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This paper is concerned with the pole assignability property in commutative rings. Specifically, 
a commutative ring R has the pole assignability property iff given an n-dimensional reachable 
system (F, G) over R and ring elements rl, . . . , r,, E R, there exists a matrix K such that the charac-
teristic polynomial of the matrix F+ GK is (X-r,) ... (X-r,,). The principal theorem of this 
paper is Theorem 3: Let R be a commutative ring with the property that all rank one projective 
R-modules are free. Then R has the pole assignability property iff given a reachable system (fi G) 
there is a unimodular vector in the image of G. 

In this note we prove three theorems, the last of which is a characterization of 
the pole assignability property within the class of commutative rings over which all 
rank one projective modules are free. The proofs of these results depend on ideas 
scattered throughout several papers (most notably [2-4,6]). We do feel, how-
ever, that the theorems are important enough to warrant a self-contained treat-
ment and we shall endeavor to provide such here. We begin by establishing some 
terminology. 

Given a pair of matrices F and G of sizes n x n and II x m (respectively) over a 
commutative ring R, the n-dimensional system (F, G) is said to be reachable if the 
columns of the matrix [G,FG, . . . , F”- ‘G] span R n. The system is pole-assignable if 
for each choice of rl, . . . , r, E R, there exists an m x n matrix K over R such that the 
matrix F+ GK has (X- rl) .a. (X- rn) as its characteristic polynomial. The ring R 
is said to have the PA-property if every reachable system over R is pole-assignable. 
An n x m matrix G over R is said to be good if there exists an n x n matrix F such 
that (F, G) is reachable. We say that R has the GCU-property if every good matrix 
has a unimodular vector in its image. The rest of our terminology will be standard 
terminology from the theory of linear algebra over commutative rings and we cite 
McDonald’s excellent text [7] as a reference. 
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Theorem 1. If R has the GCU-property, then R has the PA-property. 

Proof. Our proof will involve a succession of results, the first of which was obtained 
independently by the present authors and the authors of [6] (see 16, Theorem B]). 

Lemma 1. If R has the GCU-property, then each homomorphic image S of R has 
the property that stably free S-modules are free. 

Proof. By Theorem 1 of [2], any homomorphic image of R has the GCU-property. 
Thus, it suffices to prove that stably free R-modules are free. So, let P be a stably 
free R-module. By Gabel’s Theorem [7, Theorem IV.441, there exist positive in-
tegers m and n such that P”’ is isomorphic to R” as R-modules. We proceed to find 
a reachable system (F, G) such that the column module of G is isomorphic to P. 

Now, without loss of generality, we may assume that R” = P@ ... BP, m times. 
Let g : Rn -+ Rn be projection onto the first P-factor and let f : Rn --+ Rn be defined 
as f(pr, . . . , Prn)=(Pm,PlVY p,_,). Using im(g) to denote the image of g, we 
clearly have 

(im(g), f(im(g)), . . . , f” - r (im(g))) = R n. 

Thus if F and G are any matrices representing f and g respectively, it follows that 
(F, G) is a reachable system with the column module of G isomorphic to P. By the 
GCU-property, the column module of G contains a unimodular vector and conse-
quently P contains a free summand of rank one. By induction on the rank of P, 
it follows that P is free. Cl 

A definition is in order before continuing to our next result. Let (F, G) be a system 
over R. Call a system (p, G) systems equivalent to (F, G) if it is obtained from (F, G) 
by one of the following three transformations: 

(i) F-p=AFA-‘, Gw G=AG, for invertible A; 
(ii) F- p=F+ GK, G++ G= G, for any K of suitable size; 

(iii) F- p= F, G w G = GB, for invertible B. 
It is clear that systems equivalence is an equivalence relation and that given any two 
equivalent systems the first is reachable (resp. pole-assignable) if and only if the 
second is. 

Lemma 2 (cf. [S]). The ring R has the GCU-property if and only if each reachable 
system over R is systems equivalent to one of the form 

M
0 

0*. 
0 
. 

