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Section 1. Introduction. 

Let (R,  m) be a d-dimensional quasi-unmixed local ring and J C I m-primary ideals. 

A theorem of fundamental importance, due to D. Rees, states that  the multiplicity of J 
equals the multiplicity of I if and only if J is a reduction of I (see [Rl]). This result was 

extended to equimultiple ideals by Boger, and further, by Rees himself, to ideals J E I 
whose quotient has finite length (see [B] and [R2]). Recently, in [KR] Kirby and Rees and in 

[KT] Kleiman and Thorup have extended the theorem to  a more general situati 'm wherein 

the focus is turned to  a pair of graded R-algebras rather than a pair of ideals. The methods 
used in [KR] involve complexes of graded modules and Euler-Poincare characteristics, while 

the methods in [KT] rely upon intersection theory for abstract Noetherian schemes. The 
purpose of this note is two-fold. On the one hand, we wish to give a proof of the Rees 

multiplicity theorem for modules in a relatively straight forward way which appeals only 
to basic ideas from the theory of Hilbert functions. On the other hand, we would like to 

demonstrate module forms of reduction criteria obtained by Boger in [B]. In particular, we 

define the notion of an equimultiple module and provide an extension of Boger's theorem 
from equimultiple ideals to equimultiple modules (also see [KT; T h m  10.91). 

We begin by establishing our set-up. Fix a d-dimensional local ring (R,  rn) and let 

B c A E F := R~ be finitely generated R-modules. We assume that  A and B have rank r .  

By this we shall mean that  every r + 1 x r + 1 minor of the matrix associated to  A (resp. 
B )  equals zero and that  the ideal of r x r minors has height at least one. We denote this 
ideal by I,(A) (resp. I,(B)). Let B C A c RIX1,. . . ,XN] be, respectively, the R-algebras 
generated by the linear forms in X I , .  . . , X N  corresponding to the generators of B and A .  
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Our goal is to determine when A is a finitely generated 8-module. Equivalently, we seek 

to determine when the R-algebra A is integrally dependent over the ring B. When either 
of these conditions hold, B is said to be  a reduction of A. For example, if B were the 

ith module of boundaries and A the ith module of cycles in a complex of free R-modules 
having finite length homology, then it is an issue of great interest to  determine when B is 

a reduction of A. Indeed, a number of unsettled homological conjectures can be reduced to 

precisely this question. Hence our interest in the special case at  hand. 

Section 2. T h e  cri ter ia .  

Before presenting our treatment of Rees' theorem we state a crucial lemma. 

L e m m a  2.1. Let R be a finitely generated bigraded algebra, generated in degrees (1,O) 

and ( 0 , l )  over the Artinian local ring (Q,n) .  Let M be a finitely generated bigraded R -  

module. For all t , s  2 0, set H ( t , s )  := XQ(Mi,,), the length of Mi,,. Assume H ( t ,  s)  # 0, 

for t ,  s sufficiently large. Then : 

(1) There exists a polynomial P ( X ,  Y) with rational coefficients such that H ( t ,  s) = 
P ( t , s ) ,  for all t >> 0 , s  >> 0. Furthermore, deg(P(X, Y))  = rdim(M) - 2. 

(2) Set H ( n )  = Cy=oH ( n  - j ,  j ) .  Then for n >> 0, H(n)  assumes the values of a 
polynomial with rational coefficients having degree 1 + deg(P(X, Y)) .  

R e m a r k .  Recall that  rdim(M),  the relevant dimension of M, equals the largest value 

d im(R/P)  where P is a relevant prime containing anna(M) .  A prime ideal P is relevant if 

Rt , ,  'P, for all (t,  s)  # (0,O). The proof of part (2) of the lemma is standard while the first 
part is more or less well-known. See [KR] or [VKM]. Various forms of the following theorem 

can be found in [K], [R2], [KR] and [KT]. We present a proof for the sake of completeness 
and, we hope, clarity. 

T h e o r e m  2.2. Suppose XR(A/B) < co.Then . 
(1) For all n >> 0, XR(A,/B,) assumes the values o f a  polynomial P ( n )  in n having 

rational coefficients and degree less than or equal to d + r - 1. 
(2) If A is a finitely generated B-module, deg(P(n)) < d + I- - 1. 

(3) If R is quasi-unmixed, the converse of (2) holds. 

