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Se~tion 1. Introduction. 

Let S be an Artinian local ring. Let X = {X0 , ••. ,Xm} and Y = {Y0 , .•. ,Yn} be 

two sets of indeterminates. Then the polynomial ring R = S[X; Y] is a bigraded S­

·algebra. Let Rrs denote the S-module generated by monomials of the form PQ where P 

is a degree r monomial in X and Q is a degree s monomial in Y. We say that PQ is a 

monomial of degree ( r, s ). R decomposes as R = EElr,s>o Rrs and Rr,Rab = Rr+a,s+b for 

all r, s, a, b, E N. An element of Rrs is called bihomogenous of degree (r, s). An ideal.I<:;; R 

generated by bihomogeneous elements is called a bihomogeneous ideal. Therefore A = RfI 

is a bigraded algebra, the bigraded component of degree ( r, s) being Ars = Rr,/I rs• The 

Hilbert function of A is defiiled as 

H(r,s) = ,,\(Ar,) 

where ,,\ denotes length as an S-module. Van der Waerden [W] studied the function 

H(r,s). The original idea of Hilbert functions ofmultigraded algebras is due to Lasker [L], 

as pointed out by Van der Waerden in [W]. 

In [W],it is proved that if Sis afield and d = dim(A)-2, thenforlarge rands, H(r,s) 

is given by a polynomial P(r, s) of the form ~i+i:Sd a;j C) (;), where a;j are integers. This 

has been extended to the Artinian case by Bhattacharya [BJ. Among the numbers llij, the 

ones for which i + j = dare especially interesting. Let us denote them by e;j(I). These-are 

called the degrees of I in [vV]. Van der Waerden proved that the degrees are non-negative 

integers and pointed out their geometric interpretation. 

A proper bihomogeneous ideal I is called projectively irrelevant if for some non-negative 

integers a and b, (X)"(Y)6 <:;; I, projectively relevant otherwise. According to Theorem 

(l,0'>)-\)Y)Ll+cr41·v... 0.012.f>T"-, A-.-.-n .Simi=-, /J.V. T1ZM-ri;, c,-r!d Gj. v.. l)CL. u;,ls)_, 

P--.'oc.~.,_d;,,cr.' 1 ·~wkt>h..r ;V> C.<tT,y"WUl-J"l-/-;v-e, r.,.~-., Jc.,P,T.n.i'<e:iTe.. 

( l'l'\2.), \it) <n' k:) be.\,,,,+;fl c. lJ'li'I-), 2..5)--,302., 



292 

6 of (BJ, if Iis not projectively irrelevant, then e;j(I) > 0 for all i,j. This is clearly not 

true. For example take I = 0 (examples. with J. c/ 0 can be constructed; see section 5). 

Then H(r,s) = ,\(S)(';;,m)(•!n) for all r,s 2'; 0. Therefore emn = .-\(S) and the other e;j 

are zero. In this note we point out some of the elementary differences between Hilbert 

functions of bigraded versus N-graded algebras and indicate a few of the similarities as 

well. In section two we will identify the total degree of P(r, s). In general, it is not quite 

the "expected value" dim(A) - 2. In section three, we will prove a formula for the degrees 

of I using the Hilbert series 

co co 

Q(t1, t2; A)= LL ,\(Ar,)trt~. 
r=O s=O 

The bigraded algebra A can be made into a graded algebra by setting An = EBr+s=n Ars• 

Hence A = EBn~o An. In section four we will show that the multiplicity of A, e(A), is 

the sum of. the degrees of I provided the ideals generated by A 10 and A 01 have positive 

height. As a consequence, we recover a formula proved in [VJ about the multiplicity of 

Rees algebras localized at their homogeneous maximal ideals. Finally, in section five we 

present some examples. 

Section 2. The total degree of the Hilbert polynomial. 

