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Let I,, . . , Ig be regular ideals in a Noetherian ring R. Then it is shown that there exist positive 

integers kt, . . ..k. such that (I;rCml . Ip+, ~):(I;l’...I~!~)=I~‘...I~~forallni~k;(i=l,..., g) 

and for all nonnegative integers ml, ,mg. Using this, it is shown that if d is a multiplicatively clos-

ed set of nonzero ideals of R that satisfies certain hypotheses, then the sets Ass(R/(I;r 12)) are 

equal for all large positive integers nt, . . . . ng. Also, if R is locally analytically unramified, then 

some related results for general sets d are proved. 

Introduction 

Let R be a Noetherian ring. It is known that if J is an ideal of R, then the two 

sequences of sets Ass R/J, Ass R/J2, . . . and Ass R/J,, Ass R/(J 2)a, . . . eventually 

stabilize to sets denoted A *(I) and A *(I) respectively (see [2, Corollary 1.5 and Pro-

position 3.41). Here J, denotes the integral closure of J. In Section 1 these results 

are extended in two directions. It is shown that if I t, . . . , Ig are (regular) ideals of R 

and d is a multiplicatively closed set of ideals satisfying certain hypotheses, then 

asymptotic stability holds for the sets Ass R/(Zp’ . . . ZgnP)A,where nl, . . . , ng E N and 

Jd is the d-closure of an ideal J (see below). For appropriate choices of d one con-

cludes that the sets Ass R/Z,“l . . . I? and Ass R/(Zrl . . . Z2)a enjoy asymptotic 

stability. In Section 2 we consider the situation for general d-closures under the 

hypothesis that R is locally analytically unramified. 
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1. Asymptotic stability of Ass RN,“’ . . . I2 

We begin by fixing some notation. 

Notation. Throughout R will be a Noetherian ring, g a fixed positive integer and 

z,, ***,Zg ideals of R. t~4,will be the set of all g-tuples of non-negative integers. If 

n=(n,, . . . . ?z,)E Kli,, then by I” we mean I;’ . . . 12. For 1 lilg, n(i) will refer to 

nj, the ith component of n. Also, we will write nrm (respectively n>m) if 

n(i)zm(i) (respectively, n(i)>m(i)) for all 1 <i<g. If it and m are in ~PJ, and h?O 

is an integer, then hn and n -t m will be defined in the usual component-wise manner 

(n-m only being defined when nlm). We shall denote by J, the integral closure 

of an ideal J and by J* the eventual stable value of (J* : J) c (J3 : J*) c ... . J * 

was introduced in [5], and in [2, Lemma 8.21 it is shown that if J is a regular ideal, 

then (J”)” = J” for IZ large. Both of these operations are special cases of a more 

general operation, the so-called d-closure operation, introduced by the third author 

in [4]. 

Definition.Let J be an ideal in R and d a multiplicatively closed set of non-zero 

ideals of R. The ascending chain condition guarantees that the set { (JK : K) 1K E A} 
has maximal elements, and since for K and L in d, (JKL : KL) contains both 

(JK: K) and (JL : L), we see that the set under consideration in fact contains a 

unique maximal element. Let J, denote that unique maximal element. The follow-

ing lemma shows that the notion of d-closure allows one to discuss simultaneously 

the asymptotic behavior of Ass R/J” and Ass R/(J”),: 

1.1. Lemma. Let A be a multiplicatively closed set of non-zero ideals. 
(a) If every ideal in A is regular, then for any ideal J, Jn c J,. 
(b) If A equals the set of all regular ideals and J is regular, J, = J,. 
(c) If J is a regular ideal and A = {J” 1n E N}, then (J”)d =(J”)* for all n and 

(J”)n = (J”)* = J” for all large n. 

Proof. The proofs are easy, but we include them for the convenience of the reader. 