Proof. It follows readily from the assumption XR(A/B) < co that XR(A~/B, )  < co,for all 

n 2 1. Furthermore, it is not hard to show that  dim(A) = dim(B) = d+ r .  Consequently, if 

A is a finitely generated Bmodule,  parts (1) and (2) follow from standard Hilbert function 

theory, since dim(B/annB(A/B)) 5 d + r - 1. This latter fact follows because I,(B) is 
contained in the nilradical of anns(A/B). Now suppose that  R is quasi-unmixed and A is 
not a finitely generated Bmodule. Let U be an additional indeterminate and set 
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where b l ,  . . . ,bh are the linear forms corresponding to the generators of B. Note that  

R = $t , s20AtBdUd is a bigraded R-algebra on the one hand and equals the Fl.ees ring of 
A with respect to  BIA on the other hand. Note also that dim(R) = d + r +  1. Consider the 

bigraded R-module 

A I R / B I R  = @ At+lB,/AtB,+l. 
t > o , s > o  

Since XR(dt+ll?s/dtB8+1) < m, [AIR/BIR] t , r  has finite length for all t 2 0, s 2 0 as a 
module over the Artinian local ring [R/  annn(A1R/BlR)]o. Since 

by the lemma there exists a polynomial Q(X,  Y) with rational coefficients satisfying 

for all t >> 0 , s  >> 0. Since 

the lemma implies that  for n >> 0, XR(A,/B,) is a polynomial in n having degree equal 

to 1 + deg(Q(X,Y)).  It therefore remains to  see that  rdirn(AlR/BlR) = 11+ r .  For 

this, it suffices to see that there exists a relevant height one prime ideal in R containing 

annR(AIR/BIR)  (since R is quasi-unmixed). Now, since A is not finite over B,  & A  and 

A+ have different nilradicals. Choose P G A minimal over BlA, A+ P.Let :P2R be a 

minimal prime over B1R with P nA = P. Since R is a Rees algebra, BlU P Thus P is 

relevant and has height one. Since ( A I R / B I R ) p  = R P / B I R P ,  a n n n ( A I R / B I Z )  C P,and 

the proof is complete 

Remark (i) The key idea of considering the bigraded filtration 

can be traced back to  the original paper of Rees, [Rl]. 

(ii) Let M F be a finitely generated R-module satisfying XR(F/M) < cxz and M # 
F .  If we take B = M and A = F, then Theorem 2.2 implies that  for all n >> 0, 

XR(Symn(F)/Sn(M)) assumes the values of a polynomial with rational coefficients, where 
S y m n ( F )  denotes the nth component of the symmetric algebra of F and S n ( M )  denotes the 
image of the nth component of Sym(M) in Symn(F) .  Since M is clearly not a reduction 

of F, the theorem implies that  the degree of this polynomial is d + N - 1. This result is 
due to  Buchsbaum-Rim (c.f. [BR]). The normalized leading coefficient of this polynomial is 
called the Buchsbaum-Rim multiplicity of M .  We denote this by e(M).  If, in our original 

set-up, we assume B C A 5 F and that  both A and B have finite colength in F ,  then we 
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conclude from Theorem 2.2 that ,  if R is quasi-unmixed, then B is a reduction of A if and 
only if the Buchsbaum-Rim multiplicity of B equals the Buchsbaum-Rim multiplicity of A. 
This is a module-theoretic analogue of the original Rees multiplicity theorem. 

Before continuing, we will recall the notions of integral closure and analytic spread as they 
apply t o  modules B C F (c.f., [R3]). The integral closure of B (in F ) ,  denoted B*,  is the 
largest submodule of F having B as a reduction. Alternately, B*  may be described as the 
degree one component of the integral closure of 8 in R[X1,. . . , XN]. When R is a domain, 
these definitions agree with the one given by Rees in [R3], where B* is defined to be the 
intersection of the modules B V n  F as V ranges over the discrete valuation domains between 

R and its quotient field. The analytic spread of B ,  denoted s ( B ) ,  is the Krull dimension of 
the ring BlmB. In the next proposition we extend an important result due to Ratliff from 
ideals to  modules. Ratliff's theorem (c.f., [Rtl]) states that  in a quasi-unmixed local ring, 
any prime ideal associated to  the integral closure of an ideal has height less than or equal 
to the analytic spread of the ideal. Using this fact, Ratliff was able to  give a quick proof 
of Boger's theorem for equimultiple ideals. In fact he went on to  show that  the Rees-Boger 
theorems characterize quasi-unmixed local rings. See [Rtl]. 