The results of Bhattacharya and Van der Waerden show that the total degree of the 

Hilbert polynomial P(r, s; A) corresponding to the Hilbert function H(r, s) = ,\(Ar,) is 

at most dim(A) - 2 := d. To see that the total degree of P(r, s; A) is not d even if I 

is a projectively relevant ideal, consider the ideal I = (X0) n (Yo, Y1 ) in the bigraded 

polynomial ring R = k[X0 ;Y0 ,Y1 ,Y2 ] over afield k. Then for A= R/I, dim(A) = 3 and J 

is projectively relevant. Set P = (Xo) and Q = (Yo, Yi.). From the exact sequence 

0--+ A--+ R/P ffi R/Q --+ R/(P + Q)--+ 0 

we obtain P(r,s;A) = P(r,s;R/P) + P(r,s;R/Q)- P(r,s;R/P + Q) = 0 + 1- 0 = 1. 

Thus deg(P(r, s; A)) = 0 < dim(A)- 2. In this section we will determine the total degree, 

deg(P(r,s;A)) of the Hilbert polynomial of A. 

Definition 2.1. The relevant dimension of A = R/I, denoted by rdim(A) is defined as 

max{dim(R/P)}, where P ranges over the projectively relevant primes associated to I. 
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Theorem 2.2. Let S be an Artinian local ring and R = S[X; Y) as above be the polyno­

mial ring in m + n + 2 indeterminates. Let I s;; R be a relevant bihomogeneous ideal and 

put A== RfI. Let P(r,s;A) denote the Hilbert polynomial corresponding to the Hilbert 

function H(r,s) == >.(Ars)- Then deg(P(r,s;A)) == rdim(A)- 2. 

Proof. Since I is relevant, at least one of the primary components of I is relevant. By taking 

a primary decompostion in which all the primary components are bihomogenous, we can 

write I== J n K, where all the associated primes of J (resp. K) are projectively irrelevant 

(resp. relevant). Then J + K is also projectively irrelevant, Therefore P(r,s;RfJ) ~ 

P(r, s; RfJ + K) = O. By the exact sequence 

0 -+ A -+ RfJ EB RfK -+ RfJ + K -+ 0 

we get P(r, s; A) = P(r, s; RfK). Since rdim(A) = rdim(RfK) = dim(RfK), we may 

assume that I has no projectively irrelevant components and we are reduced to proving 

that deg(P(r,s;A)) == dim(A)- 2. If Lis a bihomogeneous prime with dim(RfL) S l, 

then L is projectively irrelevant. Hence dim(A) 2:: 2. Set dim(A) = d + 2. We can view 

A as a graded ring EBn~o An whose nth graded component An is EBr+s=n Ars• Assume 

P(r,s;A) = H(r,s) for all r,s ~ q. For n ~ 2q, set n = 2q+ k. Put 

Cn = An-q,q El) An-q-1,q+I EB·•• EB Aq,n-q 

Dn = Aq-1,n-q+I EB'·· EB Aon• 

Since I has no projectively irrelevant component, the ideals (X)A and (Y)A have positive 

height. Set E; = EBn~; An-i,i and F; == EBn~i A;,,_.-;. Then Eo ~ Af(Y)A and Fo ~ 

Af(X)A. Therefore dim(Eo) S d + l and dim(Fo) S d + 1. Since E; (resp. F;) is an E 0 

(resp. Fo)-module, dim(E;) S d + l and dim(F;) S d + l. Hence for large n, >.(An-i,i) 

and >.(Ai,n-;) are given by polynomials of degree at most d. Hence >.(En) and >.(Dn) are 

given by polynomials of degree at most d. Since 

and since >.(An) is given by a polynomial of degreed+ l for large n, >.(Cn) is given by 

a polynomial of degree d + l for large n. Since n == 2q + k, n - q = q + k. Hence for 

i= 0,1, ... ,k, 

>.(An-q-i,q+i) = P(n - q- i, q + i; A). 
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Thus 
n-2q 

.\(Cn)= L P(n-q-i,q+i;A). 
i=O 

Since deg(P(r,s;A)) ~ d, we may now conclude that deg(P(r,s;A)) = d. 

