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ON THE INTEGRAL CLOSURE
OF RADICAL TOWERS IN MIXED CHARACTERISTIC

DANIEL KATZ AND PRASHANTH SRIDHAR

We study the Cohen–Macaulay property of a particular class of radical extensions of an unramified regular
local ring having mixed characteristic.

1. Introduction

In this note we consider the integral closure of certain radical towers in mixed characteristic p > 0. The
motivation for our work is the following. Suppose S is an integrally closed Noetherian domain with
quotient field L and f ∈ S is square-free, i.e., f SQ = QSQ for all height one primes Q ⊆ S containing f .
It is well-known that if the natural number n ∈ S is a unit, then R := S[

n
√

f ]
1 is integrally closed2. If

f1, . . . , fr ∈ S are square-free and no two elements in the sequence are contained in the same height
one prime of S, then R := S[

n
√

f1, . . . ,
n
√

fr ] is integrally closed (see [1]). In each of these cases R
is a free S-module, so that if S is a Cohen–Macaulay ring, then R is also Cohen–Macaulay. In other
words, maintaining the same assumptions, the integral closure of S in the given radical extension of L is
Cohen–Macaulay. When n is not a unit in S, the ring S[

n
√

f1, . . . ,
n
√

fr ] need not be integrally closed.
However, if S is regular, and R denotes the integral closure of S in L( n

√
f1, . . . ,

n
√

fr ), it may be that R
is Cohen–Macaulay, though it can be difficult to determine when R is Cohen–Macaulay. For example,
if S is an unramified regular local ring of mixed characteristic p > 0 and f ∈ S is square-free, then for
R the integral closure of S[

p
√

f ], R is Cohen–Macaulay (see [2, Lemma 3.2]). Unfortunately, this fails
even when adjoining p-th roots of two square-free elements (see for example [6, Example 2.12] or [7,
Example 4.8]). The difficulties in adjoining more than one p-th root stem from the behavior of the fi

modulo pS. However, as observed in [2; 6; 7] there is good behavior when the elements are p-th powers
modulo p2S. This is largely due to the existence of a unique unramified prime P ⊆ R lying over pS
such that the corresponding extension of residue fields is trivial. The purpose of this note is to generalize
the results from [2; 6; 7] beyond the biradical case to what we call class one radical towers, i.e., radical
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1Throughout this paper, when we write n√ f for an element f ∈ S, we simply mean that f is a root of Xn
− f , where X is an

indeterminate over S.
2To see that S[

n√ f ] is integrally closed, set g(X) = Xn
− f and note that since n is a unit, the extension of quotient fields

derived from S ⊆ S[
n√ f ] is separable, and thus g′( n√ f ), and hence n f , multiplies the integral closure of S[

n√ f ] into S[
n√ f ].

Since n is a unit, one just has to check that S[
n√ f ]P is a DVR for any height one prime P ⊆ S[

n√ f ] containing f (since S[
n√ f ]

is free over S, and therefore satisfies Serre’s condition S2). But for such a prime, it is easy to see that PP = ( n√ f )P since f is
square-free in S and thus PP∩S = ( f, n√ f )SP∩S[

n√ f ].
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towers where the image of each fi is a p-th power in S/p2S. Note that to obtain good results for general
p-th root towers, it already suffices to understand the case when the elements are p-th powers modulo
pS (see Proposition 5.4). Here is the main result of this paper. Note that we allow S to be more general
than an unramified regular local ring of mixed characteristic.

Theorem 1.1. Let S be an integrally closed Noetherian domain and p > 0 a prime integer that is a nonzero
prime in S. Suppose f1, . . . , fr ∈ S are square-free and there exist hi ∈ S such that fi ≡ h p

i mod p2S.
Suppose further that no two fi are contained in the same height one prime of S. Let n1, . . . , nr > 1 be inte-
gers such that ni = pdi with each di a unit in S, and write R for the integral closure of S[

n1
√

f1, . . . ,
nr
√

fr ].
Then R is a free S-module. In particular, if S is Cohen–Macaulay or an unramified regular local ring, R
is Cohen–Macaulay.

