ... ,Pd} i::;; Ass(Rg/(Kn)a) 

= Ass(Rg/(Jn)a) i::;; B. Therefore, to complete the proof it must be shown that B i::;; 

{P1, ... ,Pd}. 

For this, let P E B and assume that/ rt P. Then [11, (2.4)] shows that P E 

Ass(Rg/(P)a) for all large n, so [6, Proposition 3.18] shows that there exists a minimal 
prime ideal z in Rg such that z i::;; P and P/z E Ass((R0/z)/(((J/zna)) for all large 
n, hence P/z E Ass((R0/z)/((J/zt)) for all large n, by [6, Proposition 3.17]. Also, z 

= (z n R)Rg and z n R is a minimal prime ideal, and it is readily checked that J/z = 
({b;Xj - b/(;; 1 ::; i < j ::; g})(R/z)g, where the "bar" denotes residue class modulo 
z. Further, 7 rt P/z (since / rt P, by hypothesis), so it follows from (2.2.3) that 
P/z E Ass((Rg/z)/Q), where Q = Ker((R/z)g """""'(R[tf])), and Q is prime, since R[tf] 

is an integral domain, hence Q = P/z. Therefore (P/z) n (R/(z n R)) = (0), since 
Qn(R/(znR)) = (0), so it follows that:(*) PnR = znR is a minimal prime ideal. 
Also, PE Ass(Rg/(P)a) for all large n, as noted above, so [6, Proposition 3.17] shows 
that PE Ass(Rg/P) for all large n, and/ rt P, by hypothesis, so PE Ass(R0 /K), by 
(2.2.3 ). Therefore, since P n R = z n R is a minimal prime ideal (by ( *) ), it follows 
from (2.2.2) that PE {P1, ... ,Pd}, Therefore, it follows that if/ rt P for all PE B, 
then Bi::;; {P1, .. ,,Pd}, 

Finally, for (2.3.3 ), if/ % P for all P E B, then (2.3.2) shows that Ja = Ka and that 
Ass(Rg/Ka) = {P1, .. ,,Pd}, It then follows from (2.2.4) that Ka= n{(Ka(Rg)P)nRg; 

j = 1, ... ,d} = n{(Pj(R9 )p)nR9 ; j = l, ... ,d} = Rad(K). □ 

3. Regular sequences and Ker(Rg - R(tl)) 

Let b1, ... , b9 be a regular sequence in a Noetherian ring R. Then a fairly self­
contained proof of the fact that K = J is given in [7, Lemma 2, p. 42], but we do not 
know how to use it to show that then Ass(R9/P) = Ass(R9/K) for all n 2 1. So in 
this section we give in Theorem 3.2 a new proof (using generically perfect ideals (see 
(3.1.2))) that K = J, and this approach yields the additional conclusion concerning the 
prime divisors of P. Then this section is closed by proving a useful corollary. 

To prove Theorem 3.2 we need the following definitions. 

3.1. Definition. 
(3.1.1) Let R be a Noetherian ring and let J be a proper ideal of R. Then J is said 

to be perfect in case grade(J) = proj.dim,R(R/J). 

(3.1.2) Let S be a polynomial ring over lL, the integers, and let J be a homogeneous 
perfect ideal in S. Then J is generically perfect in case S/J is faithfully flat over 7L 

( equivalently, since J is homogeneous, torsion-free over lL). 

References for generically perfect ideals include [1-4]. By the main result of [2], 
if J is a generically perfect homogeneous ideal and one replaces the variables in S 
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by a regular sequence contained in the Jacobson radical of a Noetherian ring, then the 
resulting ideal is also perfect. 

3.2. Theorem. Let I= (b 1, ... ,bg)R, Rg, K, and J be as in Notation 2.1 and assume 
that b1, ... , bg form a regular sequence. Then: 

(3.2.1) J = K. 
(3.2.2) Ass(Rg/P) = Ass(Rg/K) for all n ?: 1. 