Section 3. The Hilbert series. 

Let X, Y, S, R, I and A have the same meaning as in the introduction. The Hilbert 

series of A is given by Q(t1 , t2) = z::::0 z:::0 .\(Ar,)t1t2. By an argument analogous 

to the proof of Theorem 1.11 of [A-M], there ~xists a polynomial N(t1 , t2) E Z(t1 , t2] so 

that Q(t1, t2) = N(t1, t2)/(1 - ti)m+1(1- t2t+1 . Write the Hilbert polynomial of A as 

P(r,s;A) = I:;:'.,o Z:1=0 a,j(r;i)(•;i). 

Theorem 3.1. For i = O, 1, ... , m and j = 0, 1,.,. ,n : 

(-l)m+n-i-j .8m+n-i-jN I 
a,j = (m - i)!(n - j)! 8t'{'-i8t;-i lt,=t,=l 

Proof. The argument is essentially the same as the one for the coefficients of the Hilbert 

polynomial for N-graded rings. For the sake of completeness, we include the proof. The 

proof is modeled after the proof of Proposition 4.1.g of [B-H]. We write 

N(i,i) = 8i+iN(t1/t2)1 . 
{)t~ 8t2 t 1 =t2=l 

Then: 

where 
. m n N(i,j) . . 

D(t1, t2) = N(ti, t2) - LL-.-,.-, (t1 - l)'(t2 - 1)1. 
i=O j=O l.J. 

Hence, D(t1, t2) is the remainder of the Taylor series of N (t1 , t2) about the point (1, 1) 

having terms of degree 2: m + 1 in t1 - 1 and degree 2: n + 1 in t2 - 1. Thus D(t1 , t2) is 

divisible .by (1- ti)m+i(l - t2t+1 . Therefore .\(Ar,) is the coefficient of t1t2for all large 

r and s in the power series expansion of 

(*) 
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Since the coefficient of t[ti in E(t1, t2) is given by a polynomial for all r and s, 

(**) E(t1,t2) == I: P(r,s;A)trt;. 
(r,s)EN2 

Here we are using the fact that two polynomials in Z[x, y] coinciding at (r, s) for all large 

rands must be equal. Now·expand the rational functions-in(*) to get 

E(t1, t2) ==ff N(i,j).~ ~1/+i [ff (m - i + r) (n - f + s)trt;] . 
. . t.J. T S 
1=0 ;=0 . r=O s=O ~ .. •. . ~ 

Comparing this with (**) yields the desired formula. 

We conclude this section with an example showing that Theorem 2.4 in Amao's paper 

[A) is not quite correct. According to this, if S is an Artinian ring and we take the 

polynomial ring R == S[X1, ... , Xm;Yi., ... , Yn] over Sand M == EBr s>o Mrs is a finitely. ,_ 
gener!l,ted bigraded R-module, then there exists g(t1, t2) E Z[t1 , t 2) so that 

~ ~ >.(M ) r s g(ti, t2) 
~~ rs t1t2 == (l-t1)P+l(l-t2)q+I 

where p+ q+2 == dimR(M). Recall the analogous theorem for the Hilbert series of a finitely 

generated module M == EBn2'.0 Mn over a Noetherian graded ring A== EBn2'.0 An == A0 [A1]. 

If the dimension of M is d then for some J(t) E Z[t], I::,0 >.(Mn)tn == f(t)/(1 - t)d. 

Unfortunately, this does not extend to bigraded modules as Arnao claims. This is evident 

from the following 

Example 3.2. Let k be a field and set R == k[X, Y; Z, W] be the four dimensional 

polynomial ring bigraded by the sets {X,Y} and {Z, W} in the usual way. Let f == 
X Z - YW. A bigraded resolution of A== R/(f) is given by the exact sequence 

0-+ R(-1,-1)--+
·f 

R-+ A-+ 0. 