The main focus of the proof of this theorem is when each ni = p, so that we get a proper generalization
of the results in [2; 6; 7]. We are able to reduce to this case by invoking the results that hold when
the degree of the radical extension is a unit. In what follows, Section 2 deals with our conventions and
preliminary results, while our main results are presented in Section 3. In Section 4, we present some
applications of the main result in Section 3. In particular, in Theorem 4.1, we show that if R is the integral
closure of an unramified regular local ring S of mixed characteristic in a particular type of radical tower
that is not a class one tower, then R admits a small Cohen–Macaulay algebra, even if R itself is not
Cohen–Macaulay.

2. Preliminaries

All rings considered in this paper are commutative and Noetherian. Throughout this paper S will denote
an integrally closed Noetherian domain in which the prime p ∈ Z is a nonzero prime element in S. We will
use L to denote the quotient field of S. Though our primary interest is in the case that S is an unramified
regular local ring having mixed characteristic p > 0, our main results hold under more general conditions,
so that the cases when S is an unramified regular local ring often appear as secondary statements. For the
remainder of the paper, we will assume that the nonzero, nonunit elements f1, . . . , fr ∈ S are square-free.
We will also use the following notation throughout the rest of this paper.

Definitions 2.1. For S and f1, . . . , fr ∈ S as above:

(i) The elements f1, . . . , fr ∈ S are said to satisfy A1 if no two of these elements are contained in the
same height one prime of S.

(ii) For positive integers a and b, we use Sa∧b to denote the set of elements f ∈ S whose images in
S/bS are a-th powers. Note the following:

(a) The set Sa∧b is a multiplicatively closed subset of S for all positive integers a, b.
(b) If f ∈ S p∧p2

is square-free, then p ∤ f .
(c) The multiplicative subset S p∧p is a subring of S.

(iii) For square-free elements f1, . . . , fr ∈ S, we call L( n1
√

f1, . . . ,
nr
√

fr ) a a class one radical tower if:

(a) The set { f1, . . . , fr } satisfies A1.
(b) Each fi ∈ S p∧p2

.
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(iv) For a commutative ring R of dimension at least one, we use the notation

NNL1(R) := {P ∈ Spec(R) | height(P) = 1, RP is not a DVR}.

(v) For a Noetherian ring R, a prime ideal Q ⊆ R and q1, . . . , qr ∈ Q, we use (Q | q1, . . . , qr ) to indicate
that QQ = (q1, . . . , qr )Q .

(vi) Throughout this paper, in any discussion involving f1, . . . , fr ∈ S and n1, . . . , nr ≥ 2, we set
A := S[

n1
√

f1, . . . ,
nr
√

fr ], K := L( n1
√

f1, . . . ,
nr
√

fr ) and let R denote the integral closure of A, or
equivalently, the integral closure of S in K .

For ease of reference, we include the following proposition, which can essentially be found as separate
Propositions 5.2 and 5.3 in [1]. In these propositions from [1], it is assumed all roots have the same order.
However, it is not difficult to see that the same proofs give rise to the following statement.

Proposition 2.2. Let S be an integrally closed Noetherian domain and n = n1 · · · nr ∈ S a unit for some
positive integer n. Let f1, . . . , fr ∈ S be square-free elements satisfying A1. Then

(i) f2, . . . , fr are square-free and satisfy A1 in S[
n1
√

f1 ].

(ii) R = S[
n1
√

f1, . . . ,
nr
√

fr ] is integrally closed.

We make considerable use of the following observations.

Observations 2.3. (i) Let f1, . . . , fr ∈ S be square-free elements. Set A := S[
n1
√

f1, . . . ,
nr
√

fr ] and
assume {n, f1, . . . , fr } satisfies A1, where n = n1 · · · nr . Then [K : L] = n, where K denotes the
quotient field of A. Moreover, A[1/n] is integrally closed.