Proof. By (2.3.1) it suffices to show that I rt P n R for all P E A = {P; P E 

Ass(R9/Jn) for some n ?: l}. For this, note that if P E A, then there exists p E 

Ass(Rg[tJ]/JRg[tJ]) such that pnRg = P. (For if R = R9 [t- 1, tJ] is the Rees ring of R9 

with respect to J, then t-nR n R9 = P, so there exists a prime divisor q of i-nR such 
that q nRg = P. Then q is a prime divisor of i-'R, and R/t- 1R = Rg[tJ]/JR9[tJ] = 
F(Rg,J) (the form ring of R9 with respect to J), so p = q nR9[tJ] is a prime divisor 
of JR9 [ tJ] such that p nR9 = P.) Therefore, if we can show that / rt p for all p E 

Ass(R9 [tJ]/JR9 [tJ]))), then we will be done. 
For this, let W;,J (1 ::; i < j ::; g) be mindeterminates and map R9[ { W;,J}] onto 

F(R9 ,J) by sending W;,1 to the J -form wt1 of w;,1. Call this map </>, so </> is the map 
presenting F(R9,J). We are going to prove that/ rt p for all p E Ass(R9[tJ]/JRg[tJ]) 
by using the fact that the kernel of ¢ is a generically perfect ideal in the case where 
b1, ... , b9 are indeterminates. 

To elaborate, let B1, ... ,B9, X1, ... ,X9, and {W;,J} be indeterminates over :71.., the 
integers, and set w;,1 = B;)0 - B1X;, for 1 ::; i < j ::; g. Set R' = :71..[B I , ... ,B9], 
R~ = R'[X1, ... ,X9], and J' = ({w!,)) ·R~, and let Q' s;;R~[{Wi,J}] be the kernel of the 
map presenting the form ring F(R~,J') of R~ with respect to J'. Then [l, Theorems 
9.14 and 9.17] show that F(R~,J') is an integrally closed Cohen-Macaulay integral 
domain. It therefore follows that Q' is a perfect prime ideal of grade (n (see [1, 
Proposition 16.19]). Thus, R~[{W;,1}]/Q' is :71.. torsion-free, so Q' is generically perfect. 
Let Q denote the image of Q' in R9[ { W;J}] obtained by setting B; = b;, for i = 1, ... , g. 
We now show that Q is a perfect ideal of grade (n . 

To see that Q is perfect, we may check by localizing R9[ { W;,1}] at any homogeneous 
maximal ideal JI containing Q. In other words, if we show that 

for every homogeneous maximal ideal JI, then we obtain that Q is perfect with 
grade(Q) = (~). For this, JI = (M,X,, ... ,X9,{W;,1})R9 [{W;,1}] for some maximal 
ideal M in R. If I rt JI, then the proof of the first claim below shows that Q.,11 is gen­
erated by a regular sequence of length (n. Therefore, we may assume that Is;; M. Then 
Q.,11 is obtained from a generically perfect ideal (namely, Q') by replacing the vari­
ables B1, ... ,B9 ,X1, ... ,X9 ,{Wi,J} by the regular sequence b1, ... ,b9,X1, ... ,X9 ,{W;,J} 
contained in the Jacobson radical of Rg[{ Wi,J} ].,11, and therefore, Q.,11 is a perfect ideal 
of grade (n by the Hochster-Eagon theorem mentioned following (3.1.2). 
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We now make two claims. The first claim is that Qb, = (Ker (</>) )b" and the second 
claim is that no prime divisor of Q contains b1. If both claims hold, then (since it 
is clear that Q ~ Ker(</>)) it follows that Q = Ker(</>) and that no prime divisor of 
Ker(</>) contains I, so no prime divisor of zero in F(R9,J) contains I, hence I 't- p 
for all p E Ass(R9 [tJ]/JR9 [tJ]), which is what we want to prove. 

For the first claim, note that b1wJ,k = b1w1,k - bkw1,1 (1 < j < k :::; g), so it 
follows that the (92

1
) elements W1,k - (b1/b1)W1,k + (bk/b1)W1,J (1 < j < k:::; g) 

are in (Ker(</>))b,. Also, Jb, ~ (Ker(</>))b,, and (2.2.l) shows that Kb,= Jb, = (H1)b, 
is generated by the w1,; (l < i:::; g) (which generate a regular sequence of length g-1 

in R9[I/b1]). Therefore, the form ring of R9 [I/bi] with respect to Kb, = Jb, = (H1)b, is a 

polynomial ring in g - I variables over R9 [I/bi]/Kb, = R9 [I/bi]/H1R9 [I/b1]. It 

follows at once that the elements W1,k-(b1/b1)W1,k+(bk/b1)W1,J (1 < j < k:::; g), and 

w1,; (1 < i:::; g) generate (Ker(</>))b,. Since these elements clearly belong to Qb" 
and since Qb, QKer(</>) )b,, we must have Qb, = (Ker(</>) )b,. Therefore the first claim 
holds. 