It follows readily from this that .the Hilbert series for A is given by 

(1 - t1t2) 
Q(t1,t2;A) == (l -t1)2(1- t2)2. 

According to Amao's theorem there exist p,q EN and g(t 1 ,t2 ) E Z[t1,t2) such that 

(l-t1t2) g(t1,t2)
-(1- t1)2(l - t2)2 (1 - ti)P+l(l - t2)q+I 

where p + q+ 2 == dim(A) == 3. ·Hence p + q == 1. Without loss of generality we may assume 

that p == 0, q == 1. Hence 1 - l1t2 == (1 - t1 )g(t1, t2). But this is a contradiction since 1 - t1 
does not divide 1 - t 1t2 . 
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Section 4, Multiplicity and Degrees, 

For the bigraded S-algebra A = S[X; Y]/I as above, one may also view A as a graded 

algebra A = EBn~o An where An is the direct sum of the bigraded components Ar, with 

r+s = n. Now let d = dim(A). Then ,\(An) forlarge n is a polynomial inn of degree d-1. 

The coefficient of nd-l /(d - 1)!, denoted by e(A), is called the multiplicity (or degree) of 

A. In this section we demonstrate the connection between e(A) and the degrees of I. As 

a consequence, we recover a formula in [V] for the multiplicity of the Rees algebra B[Jt] 

localized at its homogeneous maximal ideal where B is a local ring and J ,:;:; B is an ideal 

of positive height. 

Theorem 4.1. If(X)A and (Y)A have positive height, then 

e(A) = I: e;j, 
i+j=d-2 • 

Proof. As in the proof of Theorem 2.1, ,\(An)= ,\(Bn)+,\(Cn)+,\(Dn), Since dim(A) = d 

and height((X)A) and height((Y)A) are positive, ,\(En) and ,\(Dn) are polynomials of 

degree at most d.- 2 for large n. Let P(n) denote the Hilbert polynomial corresponding to 

the Hilbert function ,\(An), Since height((X)A) and height((Y)A) are positive, rdim(A) = 
dim(A} = d. Hence the total degree of P(r, s; A) is d - 2. Continuing with the notation in 

the proof of Theorem 2.1, for n ~ q, 

n-2q n-q 

P(n) = ,\(Cn) = I: P(n- q-i,q+ i;A) = I:P(n- i,i;A). 
i=O i=q 

' h H'lb • ' P( A) "-'d-Z a r• ,a-,-• f al d dWnte t e 1 ert polynomial r, s; as L.Jp=O pf(d-Z-pJ! + terms o tot egree ::C: -3. 
Then 

n-q d-2 ( ')P ·d-2-p
'\'"' '\'"' aP n - i i 

P(n) = L, L, '(d - 2 - )' + ... 
i=q p=O p. p ' 
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=~t(d'.?2)!(d;2)(~)(-l)knp-k [(d:d;~-:+:k) +···] +··· 

(by Lemma 2.8 of [VJ) 

= (;~-~)! [~ap] +··· 

(by Lemma 2.7 of [VJ). Since ap = ep,d-2-p, the result follows. 

Example 4.2. If height((X)A) or height((Y)A) fail to be positive, the multiplicity of A 

may not equal the sum of the degrees of I. Let k be a field, R = k[X0 ,X1 ; Yo, Y1 , Y2 ] and 

I= (X0Y0 ,X1Y1 ). Then dim(A) = 3 = rdim(A). Hence deg(P(r,s;A)) = l. To calculate 

the degrees of I, consider the bigraded Koszul complex 

0--> R(-2, -2)--> R2(-l, -1)-+ R-+ A-+ 0. 

