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GENERATING IDEALS UP TO PROJECTIVE EQUIV ALEN CE 

D.KATZ 

(Communicated by Eric Friedlander) 

ABSTRACT. It is shown that every ideal in a commutative Noetherian ring of 
dimension d is projectively equivalent to an ideal having d + I generators. 

INTRODUCTION 

Let R be a d-dimensional Noetherian ring and J ~ R an ideal. A well­
known theorem, whose origin dates back to Kronecker, asserts that there exists 
a (d + 1 )-generated ideal J ~ R such that J and J have the same radical. 
In other words, J is generated up to radical by d + 1 elements. An important 
improvement was given in [2], where it was shown that if R = A[X] is a 
polynomial ring then J can be generated up to radical by d elements. This 
has the fundamental consequence that every algebraic set in affine d-space can 
be cut out by d hypersurfaces. In [1] Boratynski gave a common antecedent 
for these two theorems by showing that there exists an ideal J with the same 
radical as J such that µ(J/J2)::; d (where µ() denotes a minimal number of 
generators). 

In this note we off er an improvement of these results by demonstrating the 
following theorem. 

Theorem. Let R be a d-dimensional Noetherian ring and J ~ R any ideal. 
Then there exists an ideal J projectively equivalent to J satisfying µ(J / J 2) ::; d. 

The notion of projective equivalence is defined below, but for now it suffices 
to say that it is a substantially stronger condition than having the same radical. 
A consequence of this theorem is that one obtains a more direct path to the 
following important geometric result (proven in [3]). The defining ideal for any 
nonsingular variety in affine d-space can be generated by d or fewer elements. 

1 

Throughout, R will be a commutative Noetherian ring. Recall that an ideal 
J ~ J is a reduction of J if J JP = JP+ 1 for some p ~ 1 . Given an ideal J , 
there is a unique largest ideal reduced by J called the integral closure of J . 
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Ideals I and J are said to be projectively equivalent if some power of I and 
some power (usually different) of J have the same integral closure. In particu­
lar, projectively equivalent ideals have the same radical. McAdam's text [7] is 
a good reference for reductions, integral closure, and projective equivalence. 

The basic idea of our proof is relatively straightforward. We observe that if 
the ideal I is contained in the Jacobson radical, then the usual results about 
reductions in local rings still apply (see [8]). We then localize at the multiplica­
tively closed set which "radicalizes I " and increase the estimate from the local 
case by one. We begin with the following superficial element lemma. Typi­
cally the statement and proof of this lemma are given in the context of local 
or semilocal rings. However, essentially the same proof works in the nonlocal 
case, so we have only sketched the argument below. 

Superficial element lemma. Let I~ R be a regular ideal, i.e., (0: I) = 0. Then: 
(i) there exists an n ~ 1 and a nonzero divisor x E 1n satisfying (Jn1 : 

x) = (ln)t-1' t » 0. 
(ii) For n ~ 1 and x E in in (i), (Jnkt : xk) = (Ink)1- 1, t » 0, for all 

k ~ 1. 
(iii) If R has infinite residue fields, we may take n = 1 in (i). 

Sketch ofproof. Write 9l = EBm>O 1m tm ~ R[t], t an indeterminate, for the 
Rees ring of R with respect to -I , and let {9'1, ... , 9'r} be the union of 
Ass9l and the relevant prime divisors of 191. To prove (i), we may employ 
the homogeneous prime avoidance lemma to select an element xtn of 9l not 
contained in any 9'i. This n and x work. The proof of (ii) is easy. To prove 
{iii), let Ji= {x E Rlxt E 9'i}. Then Ji is properly contained in I. If R has 
infinite residue fields, then by McAdam's prime avoidance lemma (see [6]) we 
may select x belonging to I , not in any Ji ; this x works. 

Proposition. Let R be a d-dimensional Noetherian ring and I an ideal con­
tained in the Jacobson radical. Then: 

(i) some power of I has a d-generated reduction, 
(ii) if R has infinite residue fields, I has a d-generated reduction. 