It now remains to see that no prime divisor of Q contains b1. For this, suppose, on 
the contrary, that b1 E p for some prime divisor p of Q. Now grade(p) = (~), since 
Q is perfect. In fact, [1, Proposition 16.17] shows that 

(3.2.3) grade(pp) = (n. 
We will now obtain a contradiction by showing that, since b1 E p, grade(pp) ?: (n +1. 

For this, since J ~ Q and b1 E p, it follows that either: (a) J ~ p; or, (b) I 't- p 
and X1 E p. If (a) holds, then p contains the regular sequence b1, . .. , b9 of length 
g. Therefore at least one W;,1, say W1,2, is not in p. Now p contains the g - 2 
elements XkW1,2 - X2W1,k + X1W2,k (3 :S k :S g), and the (922) Plucker relations 

W1,2WJ,k - W1,JW2,k + W1,kW2,J (3 :S j < k :S g). If we localize at p, then W1,2 
becomes a unit, so these elements taken together yield a regular sequence of length 
g + (g - 2) + (922) = (n + l contained in Pp, and this contradicts (3.2.3), so (a) 
does not hold. (Of course, we also obtain a similar contradiction assuming any other 

W;,J €J. p.) 
If (b) holds, then without loss of generality we may assume that b2 €J_ p. Then p 

contains b1,X1 and the g - 2 elements w2J (3 :::; j :::; g ). Additionally, p contains the 
(92

2) elements b2WJ,k - b1W2,k + bkW2,J (3 :S j < k :S g) and the g - 2 elements 

b1 W2,J - b2W1,J +b1W1,2 (3 :S j :S g). If we localize at p, then b2 becomes a unit, so 
these elements taken together yield a regular sequence of length (~) +1 contained in Pp, 

and this contradicts (3.2.3 ), so (b) does not hold. Therefore, we have a contradiction 
to the supposition that b1 E p, since neither (a) nor (b) holds, so this contradiction 
completes the proof of the second claim, hence the theorem holds. □ 

Corollary 3.3. is a corollary of Theorem 3.2 (and its proof). It shows that R9 [t.l], 
the restricted Rees ring of R9 with respect to J, and F(R9,J), the form ring of R9 with 
respect to J, inherit several nice properties from R when b1, ... , b9 is a regular sequence. 
(The reader should note that each statement in Corollary 3.3 holds when b,, ... , b9 are 



271 D. Katz, L.J. Ratliff/Journal of Pure and Applied Algebra 122 (1997) 265-275 

indeterminates (see [l, Ch. 9]). Moreover, though Corollary 3.3 is clearly related to 
[l, Propositions 3.11-3.13], it does not seem to follow immediately from them.) 

3.3. Corollary. Assume that Risa Noetherian ring and I= (b 1, ... ,bg)R is an ideal 
in R such that grade(!)= g ~ 2. Then the following hold: 

(3.3.1) If R is Cohen-Macaulay (resp., an integral domain, a Cohen-Macaulay 
integral domain and I is a normal ideal (that is, in is integrally closed for all positive 
integers n)), then F(Rg,J) = F(Rg,K) is Cohen-Macaulay (resp., an integral domain, 
an integrally closed Cohen-Macaulay integral domain). 

(3.3.2) If R is Cohen-Macaulay (resp., an integrally closed integral domain), 
then R0 [t.J] = R9[tK] is Cohen-Macaulay (resp., an integrally closed integral 
domain). 

Proof. Since an ideal of grade g that is generated by g elements can be generated by a 
regular sequence, and since the form ring and Rees ring of an ideal are independent of 
the generating set, we may assume that b1, ... ,bg is an R -sequence. Then Theorem 3.2 
shows that J = K, so it suffices to prove the results concerning F(Rg,J) (in (3.3.1)) 
and R0 [t.J] (in (3.3.2)). 