P r o p o s i t i o n  2.3. Let R be a locally quasi-unmixed Noetherian ring and B E F a finitely 
generated R-module having rank r .  Let P E Ass(F/B*). Then height(P) 5 s (Bp)  - T + 1. 

Proof. First, we may localize and assume that  P is the unique maximal ideal. Second, 
it is not difficult to  show that  there exists a minimal prime z C P such that P l z  E 
Ass((F/zF)/(B1)*), where B' is the image of B in F / z F .  Since R is quasi-unmixed, 
height(P) = height(P/z). Moreover, s(B1) 5 s (B) .  Thus we may replace R by R/z and 
assume further that  R is a domain. Now, write P = (B* : v), for some v E F \ B * .  Then 
P v  B*. Writing B for the linear form in RIXl , .  . . , X N ]  corresponding to v ,  we obtain 
PB B*, the integral closure of B. Since v @ B*, B @ B*. It follows that  there exists a 
height one prime P* in (the Krull domain) B* such that  B @ B&. Hence P g 'P*. Therefore 
'PnR = P ,  where 'P = 'P* n B .  Since B is locally quasi-unmixed, height(P) = 1 (c.f. [Rt2]). 
By the dimension formula 

height(P) + t r .  deg.R(B) = 1+ t r .  deg.Rlp(U/'P) < 1+ s(B) 

Since t r .  deg.R(B) = r ,  height(P) 5 s(B) - r + 1, as desired 

We now extend [R2 ; Thm.  3.21 to modules. Note that  the first part of the "if' dkection 
appears as [R3 ; T h m  2.51, though our proof is a bit different. In the statement of Theorem 
2.4, we write e(AQ/BQ) to denote the normalized leading coefficient of the degree dim(Rq)- 
r + 1 term of the polynomial derived in Theorem 2.2. 
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Theorem 2.4. Let R be a quasi-unmixed local ring and B C A C F as above. Suppose 
that height(B : A )  2 s ( B )  - r + 1 .  Then B is a reduction o f  A i f  and only i f  either 
height(B : A )  > s ( B )- r + 1 or height(B : A )  = s ( B )- r + 1 and e ( A Q / B Q )  = 0 for every 

minimal prime Q over ( B  : A ) .  

Proof. Let Q' E Ass(F/B*) .  From the previous proposition we obtain 

Thus,  i f  height(B : A )  > s ( B )  - r + 1 ,  ( B  : A )  g Q' and BQl = AQt.  In particular, 
Aq, C B & .  I f  height(B : A )  = s ( B )- r + 1 ,  then height(Q1) 5 height(B : A ) .  Therefore, 
either ( B  : A )  g Q' in which case AQ, c B & ,  or Q' is minimal over ( B  : A ) .  In the second 
case, localizing at Q' and applying Theorem 2.2 gives AQa C B&,  as desired. 

We  need a definition before we can state the extension o f  Boger's theorem (see also [KT;  

T h m .  10.91). Recall that an ideal I R is said to be equimultiple i f  s ( I )  = height(1). 
For B c F as above, we say that B is equimultiple i f  r := rank (B)  = rank (F)  and 
s ( B )  = height(I,(B))+ r - 1. 

Theorem 2.5. Let R be a quasi-unmixed local ring and B c A F as above. Assume 
that B is equimultiple and that I r ( A )  and I , (B)  have the same nilradical. Then B is a 
reduction of  A i f  and only i f  e ( B Q )  = e ( A Q )  for all primes Q minimal over I,(B:). 

Proof. First note that for any prime Q minimal over I , (B) ,  XR(FQ/BQ) < m, so the 
Buchsbaum-Rim multiplicities e ( B Q )  and e (AQ)  make sense. Now, i f  B is a reduction o f  
A, then part ( 2 )  o f  Theorem 2.2 implies that e ( B Q )  = e ( A Q )  for all primes Q minimal 
over I , (BQ) .  For the converse, let Q' E Ass(F/B*) .  Then I , (B)  C Q' and Proposition 2.3 
implies that 

Therefore Q' is minimal over I ,(B).  Part (3) of  Theorem 2.2 implies that AQr c B&.  It 
follows that A C B', i.e., B is a reduction o f  A .  