For (a), JA = (JK : K) for some KE A. Suppose K is generated by k,, . . . , k,. Then 

for x E J, and 1 I i 5 n we have x. k; = EYE1 ai, kJ for a;j E J. Now a standard deter-

minant argument shows XE J,. For (b), suppose A is the set of all regular ideals 

and J,=(JK:K) for some KEA. Let XEJ,. Then J(J,x)“=(J,x)“+’ for some n. 
Thus x(J,x)” c J(J,x)“, so xK(J,x)” G JK(J,x)“. Since (J,x)EA, it follows that 

Jd=(JK(J,x)“:K(J,x)“), so XEJ~. Thus J, c Jn and equality holds by part (a). 

For (c), let J be a regular ideal and A = {J” 1n E IN}. Then (J”)* = ((Jn)h+’ : (J”)h) 
for large h. Thus (J”)*=(J”(Jnh): Jnh) c (J”),. On the other hand, (J”)d = 
(J”Jk: Jk) for some k, so (J”)n = (Jn+k: Jk) C_ ((Jn)k+’ : (J”)k) c (J”)*. Thus 

(J”)d =(J”)* and the second part of (c) follows from [2, Lemma 8.21. 0 
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Ideals of the form (J’+’ : J) play a vital role in discussing the behavior of 

various prime divisors associated to large powers of .Z. The following lemma and 

proposition will play analogous roles in determining the corresponding behavior of 

the prime divisors associated to the product of large powers of I,, . . . ,Zs. In fact, we 

consider part (c) of Proposition 1.4 to be one of the main results of this paper. 

1.2. Lemma. Let I,, . . . , Zg be regular ideals. 
(a) Suppose n and m are in N, with n 2 (1, . . . , 1). Let k be an integer with 

knlm. Then (Z”+m : Zm) c ((Z”)k+ ’ : (I”)‘) c (I”)*. 
(b) Zf wesetd={Zm/mENg}, thenfornz(l,...,l), (Z”)*=(Z”),. 

Proof. For (a), suppose XE(Z”+~:Z~). Since kn-m E t?4,, we may write (Z”)k= 
zmzkn-m. Thus x(Z”)~=XZ~Z~~-~ c Zn+mZkn-m= (Zn)k+l. This gives the first con-

tainment of the conclusion. The second containment is by the definition of (I”)*. 

For (b), suppose d = {Zm 1m E tNg} and n 2 (1, . . . ,l). Then for large integers h, 
(I”)* = ((zn)h+’ : (Z”)h) =(Z”Z”‘: Zhn) c (I”),, by the definition of (I”),. For the 

reverse inclusion, there is an m E N, with (In)4 = (Z,+, : Zm). By the first part of 

the lemma, this last ideal is contained in (I”)*. ••

1.3. Remark. (a) Note that k=max{m(i) 11 ~ilg} satisfies the hypothesis of 

Lemma 1.2(a). 

(b) In Lemma 1.2, if we do not have n 2 (1, . . . , l), we cannot be assured that 

(Zn+m : I”) c (I”)*. By [5, (3.4) and (4.2)], there exist regular ideals I, and I, with 

Z,* properly contained in (Z1Z2: Z2). Let n = (1,0) and m = (0,l). Then (Z’+, : Zm) = 
(ZI 12 : 12) 9 z;” = (I”)*. 

1.4. Proposition. Let I,, . . . , Is be ideals of R. Fix 1 I is g. For each s E Kl,_ I write 
JS for Zf’ . ..Z.~-,‘zi”;_~ . ..Z2-‘. 

(a) For a finitely generated R module A4 and submodule N c M, there exists 
kit IN such that for all ni>ki, Z~J’Mn N=Z~z-kl(Z~JSMfI N) for all SE N,_,. 

(b) There exists 1,~ N such that (ZF”l J ’ :I:) fl Z/J”=Z~‘J” for all n;> Ii, 
s~iN_~ and hEN. 

(c) Zf Zi is a regular ideal, there exists di E IN such that (ZF+nlJS : ZF) = Z:‘J” for all 
ni> dip h E N and s E IhI,. Consequently, there exists k E IhI, such that (Z,+, : Zm) = I” 
for all n > k and m E tt4, (if each Zi is regular). 