For (3.3.1) assume that R is an integral domain. Then S is, so J = K is a prime 
ideal. Moreover, Jb 1 is generated by a regular sequence, so it follows that F(R0,J) ;;

1 

is an integral domain, where Fi; denotes the image of b1 in F(R0 ,J). Also, the two 
claims in the proof of Theorem 3.2 show that b1 is regular in F(R0 ,J), so it follows 
that F(R0,J) is an integral domain. 

Next assume that R is Cohen-Macaulay. Then R0[{ Wi,j}] is Cohen-Macaulay and 
the proof of Theorem 3.2 shows that F(R0,J) = R0[{W;,1}]/Q, where Q is a perfect 
ideal and grade(Q) = m- Therefore it follows that F(R9 ,J) is a Cohen-Macaulay 
ring (see [l, Proposition 16.19]). 

Finally, assume that R is a Cohen-Macaulay integral domain and that I is a normal 
ideal. Then R9/J is integrally closed, (R0 )J is a regular local ring, and F(R0 ,J) is a 
Cohen-Macaulay integral domain (by what has already been proved), so it remains to 
show that F(R0 ,J) is integrally closed. For this, by [5, Corollary 2.1], it suffices to show 
that l(Jq) :S max{dim(R0 )J,dim(R0 )q - 2}, for all prime ideals q of Rg that contain 
J. (Here, l(Jq) denotes the analytic spread of Jq. Note also that the assumption in 
[5, Corollary 2.1] that R be a homomorphic image of a regular ring is not required.) 
However, l(Jq) :S 2g - 2 for all such prime ideals q (as in the proof of [12, (2.1)]), 
and if b; eJ_ q for some i or if )0 eJ_ q for some j, then l(Jq) = g - I. Therefore it 
follows that F(R9 ,J) is integrally closed. 

For (3.3.2 ), we may argue as in the proof of Theorem 3.2 that the kernel of the map 
presenting R9[t.J] is a perfect ideal of grade (n - 1. It then follows from this as in the 
proof of (3.3.1), that R0 [t.J] is Cohen-Macaulay whenever R is Cohen-Macaulay. If R 
is an integral domain, then J = K is a prime ideal, so Jll = Kn is K -primary for all 
n ~ 1, by Theorem 3.2. Therefore JK = KK is a normal ideal, so J is a normal ideal. 
Since R is also integrally closed, R0 [t.J] is integrally closed. □ 

https://3.11-3.13
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4. Asymptotic sequences and Ker(Rg -+ R[tl)) 

The main result in this section, Theorem 4.3, extends Rees' theorem concerning K 
and J to arbitrary asymptotic sequences (of length g 2 2) in arbitrary Noetherian rings. 
To prove Theorem 4.3 we need the following definitions and preliminary result (which 
is of some interest in itself). 

4.1. Definition. Let I be an ideal in a Noetherian ring R. 
(4.1.l)A*(I) = {P E Spec(R); Pis a prime divisor of (In)a for all large n (equiv­

alently, by [R3, (2.4 )], for some n 2 l)} is the set of asymptotic prime divisors of 
I. Here (In)a is the integral closure in R of fll. (ThereforeA*(J) = B of (2.3.2).) 

(4.1.2) An element b in R is asymptotically prime to I in case (I, b )R ,f. R and 
(Jll )a : bR = (Jll )a for all n 2 I. Elements b1, . .. , bg in R are an asymptotic sequence 
in R in case b; is asymptotically prime to (b 1, ... ,b;_ 1)R for i = l, ... ,g. (In particular, 
since (O)a = Rad(R), it follows that b1 is not in any minimal prime ideal in R.) 

Concerning (4.1.2), it is shown in [6, Lemma 5.13] that a regular sequence is an 
asymptotic sequence, so the results in this section hold when b1, . .. , bg is a regular 
sequence in a Noetherian ring R. 

The following result shows a useful new property of asymptotic sequences (namely, 
they become a regular sequence in many complete local domains that are closely related 
to the original ring). (It follows quite directly from the Cohen structure theorems that 
if C is a coefficient subring of a complete local domain L and x 1, ... ,Xm is a system 
of parameters in L, then D = C[[x1, ... ,xm]] is a complete local subdomain of L, L is 
a finite D -module, D is a complete intersection, and x1, ... ,xm is a regular sequence 
in D.) 