(ii) Let f1, . . . , fr ∈ S be square-free elements. Set A := S[
n1
√

f1, . . . ,
nr
√

fr ] and assume {n, f1, . . . , fr }

satisfies A1, where n = n1 · · · nr . Let Q denote the kernel of the natural homomorphism from
S[X1, . . . , Xr ] to A, where the X i are indeterminates over S. Then Q = ⟨Xn1

1 − f1, . . . , Xnr
r − fr ⟩.

(iii) Let S ⊆ C ⊆ D be extension of rings such that D is integral over S and is a domain. If C is regular
in codimension one and D is birational to C , then D is regular in codimension one.

Proof. For (i), note that if n ≥ 1 and T is an integrally closed domain of characteristic zero and f ∈ T is
square-free in T , then f is not a q-th power in the quotient field of T , for any prime q dividing n. Thus,
by Theorem 9.1 in [5], Xn

− f is irreducible over the quotient field of T (equivalently over T ), where
X is an indeterminate over T . Otherwise, Xn

− f has a root in T , in which case f is not square-free
in T . Now let Ki denote the quotient field of Si := S[

n1
√

f1, . . . ,
ni
√

fi ]. By what we have just shown,
[K1 : L] = n1. Proceeding by induction on i , it suffices to show that Xni

i − fi is the minimal polynomial
of ni

√
fi over Ki−1, where X i is an indeterminate over Ki−1. For this, by the A1 assumption, there is no

harm in inverting n. But then, by Proposition 2.2, Si−1[1/n] is integrally closed and fi is square-free
in Si−1[1/n], and thus, Xni

i − fi is irreducible over Ki , which is what we want. It follows now that
[K : L] = n. The second statement follows immediately from Proposition 2.2.

For (ii), we will use the following fact, which follows easily from the division algorithm. Suppose T is
an integral domain with quotient field F , E a field extension of F and α ∈ E algebraic over F . Let p(x) be
the (monic) minimal polynomial of α over F and assume p(x) ∈ T [x]. Then T [α] ∼= T [x]/⟨p(x)⟩. Now,
proceeding by induction on r , if r = 1 we have that S[

n1
√

f1 ] ∼= S[X1]/⟨Xn1
1 − f1⟩, since, as in part (i),

Xn1
1 − f1 is the minimal polynomial for n1

√
f1 over L . From the proof of part (i), we also have that Xnr

r − fr is
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the minimal polynomial of nr
√

fr over the quotient field of B := S[
n1
√

f1, . . . ,
nr−1

√
fr−1 ]. Thus, B[

nr
√

fr ] is
isomorphic to B[Xr ]/⟨Xnr

r − fr ⟩. Since B is isomorphic to S[X1, . . . , Xr−1]/⟨Xn1
1 − f1, . . . , Xnr−1

r−1 − fr−1⟩,
this gives us what we want.

For (iii), let P be a height one prime in D, P0 := C ∩ P and Q := S ∩ P . Since S ⊆ D satisfies going
down, Q has height one. Since C is integral over S, P0 has height one. Thus, CP0 is a DVR. Since C and
D are birational, and CP0 ⊆ DP , we have CP0 = DP , so D is regular in codimension one. □

We include the following from [2] and [7] for easy reference:

Lemma 2.4 [2]. Let p ≥ 3 and write p = 2k + 1. For h ∈ S \ pS and W an indeterminate over S, if

(2.4.1) C := (W − h)p
− (W p

− h p) =

k∑
j=1

(−1) j+1
( p

j

)
(W · h) j

[W p−2 j
− h p−2 j

],

C ′
:= C · (p(W − h))−1 and P̃ := (p, W − h)S[W ], then C ′ /∈ P̃.