Proof. Let tl, . . . . tg be indeterminates and set .%?= R [II tl, . . . , Zg tg], the Rees ring of 

R with respect to Zi, . . . , Zg. Let & = %? 0, A4 and JV be the submodule consisting 

of all finite sums of the form C art’ where are Z’Mfl N (here we are writing t’ for 

t;’ . . . t2 if rE Klg). Then &i! is an t?J,-graded finitely generated &-module and JV 

has a system of homogeneous generators. As in the proof of the usual Artin-Rees 

Lemma, let ki be the maximum value achieved by any exponent of tj in any one of 
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the generators. Then it is readily seen that the conclusion of (a) holds for this k,. 
For (b) let S’ = (Zj.% : I;ti) in a. A brief computation shows that 3 is an N,-

homogeneous S?-ideal, so it has a generating set of the form a, t”, . . . , a, t”, where 

rj E IN, and aj EZ”). Let Zj= { max rj (i) 11 ~j SS} + 1 and suppose ct’E 93 satisfies 

r(i) > I,. 

We may write ct’=Cj (b,t’~“)(ajt”) for elements b/t’~‘lE~. The choice of r 
forces each bjt’~‘/E (Z;t;)% SO ct’EZ@?. 

Now suppose n;~ kJ satisfies n;>Z;. Let SE n\lX_, and suppose cl! c Znj+‘Js, for 

CEZ,~‘J”. Then, writing tS for tf’ . . . tf: 1 t;‘i,, . . . tp -I we have (ct:ts)(Zjt,) c Znl+‘Jstf’+‘tS c 
Zip (since ni>Zi). By the preceding paragraph, ct:tSEZ,9? so CEZ/+~J’. We may 

now repeat the argument until CEZ~~J~ as desired. This shows (Zj’iniJs: Z,) n 
Z/J”=Z~lJ”, and the rest of (b) follows from this. To finish, let ai, . . . , a, be a set 

of regular elements generating Z,. As in the proof of [3, Proposition 1 l(e)] set 

M=R.(l/a,)O...OR.(l/a,) (considered as a submodule of K@...@K, for K 
the total quotient ring of R) and N= {(r/l, . . . . r/l) / r E R } . From part (a) there is 

kit N such that ZF’JsA4fl N=ZT-“’ (Z~J”MC3N) for all n,rk;, and seNjg_,. It 

follows readily that (Z:‘JS:Zj)=Z:‘-k’(Z~JS:Zj) c Z,k’J”,for n;> k;. Since we may in-

crease k, so that it is larger than fi, for Ii as in part (b), it follows that (Z~i’hJ”:Z~)= 
ZyiJs for all large n;, h E kJ and SE lN,_ i. The second statement follows from 

this. 0 

1.5. Corollary. Let I,, . . . , Zg be regular ideals. There is a d E N, such that for all 
no N, with nzd, (Z”)*=Z”. 

Proof. Let k be as in Proposition 1.4(c) so that (Z”, : Z”) =Zm for all n>k, 
m E N, and let d be such that d(i) = max{ 1, k(i)} for 1~ is g. The corollary now 

follows from Proposition 1.4(c) and Lemma 1.2(b). 0 

1.6. Proposition. (a) The set IJ {Ass R/Z” 1 II E lNg} is finite. 

(b) u {Ass R/(Z”), 1m E lNg} c u {Ass R/(Z”) 1 n E tNg}. 

(cl If A c {Zrn 1 m E Ng>, then IJ {Ass R/(Z”‘), 1m E Ng> c U {Ass R/(Z”) I n E 

&J. 
(4 Zf Z,, . . . . Zz are regular ideals, then IJ {Ass R/(Zm)* 1m E tNg} L U {Ass R/ 

(Z”) I nE ““& 

Proof. Let Y=R[Z,t,,..., Zxtgr t;], . . . . t;‘] be the extended Rees ring of R with 

respect to It, . . . , Zg and set Ui = t,:‘. For n E IN,, ~“9 rl R = I”. Thus any PE Ass R/ 
I” lifts to a prime divisor 9 of ,Y/u”.Y. For some 1~ is g, u, E 9 and because each 

U, is regular, W must be a prime divisor of u,Y. Now U {Ass Y/u”Y 1 n E Ng} is 

finite, so U {Ass R/Z” 1 n E Ng} is finite as well. Thus we have (a). 