The  last theorem is a module form of  a second reduction criterion due t o  Boger (see [B;  
Satz 21). The  proof, however, is entirely different as it avoids the use of superficial elements. 

Theorem 2.6. Let R be a quasi-unmixed local ring and B 2 A C F as above. Then B is 

a reduction o f  A i f  and only i f  the image o f  B in F I P F  is a reduction o f  the image o f  A for 
all prime ideals P 2 R satisfying d i m ( R / P )  = 1. 

Proof. Since A is a finite B-module i f  and only i f  rad(B1A) = rad(A+) ,  it suffices to assume 
the dimension one condition and show that rad (&d)  = rad(A+).  For this, by Krull's 
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principal ideal theorem, it suffices to  prove the following statement. For all primes P E A 

with dim(A/P) = 1, if B i d  2 'P, then A+ C P .  In other words, if d im(A/P)  = 1 and 

A+ g P, then BIA P .  For this it suffices to  show that  there exists a prime P C R with 

dim(R/P) = 1 and P* 2 P, where P*= PRIX1, . . . , X,v] n A .  After all, by hypothesis, 

rad((A+, P * ) / P * )  = rad((&A, P * ) / P * ) .  

To see that  such a P exists, we first note that  if d im(A/P)  = 1 and A +  g P, then 
P n R = m. Indeed, A / P  is a one dimensional graded algebra which is a domain. Since 

(A/?)+ is a non-zero prime, it must be the unique homogeneous maximal ideal, so (A/P)o is 

a field. Thus, P n R  = m. Now, set I := I,(A). As we may clearly assume that  dim(R) > 1, 
let Q C P satisfy dim(A/Q) = 2 and Id g Q. Then height(&) = d + r - 2. Set P = Q n R 
and select a minimal prime z 2 P which satisfies height(Q/t*) = d + r - 2. Applying the 
dimension formula to the extension R/z E A l z * ,  we obtain 

height(P/z) + r = d + r - 2 + t r .  deg.RIP(d/Q) 

Therefore height(P) 2 d - 2 + t r .  deg.Rlp(A/Q). Since I g P, P # m. Moreover, since 
A+ g Q ,  t~ deg,Rlp(A/Q) 2 1. It follows that  t r .  deg.Rlp(A/Q) = 1 and height(P) = d- 1. 

If we now let S denote the complement of P in R ,  we have Ps = Q s  n R s .  But A s  is a 

polynomial ring in a subset of the variables X I , . . . ,XN(up to a change of coordinates). 

Thus Qs contains P A s  and therefore & contains P * .  This completes the proof. 

Acknowledgements. Thanks to  W. Heinzer, V.  Kodiyalam, and D. Lantz for conversa-
tions at various times concerning the material in this paper. 

E. BBger, Einige Bemerkungen zur Theorie der ganzalgebraischen Abhandigkeit von Idealen, Math. 
Ann. 185 (1970), 303-308. 
D.A. Buchsbaum and D.S. Rim, A generalized Koszul complex II. Depth and multiplicity, Trans. 
Am. Math. Soc. 111 (1964), 197-224. 
D. Kirby, Graded multiplicity theory and Hilbert functions, J1. London Math. Soc. (1987), 16-22. 
D. Kirby and D. Rees, Multiplicities in  graded rings 1 : The general theory, preprint (1992). 
S. Kleiman and A.  Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, J.  Algebra 
167 (1994), 168231. 

D.Rees, a-transforms of local rings and a theorem on multiplicities of ideals, Proc. Camb. Phil. 
SOC.57 (1961), 8-17. 
D.Rees, Amao's theorem and reduction criteria, J .  London Math. Soc. 32 (1985), 404-410. 
D. Rees, Reduction of modules, Math. Proc. Camb. Phil. Soc. 101 (1987), 431-449. 
L.J. Ratliff, J r ,  Locally quasi-unmixed Noetherian rings and ideals of the principal class, Pac. J .  
of Math. 52 (1974), 185-205. 
L.J. Ratliff, Jr ,  On quasi-unmixed local domains, the altitude formula, and the chain condition for 
prime ideals, Am. J.  Math. 91 (1969), 506528. 
J .  K. Verma, D. Katz and S. Mandal, Hilbert functions of bigraded algebras, preprint (1993). 

Received: December 1994 

Revised: March 1995 