Proof. Proceed by induction on d . If d = 0, then I is contained in the 
nilradical of R, and the result is obvious. Suppose d ~ 1 and (0 : I) = 0. 
Select n ~ 1 and x E P according to the first part of the lemma. By induction, 
there exists k ~ 1 and a (d - 1)-generated ideal J ~ pk such that J reduces 
1nk modulo xR . Thus J reduces pk modulo xkR . (Recall that, for ideals 
A , B , and C , A reduces B modulo C if and only if A reduces B modulo 
the radical of C . ) Thus for t » 0 

(lnk)t+l ~ J(Jnk)1 + xkR; 

therefore, 

(Ink)t+l = J(Jnk)t + ((Jnk)t+l : xk)xk = J(Jnkl) + (lnk)1xk' 

by Lemma (ii). Hence (J, xk) reduces pk. If (0: I) =f 0, let L = (0: JP), 
p » 0. From the preceding case, we may find a power m of I and a d­
generated reduction J ~ Jm such that J reduces Jm modulo L . Thus, for 
t » 0, (lm)t+l ~ J1mt + L. If we multiply by /Pm , we see that J reduces 1m . 
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Finally, if R has infinite residue fields, we may repeat the argument, always 
taking superficial elements from the first power of I . 

Theorem. Let R be a Noetherian ring and I ~ R an ideal. Let d be the 
maximum of the heights ofmaximal ideals containing I, and suppose d < oo . 
Then: 

(i) Some power of I admits a reduction J satisfying µ(J/J2) '.'.S d. 
(ii) If R has infinite residue fields, then I admits a reduction J satisfying 

µ(J/J2) '.'.S d. 

Proof. Set S = 1 + I , and localize R at S . By the proposition, there exists 
n ;:::: 1 and a d-generated ideal K ~ I~ such that K is a reduction of I~ . Thus 
for t » 0 

Let J be the complete inverse image of K . Then: 
(a) sJ ~ In for some s = 1-x ES. Multiplying by 1+x+x2+- •-+xn-l, 

we obtain (1 - xn)J ~ P , so J ~ In . 
1 1 1 1(b) s(Jn)l+ ~ JJn ~ J for some s E S. This implies (In) + ~ J (by 

definition of J) . Hence I and J have the same radical. It now follows 
from (*) that J reduces In . 

(c) Since rad(/)= rad(J), it follows that Rs= Rr for T = 1 + J. Hence 
µ(Jr) '.'.S d, so µ(J/J2) '.'.S d. 

If R has infinite residue fields, the proof is similar and uses the second part of 
the proposition. 

Corollary A. Let R , I , and d be as in the theorem. Then: 
(i) Some power of I has a (d + 1)-generated reduction. 

(ii) If R hasinfiniteresiduefields, then I has a (d+l)-generatedreduction. 
(iii) If R = A[X] is a polynomial ring and d = dimR, we may take d in 

place of d + 1 in (i) and (ii). 
In particular, any ideal in a d-dimensional Noetherian ring R is projectively 

equivalent to a (d + 1)-generated ideal. If R = A[X] is a polynomial ring, we 
may take d in place of d + 1 . 

Proof. (i) and (ii) follow from the theorem since µ(I/ I 2) '.'.S d implies µ(I) '.'.S 
d + 1 . For (iii), we must use the following result of Mohan Kumar. If R = A[X] 
is a polynomial ring and µ(J/J2) = d, where d = dimR, then µ(J/J2) = 
µ(J). This result is proved, though not stated explicitly in [3] (see the proof 
of Theorem 2 there). Actually, Mohan Kumar assumes that R is reduced and 
height(J) > 0 , but this is sufficient for our purposes. Indeed, suppose J ~ In 
is a reduction and µ(J/J2) '.'.S d. If µ(J/J2) < d, then µ(J) '.'.S d. Suppose 
µ( J / J 2) = d . If J is nilpotent, I is nilpotent, so In has a 0-generated 
reduction. If J is not nilpotent, let L be the intersection of the height zero 
primes not containing J. Suppose we could show µ(J + L/L) '.'.S d. Then 
there exists an ideal K ~ J with µ(K) '.'.S d and K + L = J + L. Thus 
J = K + (L n J) . But L n J is nilpotent, so we have that K reduces In and 
µ(K) '.'.S d. 