For (b), by [2, Propositions 3.9 and 3.171, Ass R/(Z”), c A*(Zm) = Ass R/Zhm for 

all large integers h. Hence part (b). 

https://M=R.(l/a,)O...OR
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For (c), let m E N, and PE Ass R/(Zm), . We may write P= ((Zm), :x) = 
((z~z5z~):x)=(zm+5 xZ’), by the definition of A. Hence PE Ass R/Z”+k and (c) 

follows. 

For (d), we must show Ass R/(Zm)* c U {Ass R/Z” 1 n E Ng}. Clearly it does no 

harm to assume mr(1, . . . . 1) (since zero components can simply be ignored). Let 

d={Z”ln~kJ~}. By Lemma 1.2(b), Ass R/(Zm)* = Ass R/(Z*), C u {Ass R/ 
I” / no N,} by (c). 0 

1.7. Theorem. Let A be a multiplicatively closed set of non-zero ideals with 
{Z”I~E~N~} CA. Then 

(a) For any n, k E N, satisfying n 2 k, Ass R/(Zk), c Ass R/(Z”),. 

0) Zf u {AssR/(Z”% 1m E ‘No} c U{ASSR/(Z”) I n E IN,}, then for any sequence 
nl 1n25 a.+ of elements from Ni,, the sequence Ass R/(Z”‘), c Ass R/(1”*), c ... 
eventually stabilizes. In particular, there exists k E IN, such that Ass R (I”), is in-

dependent of n, for all n 1 k. 

Proof. For (a), let P= ((Zk)n :x) belong to Ass R/(Zk),, with XE R. Writing (Zk)n = 

(ZkK:K) for some KE A, we see that Znmk (Zk)o = Z”-k(ZkK : K) c (Z”K : K) c 

(Z%. Thus P=((Zk), :x) c (Z”pk(Zk)d :xZ”-~) c ((Z”), :xZ”-~). However, we 

also claim that this last ideal is contained in P. Let y belong to this ideal. Then 

yx~ ((I”), : Znmk). For some L E A, (I”), = (Z”L : L), so yx~ ((Z”L : L) : Znmk) = 
(ZkZnekL : ZnpkL) C (Zk)d since ZnmkL E A. Therefore y E ((Zk)n : x) = P as desired. 

Thus P = ((I”), : xl” - k), so P E Ass R/(Z”), . 

For (b), by Proposition 1.6 we have that U {Ass R/(Z”), 1n E lNg} is finite, so if 

n1 <n2< ..., then by (a), Ass R/(Z”‘), c Ass R, (Znz), c ..+ and this sequence must 

eventually stabilize. Now suppose that k = (k, . . . , k) E N, is such that Ass R/(Zk), = 
Ass R/(Zhk), for all h E tN. (This follows from the g = 1 case of what was just shown.) 

For n> k, select h E N such that hk rn 2 k. Then by part (a), Ass R/(Zk), c 
Ass R/(Z”), c Ass R/(Zhk), = Ass R/(Zk),. 0 

1.8. Corollary. Let I,, . . . , Zg be regular ideals. 

(a) Zf n15n,I... is an increasing sequence from N,, then the sequence 
Ass R/(Z”l), c Ass R/(Zn2), c_ ... eventually stabilizes. In particular, there exists 
k E IN, such that Ass R/(Z”), is independent of n for all n 1 k. 

(b) A similar statement holds for Ass R/(Z”)*, provided n, 2(1, . . . ,l). 