It follows that 

By Theorem 3.1, 

(-1)1+2-1 82(1- t1t1)2 I . 
eo1 = -~--- = 2.1 1 . (1 - 0).(2 - 1). 8t18t2 t,=t,=l 

Similarly, one may calculate the Hilbert series of A as a graded algebra and obtain Q(t; A) = 
(1 + t) 2 /(1 - t3 ). By Corollary 11.2 of [A-M], e(A) = 4. Thus e(A) > e10 +e01 . 

In the above example, one can see that the Hilbert series of the graded algebra A can 

be obtained from the Hilbert series of the bigraded algebra A by putting t 1 = t2 = t. This 

is true in general. We state this as a proposition and leave the proof to the reader. 
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Proposition 4.3. Let A = EBr,s;:>:o Ar:. be a bigraded algebra over an Artinian focal 

ring A00 • Put Q(ti,t2 ) = :r;;::0 :r;:,0 ,\(Ars)t1t~. For the corresponding graded algebra 

A= EBn;:::o An, put P(t) = I::::'=o ,\(An)tn. Then P(t) = Q(t, t) .. 

We conclude this section by giving an application of Theorem 4.1 to Rees algebras, 

thereby generalizing Theorem 3.1 of [V]. We now change our notation and let (R, m) be a 

local ring of dime~sion d > O and J ~ R an ideal of positive height. Then the Rees algebra 

R[Jt], t an indeterminate, is the graded R-algebr:l:. 

T = R[Jt] = R EB Jt EB J 2t2 EB • • • . 

T has.a unique homogeneous maximal ideal, namely M = (m,Jt). It is well-known that 

dim(TM) = d+ l. Let I be an m-primary ideal of R. Then (J, Jt)T is M-primary. We wish 

to obtain a formula for e((I, Jt)TM) in terms of the degrees of a certain bihomogeneous 

ideal. Consider the bigraded algebra 

A= EB r 1·;r+ 11· 
r,s~O 

over the Artinian local ring RfI= A00 • To determine e((I, Jt)TM ), we will need to know 

the total degree of the Hilbert polynomial P(r, s; A) corresponding to the Hilbert function 

,\(IrJ•/JT+lJ•). Bhattacharya finds the degree of P(r,s;A) in Theorem 7 of [BJ to be 

dim(A) - 2. Unfortunately the incorrect result [B, Theorem 6) is used in doing so. That 

the degree of P(r, s; A) is d - l is proved in Theorem 2.7 in [K-V] which also proves that 

P(r, s; A)=~ (d _~ _j) (;) ej(IIJ) + terms of lower degree. 

where a = a(J) = analytic spread of J := dim(EBn;:::o Jn /mJn), e0 (IIJ) = e(I) and 

ei(IIJ), are positive integers. (The reader should note the first and second authors' own 

error. While the proof of Theorem 2.7 in [K-V] correctly shows that ei(JIJ) = O, j ? a, 
ej(IIJ) =/ 0, j < a, the ineq:u_ality ei(JIJ)? e(J + I) in part (ii) of Theorem 2.7 is valid 

only for O ::;; j ::;; height(J) - 1, not O ::;; j ::;; a -:- 1. Consequently, one must replace a(J) 
by height(]) in [K-V] Corollaries 2.8 and 3.7.) 

Theorem 4.4. e((I,Jt)TM) = e0 (JIJ) +e1(JIJ) + .. ,e0 _ 1(JIJ). In particular, e(TM) = 

e(R) + e1(MIJ) + • • • + e0 _1(mlJ). 
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Proof. To calculate e((I, Jt)TM ), set K = (I, Jt) and consider the powers of J(. For any 

n 2;: 0, 

so 
n 

>.(KnIKn+!)= L, >.(1n-iJi;1n+1-iJi)= L, >.(rJ•;r+1 J'). 
i=O r+s=n 

Write An= (J)r+•=nJrJ•/Ir+lJ•. Then A= EBn~oAn and e(KTM) = e(A). In view of 

Theorem 4.1, it only remains to show that A01 and A10 generate ideals of positive height. 