0 o-*-o 1 
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Proof. The proof of the ‘if’ implication is easy. Conversely, suppose that (F, G) is 
a reachable system over R. By the GCU-property, there exist unimodular vectors 
u ER”’ and u E Rn such that Gu = o. By Lemma 1, stably free R-modules are free 
and hence unimodular vectors can be extended to bases [7, Theorem IV.411. In par-
ticular, there exist ul, . . . . u,~,_~ ER” and ul, .,. , u,_~ ER” such that (ui, . . . . u,,_r,u) 
is a basis for Rm and (u,, . . . , u,_~, u} is a basis for R”. Let U= [u,, . . . , urn_], u] and 
v= [Ui, . ..) u,_ 1, u]. Then (F, G) is systems equivalent to (V- ‘Fv, I/- ‘GCT), where 
V- ‘GU has the form 

0 

* 0 -
1i I! 

Right multiplication by an invertible matrix shows that this latter system is 
equivalent to 

Set K equal to the m x n matrix 

0 
-a 1, *.*, -a, I 

where [al, . . . , a,,] is the last row of p. Then the system (F+ 6K, G) has the desired 
form. 0 

Using a trick from [4], we can now complete the proof of Theorem 1. We use in-
duction on n, the dimension of the reachable system (F, G). If n = 1, then (E G) has 
the form ([a], [b,, . . . , b,]) for some a, bl, . . . , b,n E R. Since (F, G) is reachable, there 
exist t l,...,t,~~R such that trbi+.~.+t,b,,=l. If PER, set 

Then F+ GK = [r] and so det(X1-- (F+ GK)) =X - r. 
If n> 1 we can, by Lemma 2, assume that (F, G) has the form 

4 Gl , 
0 0u-1 

whereFr is (n-l)x(n-l), G2 is (n-l)x(m-1) and G,ER”-‘. 
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It is readily seen [4, Lemma l] that the system (F,, [G,, G2J) is reachable. If 

y1, . . . , r,_ 1, r, ER are given, there exists, by induction on n, an m x (n - 1) matrix K 
such that Fi + [Gi, G,]R has characteristic polynomial (X- rl) ... (X- rn_ i). Write 

K1IR= z 

i 

where K, is 1 x(n- 1) and KZ is (m- l)x(n- 1). Then 

Fi + [G,, G,]R=F, + G&i + G,K,. 

Note that (F, G) is systems equivalent to 

(32 0 

([+-tYj [%j [i-E]> [S-K] 0 1HI> 
=([vq-?j~ [-%j)-

The latter system is equivalent to 

Let K be the m x n matrix 

0 
-a 19 *.. , -a,-br,-a, I 

where [a,, . . . , a,] is the last row of p. Then 

which has the desired characteristic polynomial (X- rl) e’. (X- rH). 0 

As one might expect, there are examples of rings having the PA-property, but not 
the GCU-property. Indeed, any Dedekind domain with non-t,ivial 2-torsion in its 
class group is such an example [2]. 

There is a weakened form of the converse which is valid. Before proving it, we 
need some additional terminology. If A is a matrix over a ring R, then, following 
[5], we shall say that A is a (*)-matrix if the content of A is R - that is, no maximal 
ideal of R contains all the entries of A - and all 2 x 2 minors of A are zero. The 
ring R is said to have the GCS-property if and only if given a good matrix G over 
R, there exists a matrix V such that GV is a (*)-matrix. 

In Theorem 2 below we show that rings with the; PA-property have the GCS-
property. This should be compared with Corollary 3.6 in [3] and Theorem A in 161. 
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Theorem 2. If R has the PA-property, then R has the GCS-property. 

Proof. Let G be an n x m good matrix over R. We must find a matrix V such that 
GV is a (*)-matrix. Now, since G is good and R has the PA-property, there exist 
an n x n matrix F and an m x n matrix K such that (F, G) is reachable and F+ GK 
has characteristic polynomial (X- 1)“. Thus, F+ GK is invertible. Since (F+ GK, G) 
is also reachable, we may assume from the start that F is invertible. 

We now construct a matrix A as in the proof of Proposition 3.3 in [3]. If Z is 
the n x n identity matrix, then (F+ L G) is reachable. By the PA-property there 
is an m x n matrix K’ for which A =F+ Z+ GK’ has characteristic polynomial 
Xn - ‘(X- 1). By the Cayley-Hamilton theorem, An - ‘(A - Z) = 0 and it follows that 
A”- ’ is an idempotent matrix. We claim, moreover, that An-’ is a (*)-matrix. 