(c) Let ItI 1n21... be an increasing sequence from iN,. Then the sequence 
Ass R/Z”‘, Ass RN”‘, “. eventually stabilizes. In particular, there exists k E N, 
such that Ass R/Z” is independent of n for n 2 k. 

Proof. (a) follows from 1.1(b), 1.6 and 1.7 while (b) follows from 1.2(b), 1.6 and 

1.7. For (c), we may suppose that for 1 <ilk, {nj(i) 1 j 2 l} is infinite and for 
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k+llilg, {nJi)Ijzl} is finite. By ignoring small values of j we may assume 

that (nj(k+l),...,nj(g))=(s,,...,s,~k)=~~~~~k. Let tjEiNk be such that nj= 

(tj(l), ***,tj(k), s1, .--9 sgpk) and write Z”J=A’JZY, where A’J=Z~(‘)...Z$(~) and 

BS=Z,SI,, . . . Z2mk. Let rl = {A’ 1 trz N,}. Arguing as in the proof of 1.7(a), it is 

readily seen that AssR/(Z”l)4 c AssR/(Z”~), c .a.. On the other hand, (I”]), = 

(At~Bs)o has the form (A’/BSA’: A’) =AGBS for j large (by Proposition 1.4). Thus 

(I”)), = (I”)) for j large and part (c) now follows from 1.6 and 1.7. 0 

2. The locally analytically unramified case 

In this section we show that if R is locally analytically unramified with finite in-

tegral closure, then AssR/(Z”)4 enjoys asymptotic stability for very general 

d-closures. We also show that there exists a single KE d satisfying (I”)4 = (Z”K : K) 

for all n E N,. This is accomplished by proving the following variation of the 

Artin-Rees lemma: 

2.1. Lemma. Let Z,, . . . , Zg be ideals of R. For indeterminates t,, . . . , t, set .9&J= 
R [Zt ,,...,Z,t,] and L%T~=R[{(Z”)~P n E N,}]. (Note that (I”), . (Zm)d c (Zn+m)d, 

so G?4 is a ring and also an S?-module.) Then 
(a) Zf SI?~ is a finite .%-module, there exists KE A such that for all n E N,, 

(I”), = (Z”K : K). Also, there is an integer b such that if n and m are such that for 
all lsirg either n(i)=m(i) or n(i)zm(i)?b, then (I”), =Zn-m(Zm)d. In par-
ticular, if n>mr(b, . . . . b), then (Z”)n =ZnPm(Zm)d. 

(b) Zf there is a regular ideal K E A such that (I”), = (Z”K : K) for all n E N,, then 
~2~ is a finite %-module. 

Proof. For (a), the hypothesis implies that there exist finitely many mj E N, such 

that .%A = 1 9?((Z”~), t”J) over 15 j I r. 
For each j, there is a Kj E A such that (Zml)4 = (Z”‘Kj : Kj). Let K be the product 

of the Kj over all 1 ~j I r. Then (Zm/)4 = (ZmlK : K) for all j. 

Now, consider the submodule Y of %A having the form C (Z”K: K)t” over all 

n E iN,. (Since for m E N,, Zm(Z”K: K) c (I “‘“‘K: K), this is a submodule.) Since 

for 15 j 5 r, g contains (ZmiK : K)P = (Zm~)d t”‘, and these last sets generate 9?4 

over E as an &-module, we see that g= E4. It follows that (Z”K: K)=(Z”), for 

all nE N,. This proves the first part of (a). 

Now let b = max{mj(i) 11 I j I r, 15 i I g} . Suppose that n and m are such that 

for each 1 5 is g, either n(i) = m(i) or n(i) 2 m(i) 2 b. Since ~%!4= C &?((Zm~)d tmJ) 

over 1 ~j 5 r, looking at the t”th term in 394, we see that (I”), = C (Z”-m~)(Zm~), 

over those lsj IT with mj 1n. A similar statement can be made about (Z”)4. 