We do this by viewing A as R/IR, where R = R[It, Ju] (t, u indeterminates). Let P s;; R, 

be a prime minimal over IR. vVe must show It i P and Ju i P. Since R is the Rees 

algebra of R[Ju] with respect to IR[Ju], it is well-known that It cannot be contained in 

P. Since d > 0 and IR,p is principal, height(P) = 1. Now, thinking of R, as the Rees 

algebra of R[It] with respect to J R[It], it follows that Ju i P, as well (since P n R[It] 

has height greater than zero). This finishes· the proof. 

Section 5. Examples. 

Example 5.1. Let R = k[Xo, ... , Xm; Yo, ... ,Yn] be a polynomial ring in m + n + 2 

variables over the field k, m 2;: 2, n 2;: 2. Let M be at X (t + 1) matrix whose entries are 

forms of degree ( d, e), d 2'. 1, e 2;: 1. Let I be the ideal generated by the t x t minors of M 

Hence each minor is a bihomogeneous polynomial of degree (td, te). Suppose height(I) = 2. 

Then A = RfI has the following bigraded resolution 

Hence Q(t1, t2; A)= (1 - (t + 1)t;dt~• + tt;a+at~•+•)/(1- t1)m+1 (1 - t2t+1 . Since I is an 

unmixed height two ideal, and (X)A and (Y)A have positive height, rdim(A) = dim(A) = 
m + n ::0: 4. Hence deg(P(r, s; A))= m + n - 2. By Theorem 3.1 

(
t + 1) 2 (t + 1) (t + 1)em,m-2 = 2 e 'em-1,n-l = 2 2 de, em-2,n = 2 d2 . 

0 

Hence e(A) = ('!1)e2 +2('!1)de+ ('!1)d2 = C!1)(d+e)2. This is in agreement with the 

formula in Example 1.5 of [H-M]. 

Example 5.2. Let ao,a1, . .. ,aa be a sequence of non-negative integers satisfying a0 + 
• • •+aa ::0: 1. We construct a bihomogeneous ideal in the ring R = k[X0 , ... ,Xa; Y0 , ... ,Yd] 
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over a field k so that the degrees of I are a0, ••. , ad. In other words, the Hilbert polynomial 

P(r, s; A) of the bigraded algebra A = RfI has the form 

where f( r, s) E Q[r, s] is a polynomial of total degree at most d - l. Consider the ideals 

for i =1, ... ,d. Set I= q0nq1n•••nqd and put J; =(qon•• -nq;)+q;+1, fori =0, ••• ,d-1. 

By considering exact sequences of t_he form 

0--+ Rfq1 n ... n q;+1--+ (Rfq1 n ... n q;) EB Rfq;+1--+ RfJ;--+ 0 

it is easily seen that 

d d-1 

P(r,s;A) = "5:,P(r,s;Rfq;)- "5:,P(r,s;Rf J;). 
i=O i=O 

Any prime containing J; contains qi+ q;+1 for some j :'.> i. Hence dim( RfJ;) ::o d+ 1. Hence 

deg(P(r,s;Rf J;) :'.> d-1. Thus to calculate the degrees of I it is enough to calculate the 

degrees of q; for i = O, 1, ... , d. If a; = O, then q, = R and P(r, s; Rfq,) = 0. To 

calculate P(r,s;Rfq ), let a0 ;::,: 1. Then Rfq0 S-! k[X0 , ••• ,:Xa;Y0 ,Ya]f(Yo"0 
). Putting0 