Lemma 2.5 [7]. Let p ≥ 3 and write p = 2k +1. For h ∈ S \ pS and W an indeterminate over S, suppose
C ′ is as defined in Lemma 2.4. Then C ′

≡ h p−1 mod (p, W − h)S[W ].

Our work in Section 3 relies heavily on Lemma 3.2 in [2]. Let f ∈ S be square-free such that f ∈ S p∧p2
,

say f = h p
+ p2g. Take ω satisfying ωp

= f , and set

(2.5.1) τ :=
ωp−1

+· · ·+h p−1

p
=

pg
ω − h

.

Then [2, Lemma 3.2] shows that R, the integral closure of S[ω], equals S[ω, τ ] and that R is a free
S-module. The proof relies on showing that Q1 := (p, ω−h, τ ) and Q2 := (p, ω−h, τ −c′) are the only
height two primes in S[ω, τ ] containing p, where c′ is the image in S[ω] of the element C ′ in Lemma 2.4
under the map sending W → ω. This is done by noting that τ satisfies l(T ) := T 2

− c′T − g(ω − h)p−2

when p > 2 and that if Q̃ is a height two prime in S[ω, T ] containing l(T ), then

Q̃1 := (p, ω − h, T )S[ω, T ] or Q̃2 := (p, ω − h, T − c′)S[ω, T ].

However, the proof neglected to show that the kernel of the natural map from S[ω, T ] to S[ω, τ ] is
contained in these primes. The next lemma closes this small gap.

Lemma 2.6. Let f ∈ S p∧p2
be square-free, f = h p

+ p2g and ωp
= f a p-th root in a field extension of

L. Define τ as in (2.5.1). Consider the natural map φ : S[ω, T ] → S[ω, τ ], where T is an indeterminate
over S[ω]. Then Ker(φ) is generated by

l(T ) := T 2
− c′T − g(ω − h)p−2, m(T ) := pT − (ωp−1

+ · · · + h p−1), n(T ) := (ω − h)T − pg

if p > 2 and l0(T ) = T 2
− hT − g, m(T ), n(T ) if p = 2. In particular, for Q̃1 and Q̃2 in the paragraph

above, Q̃1 and Q̃2 contain Ker(φ).

Proof. Suppose p > 2. The proof of [2, Lemma 3.2] shows that l(T ) ∈ Ker(φ). Thus, we need only find
linear generators in Ker(φ). Suppose a(ω)T − b(ω) ∈ Ker(φ). By definition,

a(ω)(ωp−1
+ · · · + h p−1) − b(ω)p = 0
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in S[ω]. Noting that S[ω] = S[W ]/⟨W p
− f ⟩, it follows that

a(W )(W p−1
+ · · · + h p−1) − b(W )p = q(W )(W p

− f ),

for some q(W ) ∈ S[W ]. Therefore,

a(W )(W p−1
+ · · · + h p−1) − b(W )p − q(W )(W p

− h p
− p2g) = 0

and thus
{a(W ) − q(W )(W − h)}(W p−1

+ · · · + h p−1) + {−b(W ) + pgq(W )}p = 0.

Since W p−1
+ · · · + h p−1, p form a regular sequence in S[W ], we have

a(W ) = λ(W )(−p) + q(W )(W − h) and − b(W ) = λ(W )(W p−1
+ · · · + h p−1) + q(W )(−pg)

for some λ(W ) ∈ S[W ]. It follows that in S[ω, T ],

a(ω)T − b(ω) = −λ(ω) · m(T ) + q(ω) · n(T ),

which is what we want. If p = 2, the proof is similar (though, in fact, easier), as [2, Lemma 3.2]
shows that l0(T ) belongs to Ker(φ). For the second statement, l(T ) and n(T ) are clearly contained in
each Q̃i . That m(T ) is contained in each Q̃i follows from the fact that we can write ωp−1

+ · · · + h p−1

as (ω − h) · g(ω) + ph p−1, for some g(ω) ∈ S. □

3. Class one radical towers

In this section we present our main result. The crucial case for this result is Theorem 3.4 below, which
deals with the case of adjoining p-th roots of square-free elements. Before addressing Theorem 3.4, we
need a few preliminary results.