However, we claim that mj 5 n if and only if mj 5 m. This follows from the fact 

that in the ith component, either m(i) = n(i) or both m(i) and n(i) are at least as large 

as b, which in turn is at least as large as mj(i). Therefore, the summations for 



185 Prime divisors and divisorial ideals 

(Zm), and (Zn)d involve exactly the same set of j, and, in fact differ only in that the 

first has I”-“’ J appearing in the place where the second has I”-“‘J appearing. 

Clearly n?rn so Z~-~J=Z’~~(Z”-~~). The second part of (a) follows from this. 

For (b), suppose that K is a regular ideal in d and that (Zn)d = (Z”K : K) for all 

n E /t4,. Then K(Z”), c Z”K c I”, and so, KS?* c B. Since K contains a regular 

element x of R (which remains regular in 39), we see that ~39~ c .%‘x-‘. Thus 3 is 

a finite 3-module, since 39 is Noetherian. 0 

2.2. Theorem. Let Z,, . . . ,Zg be regular ideals. Assume that R is a locally analyt-
ically uramified ring with finite integral closure. Let A be any multiplicatively closed 
set of regular ideals such that {I”’ 1m E Ng} c A. Then for 59 and .%!* as in Lemma 
2.1: 

(a) 35~~is a finite S-module. 
(b) There exists K E A, such that (I”), = (Z”K : K) for all n E N,. 

(c) u {Ass R/(Z% / n E tNg} is a finite set. 
(d) Zf nl<n2<.+. is an increasing sequence of elements from IN,, then the se-

quence of sets Ass R(Z”‘), c Ass R (Zn2)4 c ***eventually stabilizes. In particular, 
there exists a k E lNg such that Ass R (I”), is independent of n for all n I k. 

Proof. By [l, Lemma 11, %?A is a finite %-module. Thus (a) holds and (b) follows 

from Lemma 2.1. Part (d) follows from the proof of Theorem 1.7, once we prove 

(c). For this let Y=%?[t,‘, . . ..t.‘] and YA =BA[t~‘,...,tgl]. Then YA is a finite 

Y-module, and is therefore a Noetherian ring. Since tPYA n R = (I”), for all n E tN,, 
any PEASS R/(Z”), lifts to an element of Ass 9’d /tPYA. Since U (Ass 9’A / 

ten9 1n E N,} is finite (as in the proof of Proposition 1.6), IJ {Ass R/(Z”), 1n E Ng} 
is finite, and the proof is complete. 0 

2.3. Corollary. Let R be as above and I,, . . . , Zg regular ideals. Then there is an in-
teger k such that for all n E N,, (I”)* = ((Z”)k’ ’ : (Z”)k). 

Proof. We will find an integer k(g) which satisfies the conclusion of the result for 

all nl(l,..., 1). If n has some zero components, then we will delete those Zj for 

which n(i) = 0, and so will simply have a smaller value of g to deal with. Thus, the 

final k we take will be the maximum of the k(d) over 15 dl g. 
Assumenr(l,..., 1). Then (I”)* = (Zn)d by Lemma 1.2(b), assuming A = { Zm 1m E 

Ng>. By Theorem 2.2(b), there is an Z’E A such that (I”), = (Z’+‘: Zc) for all 

n E N,. Let k(g) equal the maximum component of c. By Lemma 1.2, (Z’+’ : If) c 
((Z”)k’& + 1 : (Z”)kca). Thus (I”)* c ((Zn)k(g)+l : (Z”)kcg)), and the reverse inclusion is 

by the definition of (I”)*. ••

We close by mentioning two questions we have been unable to answer. 
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Question 1. If R is an arbitrary Noetherian ring and d a multiplicatively closed set 

of regular ideals containing (Im 1m E Ng}, do the sets Ass R/(1”), enjoy asymp-

totic stability? If this always holds for g = 1 and I, = (b), b a regular element, then 

the answer is yes. In fact it is enough to know that U {ASS R/(~I”)~ 1 n I l} is finite. 

Question 2. For which multiplicatively closed sets of ideals d does it hold that 

u {Ass R/(P), 1 m E NE} c U {Ass R/I” 1 II E N,}? 
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