4.2. Proposition. Let b1, ... , bg be an asymptotic sequence in a Noetherian ring R, 
let P be a prime ideal in R that contains b1, ... ,bg, let Q = Rp, let z be a minimal 
prime ideal in the completion Q* of Q, let L = Q* /z, let C be a coefficient subring 
of L, and for i = l, ... ,g let x; be the image of b; in L. Then altitude(L) = m 2 g 

and there exist x9+1, ... ,Xm in L such that: 
(4.2.1) C[[x1, ... ,xm]] is a complete local subdomain of L. 
(4.2.2) L is a finite C[[x1, ... ,xm]]-module. 
(4.2.3) C[[x1, ... ,xm]] is a complete intersection. 
(4.2.4) x 1, ... ,Xm is a regular sequence in C[[x1, ... ,xm]]. 

Proof. It is shown in [6, Remark (b ), p. 32] that the images in Q of b1, ... , b9 form an 
asymptotic sequence, so they form an asymptotic sequence in Q*, by [6, Lemma 5.1], 
so their images x1, ... ,x9 form a subset of a system of parameters in L = Q* /z, by 
[6, Lemmas 5.1 and 5.2]. Therefore by extending x1, ... ,x9 to a system of parame­
ters x1, ... , x9 , x9+1, ... ,Xm of L the conclusions follow immediately from the comment 
preceding this proposition. □ 



273 D. Katz, L.J. Ratliff/ Journal of Pure and Applied Algebra 122 ( 1997) 265-275 

The next result, which is an asymptotic sequence version of Theorem 3.2, extends 
the main result in [12) by showing that the conclusion holds for an arbitrary asymp­
totic sequence (of length g 2 2) in an arbitrary Noetherian ring. As mentioned in the 
introduction, Rees proved the theorem for asymptotic sequences in a quasi-unmixed 
local ring in [12, (2.1 )], but since Theorem 3.2 did not require that R be Cohen­
Macaulay, an asymptotic sequence version should not require that R be quasi-unmixed 
( since, in the correspondence between the asymptotic and standard theories of ideals, 
quasi-unmixed is the analog of Cohen-Macaulay), and, in fact, Theorem 4.3 veri­
fies this. (Rees' proof in [12) is essentially self-contained (and is quite pretty). In 
contrast, the proof given below uses (2.3.2), (2.3.3), Theorem 3.2, and Proposition 
4.2, and several results on asymptotic sequences that have previously appeared in the 
literature.) 

4.3. Theorem. Let b1, ... , b9 ( g 2 2) be an asymptotic sequence in a Noetherian ring 
R and let R9 , K, J, and S be as in Notation 2.1. Then: 

(4.3.1) Ja = Ka = Rad(K), so (r)a = (Kn)a for all n 2 1. 
(4.3.2) For all n 2 1, Ass(R9/(Jn)a) = Ass(R9/Ka) is the set of minimal prime 

divisors of K. 

Proof. Assume it is known that: ( *) I r;t P n R for all P E A*(J). Then the conclu­
sions follow immediately from (2.3.3) and (2.3.2). Therefore, it remains to show that 
( *) holds. 

For this, suppose, on the contrary, that there exists P E A*(J) such that I ~ P nR. 
Let p = P n R and let Q = Rp. Then PQ9 E A*(JQ9 ) by [6, Remark, p. 15) (since 

is a localization of R9 ), and IQ ~ PQ9 n Q. Let Q* be the completion of Q.Q9 

Then (Q*)9 is a faithfully flat extension ring of Q9 , so by [11, (6.5)) there exists P* 
E A*(J(Q*)9 ) such that P* n Q9 = PQ9 , so IQ* ~ P* n Q*. Therefore there exists 
a minimal prime ideal z contained in P* such that, with L = Q* /(z n Q* ), P* /z E 

A*(JL9 ) by [6, Proposition 3.18], and IL~ (P*/z)nL. Finally, the images b1', ... ,b/ 
in L of b1, ... , b9 are a subset of a system of parameters (by [6, Remark, p. 15, 
and Lemmas 5.1 and 5.2)), so let altitude(L) = g + e and let b9+1', ... ,b9+e' in L 
such that b1', ... , b9+e' is a system of parameters in L, let C be a coefficient subring 
of L, and let D = C[[b 1', ... ,b9+/J]. Then N = (P*/z)nD9 EA*(JD9 ) by [6, Propo­
sition 3.22] (since it follows from (4.2.3) that L9 is a finite integral extension domain 
of D9), and (b1', ... ,bg')D ~ NnD. However, bi', ... ,bg' is a regular sequence in D, 
by (4.2.4), so Theorem 3.2 shows thatA*(JD9 ) is a one point set whose one element 
contracts in D to zero (since S(D,(b1', ... ,b/)D) is an integral domain); hence we 
have a contradiction. Therefore ( *) holds. □ 