First we show that An-’ has unit content. If not, there exists a maximal ideal 
A4 of R containing the entries of An-‘. Using - to denote reduction modulo A4, 
we have that An-i =ii. Thus the minimal polynomial for A over the field Z? has 
no non-zero roots. On the other hand, the characteristic polynomial for A is 
X”- ‘(X- i) which has the non-zero root i. This is a contradiction, since over a 
field the roots of the characteristic polynomial and minimal polynomial must agree. 

Next we show that all 2 x 2 minors of An- ’ are zero. We claim that the ideal J 
of R generated by the 2 x 2 minors of An-’ is contained in every prime ideal of R. 
Let P be a prime ideal of R, L the quotient field of R/P and - denote reduction 
modulo P. Since the characteristic roots of A are in L, there exists an invertible 
matrix Q over L with 

0 1 0 
. . 

. . 
. . .. . .QAQ-‘= 

. 1 
0 0 0 

. . . 0 0 i 

the Jordan Canonical Form for A over L. Thus 

r IO1 

and the 2x2 minors of QA”-rQ-’ are zero. Hence the 2x 2 minors of An-’ 
vanish (since over the field L this is equivalent to rank A”-’ = 1). Thus JC P as 
claimed. 

Now, since J is finitely generated and is contained in each prime ideal of R, there 
exists a positive integer N such that JN= 0. On the other hand, since A”-’ is an 
idempotent matrix, the Binet-Cauchy formula [7, Theorem 1 S] implies that J is an 
idempotent ideal. Hence J= J2 = ... = JN = 0, and all 2 x 2 minors of A”-’ are zero. 
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Therefore, A” - ’ is a (*)-matrix. 
To finish, we have 0= (A -1)A’-i = (F-t GK’)A”-‘, so GK’A”-’ = -FA”-‘. 

Since F is invertible, it follows that - FA n- ’is also a (*)-matrix (use the Binet-
Cauchy formula to see that the 2 x 2 minors of -FAnW1 are also zero). Setting 
V= K’A”- ‘, we have that GV is a (*)-matrix and the proof is complete. Cl 

By placing a rather weak hypothesis on the ring R, we are able to obtain our 
promised characterization of the PA-property. 

Theorem 3. Let R be a commutative ring over which all rank one projective modules 
are free. Then R has the PA-property if and only if R has the GCU-property. 

Proof. If R has the GCU-property, then R has the PA-property by Theorem 1 
(regardless of R having rank one projective R-modules free). 

Now suppose that R has rank one projective modules free and the PA-property. 
Let G be a good matrix over R. Then just as in the proof of Theorem 2, we arrive 
at A = F+ I+ GK’, where F is invertible and An-l is an idempotent (*)-matrix. 
Since An-’ is idempotent, its column module C is a projective summand of R” and 
since the 2 x 2 minors of A *- ’ vanish, C has rank one. Thus, C is free of rank one 
and so C = R - u for some u E R ‘. Moreover, since A” - I has unit content, u must be 
unimodular. Thus, there is a unimodular vector in the image of A ‘- I. Finally, 
since F is invertible and GK’A”-I = -FAR-‘, it follows that G has a unimodular 
vector in its image. The proof is complete. Cl 

Remark. One specific consequence of these results is the following: 
If a ring R has rank one projective R-modules free and the PA-property, then 

stably free R-modules are free. 
This follows from Theorem 3 and Lemma 1. In particular, if 

R=lR[X, Y,Z]/(X2+ Y2+Z2- I), 

the coordinate ring of the real 2-sphere, then R does not have the PA-property. 

Remark. Theorem 5 of [2] states that if a ring R has 1 in its stable range, then R 
has the FC-property (a strong form of the PA-property) if and only if R has the 
GCU-property. This result should be compared with Theorem 3 of the present 
paper. Since there are no formal implications between the hypotheses “rank one 
projective R-modules are free” and “R has 1 in its stable range”, the relationship 
between these theorems is unclear. 

We close with the following conjecture. 

Conjecture. Let R be a commutative ring. Then R has the PA-property if and only 
if R has the GCS-property. 
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