Lemma 3.1. Let f1, . . . , fr ∈ S be such that K := L( p
√

f1, . . . ,
p
√

fr ) is a class one radical extension of L.
Set ωi :=

p
√

fi . Let Ri denote the integral closure of S[ωi ] and write V for the join of R1, . . . , Rr . Recalling
from the previous section that Ri = S[ωi , τi ], for τi as in Lemma 2.6, let Wi , Ti be indeterminates over
S and let φi : S[Wi , Ti ] → Ri be the natural surjection. Write Ai for the kernel of φi . Then V is a free
S-module and the kernel of the natural homomorphism from S[W1, T1, . . . , Wr , Tr ] to V is generated
by A1 + · · · + Ar .

Proof. We let Ki denote the quotient field of S[ωi ], so that K = K1 · · · Kr and K1 · · · Kr is the compositum
of the Ki . We induct on r . Suppose r = 2. Since [K : L] = p2 by Observations 2.3(i), K1 and K2 are
linearly disjoint over L and a basis for K over L is obtained by taking the products of the basis elements for
each Ki over L . Since each Ri is free over S, we may take bases from each Ri to serve as the bases for Ki .
Thus, the product of the bases for the Ri are linearly independent over S. Since these products span V ,
we have that V is a free S-module. Thus, the canonical map R1 ⊗S R2 → V is a surjection of finite free S-
modules of the same rank and hence an isomorphism. Moreover, this map is a ring homomorphism, so that
it is an isomorphism of S-algebras. Thus the natural map from (S[W1, T1]/A1)⊗S (S[W2, T2]/A2) → V
is an isomorphism. Since S[W1, T1]/A1 ⊗S S[W2, T2]/A2 ∼= S[W1, T1, W2, T2]/⟨A1 + A2⟩, this gives us
what we want.
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The proof of the inductive step is essentially the same as the case r = 2. If r > 2, set K̃ = K1 · · · Kr−1

and let Ṽ denote the join of R1, . . . , Rr−1, so that [K̃ : L] = pr−1 by Observations 2.3(i). By induction, Ṽ
is a free S-module, and the kernel of the natural map from S[W1, T2, . . . , Wr−1, Tr−1] to Ṽ is generated
by A1 + · · · + Ar−1. Since K = K̃ · Kr and [K : L] = [K̃ : L] · [Kr : L], K̃ and Kr are linearly disjoint
over L . Now we can repeat the argument in the paragraph above on Ṽ and Rr to complete the proof,
since V is the join of Ṽ and Rr . □

Lemma 3.2. Let S be an integrally closed domain, and p ≥ 3 a prime number that remains prime in S. Let
f1, . . . , fr be square-free elements in S and ω

p
i = fi be p-th roots in some field extension of L. Suppose

that K := L(ω1, . . . , ωr ) is a class one radical tower. Choose hi ∈ S such that fi ≡ h p
i mod p2S. Let Ri

denote the integral closure of S[ωi ] for 1 ≤ i ≤ r and let V be the join of the Ri . The following hold:

(i) There are 2r height one primes in V containing p and at most 2r
− r − 1 of them are singular.

(ii) If Q ⊆ V is a height one prime containing p, then the nonsingular primes are either of the form (Q | p)

or (Q |ωi −hi ). The (possibly) singular ones are of the form Q(i1,...,il ) := (Q |ωi1 −hi1, . . . , ωil −hil )

for some {i1, . . . , il} ⊆ {1, . . . , r}, i1 < · · · < il and l ≥ 2.