S = k[Xo, ... ,Xa;Yo,Yd], it follows from the exact sequence 

·- .yoao 

0 --+ S(0, -ao) --,-,.; S --+ Rfqo --+ 0 

that 

P(r, s,. Rfqo ) _ - (r +d d)· (s + 1) - (r +d d) (s + 1 - a0) -_ ao (r)d + Jo ( ) r ,
1 1 

where / (r) E Q[r] has degre,e less than d. By a similar argument we get P(r,s;Rfqa) = 
0 

aa(~) + fa(s), where fa(s) E Q[s] has degree iess than d. For i =2, ••• ,d-1 we get 
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where /;(r, s) E Q[r, s] ha.s total degree less than d. Hence 

d 

P(r,s;R/I) ~ ~a;(d:J (;) +f(r,s) 

where /(r, s) denotes the terms of degree less than d. 

Let I be a bihomogeneous ideal of the polynomial ring R == S[X, Y], where ·a.s before, 

Sis an Artinian local ring, X == {X0 , ... ,Xm}, Y == {Y0 , ... ,Yn} and set A== R/I. 

Suppose rdim(A) == d + 2. Write 

P(r,s;A) == ta;(d: J(:) + f(r,s) 
i=O 

-
where /(r, s) represents the terms of total degree less than d. We say that the sequence 

of degrees a0 , a1 , . .. , ad is rigid if there exist i, j with O::; i ::; j ::; d such that ak == 0 for 

k ::; i and k 2:: j and the other degrees are non-zero. For instance, in the example above, 

we may take d == 2, a0 == 1, a1 == O, a2 == 1 to obtain an ideal I~ k[Xo,X1,X2 ;Yo,Yi,Y2] 

whose sequence of degrees is 1,0,1 (and is therefore not rigid). 

Question 5.3. If S above is a field and A== R/I is Cohen-Macaulay or a domain, then 

is it true that the sequence of the degrees of I is rigid ? Neither of these conditions is 

necessary for the rigidity of the degree sequence a.s easy examples show. Our la.st example 

illustrates this, a.s well a.s most of the main results in this paper. 

Example 5.4. C. Huneke gave the following example of a height two Cohen-Macaulay 

bihomogeneous ideal I in R == k(Xo,X1,X2 ;Yo,Y1,Y2 ] so that I is neither prime nor a 

complete intersection and the sequence of degrees of I is rigid. Consider the matrix 

M == (Xo Y0~ Y1) 
X1 Y1 Yo 

and let I == (o1 , o2 , o3 ) denote the ideal of (signed) 2 x 2 minors of M (obtained by deleting 

the first, second and third rows, resp.). By the Hilbert-Burch theorem R/I == A is Cohen­

Macaulay. Since Yl - Y/ == (Yo - Y1)(Yl +Y/ +YoY1) E I, but neither factor belongs to 

I, I is not prime. Consider the bigraded resolution of A 
~ M' I 

0-+ R2(-1, -3) -+ R(0,-3) Ell R(-1,-1) Ell R(-1, -2)-+ R-+ A--+ 0. 
' 

It follows that the Hilbert series of A is gi~en by N(t 1 ,t2 )/(1 - t 1 ) 3 (1 - t 2 )3, where 

N(ti,t 2 ) == 1- t~ - t1t2 - t1t~ + 2t1tr By _Theorem 3.1, 

_ 1 82 N(t1 ,t2)1 _ 2
e20 - ' 8 2 -2• t2 t 1=t,=I 



Hence the sequence of the degrees of I is 2, 3, 0, which is rigid. Additionally, since the 

Hilbert series of A as a graded algebra is obtained by putting t1 = t2 =tin Q(ti,t2 ;A), 

we get Q(t; A) = l + 2t + 2t2 /(1 - t)4 . Thus e(A), which is the value of 1 + 2t + 2t 2 at 

t = l, is 5 = e20 + e 11 + e02 . This is what Theorem 4.1 predicts. 

Added in proof : Since the first author delivered a talk at Trieste ori these matters, 

the comprehensive account of multigraded Hilbert functions [K-R] has come out. The 

interested reader is encouraged to consult this paper. 
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