To see µ(J+L/L) '.'.S d, observe that µ(J/J 2) '.'.S d implies µ(J+L/J2+L) '.'.S 
d. If µ(J+L/J2+L)<d, µ(J+L/L)'.'.Sd. If µ(J+L/J2+L)=d and 
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d > dim(R/L), then d = µ(J + L/J2 + L) = µ(J + L/L) (see the remark 
below). Finally, if µ(J +L/J2 + L) = d and d = dim(R/L), we can apply 
Mohan Kumar's result to conclude µ(J + L/L) = d. 

The next corollary shows that one may use reductions as a path to obtain cer­
tain Forester-Swan type results. In particular, the theorem above together with 
Mohan Kumar's result yield a quick path to the following important theorem 
(see [3]): Let P ~ k[X1, ... , Xd] define a nonsingular variety in affine d-space 
over the field k. Then µ(P) ::;; d. 

Corollary B (see [3, 41). Let R be a d-dimensional Noetherian ring with infinite 
residue fields. Suppose that I ~ R is a local complete intersection (i.e., µ(IM) = 
height IM for all maximal ideals containing I). Then: 

(i) µ(I) ::;; d + 1. 
(ii) If R = A[X] is a polynomial ring, µ(I)::;; d. 

Proof. Let J ~ I be a reduction satisfying µ(J/J2)::;; d. Then JM = IM for 
all maximal ideals containing I (and hence J). Thus J =I, and the result 
follows along the same lines as the previous corollary. 

Remark. (i) Mohan Kumar's result mentioned in Corollary A is technically the 
most difficult part of his solution to the Eisenbud-Evans conjectures, in that it 
uses a number of deep-patching arguments along the lines of Quillen's patching 
theorem. It represents an improvement by one in the well-known (and consid­
erably easier to prove) fact: If an ideal I in a d-dimensional Noetherian ring 
satisfies µ(I/ I 2 ) = d + 1 , then µ(I) = d + 1 (see [ 41). If one could circumvent 
the patching arguments, this would yield an even more direct route to Corollary 
B. 

(ii) A special case of Corollary A(iii) for R = k[X1, ... , Xd] was given by 
Lyubesnik in [5]. Here, too, use is made of Mohan Kumar's result [3, Theorem 
5]. 

ACKNOWLEDGMENT 

Some of the work on this paper was done during the spring of 1991 while I was 
visiting Purdue University; I would like to thank the mathematics department, 
in particular, Bill Heinzer and Craig Huneke, for the hospitality I received 
during my stay. 

REFERENCES 

1. H. Boratynski, Generating ideals up to radical, Arch. Math. 33 ( 1979), 423-425. 
2. D. Eisenbud and E. G. Evans, Jr., Every algebraic set in n-space is the intersection of n 

hypersurfaces, Invent. Math. 19 (1973), 107-112. 
3. N. Mohan Kumar, On two conjectures about polynomial rings, Invent. Math. 40 (1978), 

225-236. 
4. E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhauser, Boston, 

MA, 1985. 
5. G. Lyubesnik, A property of ideals in polynomial rings, Proc. Amer. Math. Soc. 98 (1986), 

399-400. 
6. S. McAdam, Finite covering by ideals, Ring Theory (Proceedings of the Oklahoma Confer­

ence), Lecture Notes in Pure and Appl. Math., vol. 7, Marcel Dekker, New York, 1974, 
pp. 163-171. 



83 GENERATING IDEALS UP TO PROJECTIVE EQUIVALENCE 

7. __, Asymptotic prime divisor, Lectures Notes in Math., vol. l 023, Springer, Berlin, 1983. 

8. D. G. Northcott and D. Rees, Reductions of ideals in local rings, Math. Proc. Cambridge 
Philos. Soc. 50 (1954), 145-158. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045 
E-mail address: dlk©mercury .math. ukans . edu 