It is well known that if b1, ... , b9 are contained in the Jacobson radical of R, then 
they form a regular sequence if and only if K ~ IR9 if and only if J = K. The­
orem 4.4, which is a converse of Theorem 4.3, gives an asymptotic analog of this 
result. 
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4.4. Theorem. Let I = (bi, ... ,b9 )R be an ideal of the principal class ( g 2". 2) that 
is contained in the Jacobson radical of a Noetherian ring R and for each n 2". 1, let 

J(n) = ({ btA; - b/X;; I ~ i < j ~ g})Rg and K(n) = Ker(Rg ---+ S(n) ), where S(n) 
= R[tb1n, tb/, ... , tb/]. Then the following are equivalent: 

(4.4.1) b1, ... , bg is an asymptotic sequence in R. 

(4.4.2) K(n) ~ W)aRg for all n 2 1. 
(4.4.3) (J(n) )a = (K(n) )a for all n 2 1. 

Proof. If ( 4.4.1) holds, then b1 n, ... , bgn is an asymptotic sequence in R for all n 2". 1, 
by [10, (3.15)], so (4.4.1) =} (4.4.3) by (4.3.1). And since J(n) ~ rRg for all n 2". 1, 
it follows that (J(n))a ~ (rRg)a = (r)aRg, so (4.4.3) ⇒ (4.4.2). 

Finally, let R(n) = R[u,tb1n, ... ,tb/], so R(n)/uR(n) = S(n)/J[nlS(n) = F(n) where 
F(n) is the form ring of R with respect to J[nl = (b 1n,b/, ... ,b/)R. Then it is 
shown in [9, (4.17)(1') {:} (4')] that (4.4.1) is equivalent to R(n)/(u,(Jn)a)R(n) = 
Rg/(In)aRg for all n 2 l. Therefore, if(4.4.2) holds, then since (J[nl)a = (r)a it follows 
that Rg/(Jn)aRg = S(n)/(fll)aS(n) = F(n)/((fll)a/f[nl)F(n) = R(n)/(u,(r)a)R(n), 
so ( 4.4.2) ⇒ (4.4. l ). □ 

The final result is a corollary of Theorem 4.4, and it is an asymptotic sequence 
version of the following well known characterization of a Cohen-Macaulay local ring: 
The following are equivalent for a local ring R such that altitude(R) = n 2". 2: (a) R 
is Cohen-Macaulay. (b) There exists a system of parameters b1, ... , bn in R such that 
Ker(Rn---+ R[tb1, ... ,tbn]) ~ (b1, .. ,,bn)Rn, (c) For every ideal J = (b1, ... ,bg)R of the 
principal class g 2". 2 it holds that Ker(R9 ---+ R[tb1, ... , tb9 ]) ~ JR9 . 

4.5. Corollary. The following are equivalent for a local ring R such that altitude(R) = 
n 2 2: 

(4.5.1) R is quasi-unmixed. 

(4.5.2) There exists a system of parameters b1, ... , bn in R such that Ker(Rn ---+ 

R[tb1m, ... ,tbnm]) ~ ((b1m, ... ,bnm)R)a)Rn for all m 2". 1. 
(4.5.3) For every ideal I = (b 1, ... , b9 )R of the principal class g 2 2 it holds that 

Ker(R9 ---+ R[tb1, ... , tb9]) ~ IaR9. 

Proof. (4.5.1) =} (4.5.3) by (4.4.1) =} (4.4.2) (since ideals of the principal class in a 
quasi-unmixed local ring are generated by an asymptotic sequence, by [6, Lemma 5.3]), 
it is clear that (4.5.3) =} (4.5.2), and (4.5.2) =} (4.5.1) by (4.4.2) =} (4.4.1) (since a 
local ring with an open ideal generated by an asymptotic sequence is quasi-unmixed, 
by [6, Corollary 5.9]). □ 
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