Proof. We retain the notation from the previous lemma and its proof. First note that there are 2r height
one primes in V containing p. From [2, Lemma 3.2], we have that Qi,1 := (p, ωi − hi , τi )Ri and
Qi,2 := (p, ωi − hi , τi − c′

i )Ri are the only height one primes in Ri lying over pS. Moreover, from the
proof of [2, Lemma 3.2], for each 1 ≤ i ≤ r , we have

(∗) Qi,1 = (Qi,1 | ωi − hi ) and Qi,2 = (Qi,2 | p).

Let Q̃i, j denote the preimage of Qi, j in S[Wi , Ti ] under the natural map. From Lemma 2.6, Q̃i, j =

(p, Wi − hi , Ti − q) for some q ∈ S[Wi ]. It then follows from Lemma 3.2 that the ideal generated by∑n
i=1 Q̃i, ji contains the kernel of the natural map from S[W1, T1, . . . , Wr , Tr ] to V for any choice of

ji ∈ {1, 2}. Any such ideal is clearly prime of height 2n + 1 and hence their images in V account for 2r

distinct height one primes containing p. On the other hand, if Q0 is a height one prime in V containing p,
then, for each 1 ≤ i ≤ r , Q0 ∩ Ri = Qi, ji for some ji ∈ {1, 2}, since Q0 ∩ Ri must be a height one prime
containing p (Ri is integrally closed). Thus Q0 contains the ideal generated by

∑n
i=1 Qi, ji and thus Q0 is

one of the 2r height one primes we have accounted for. Therefore, there are exactly 2r height one primes
in V containing p.

Now, let Q ⊂ V be a height one prime containing p. If Q = ⟨Q1,2 + · · ·+ Qr,2⟩, then it follows from
(∗) that QQ = pVQ . If there is a single i for which τi − c′

i /∈ Q, then it follows from (∗) that ωi − hi is a
local generator for Q. Thus, there are at most 2r

− r −1 singularities in codimension one in V . Finally, if
{i1, . . . , il} ⊆ {1, . . . , r} is such that i1 < · · · < il , l ≥ 2 and τi j − c′

i j
/∈ Q for all 1 ≤ j ≤ l, then it follows

that Q is of the form (Q | ωi1 − hi1, . . . , ωil − hil ). □

Remark 3.3. Although the standing assumption in [2] requires S/pS to be integrally closed, note that
the conclusion and proof of [2, Lemma 3.2] holds without this additional hypothesis. In particular, if
f ∈ S p∧p2

is square-free, the conclusion and proof of [loc. cit.] holds without the hypothesis that S/pS
be integrally closed.

The following theorem is the crucial case for the main result of this paper. It extends the corresponding
results from [2; 6; 7].
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Theorem 3.4. Let S be an integrally closed domain and p a prime integer that remains a nonzero prime
in S. Let f1, . . . , fr be square-free elements in S and ω

p
i = fi be p-th roots in some field extension of L.

Suppose that K := L(ω1, . . . , ωr ) is a class one radical tower. Then R, the integral closure of S in K , is
a free S-module. In particular, if S is Cohen–Macaulay or an unramified regular local ring, then R is
Cohen–Macaulay.

Proof. The second statement follows immediately from the first, so we only concern ourselves with the
general case. We first assume p ≥ 3. Note that R is the integral closure of the ring S[ω1, . . . , ωr ]. Let Ri

be the integral closure of S[ωi ] and let V ⊆ R denote the join of the Ri . Note that V is S-free of rank
pr by Lemma 3.1. For each 1 ≤ i ≤ r , choose hi so that fi − h p

i ∈ p2S. From Lemma 3.2, we have the
following data:

(a) There are exactly 2r height one primes in V containing p.

(b) If Q ⊆ V is a height one prime containing p, then the nonsingular primes are either of the form
(Q | p) or (Q | ωi − hi ).

(c) The (possibly) singular ones are of the form Q(i1,...,il ) := (Q | ωi1 − hi1, . . . , ωil − hil ) for some
{i1, . . . , il} ⊆ {1, . . . , r}, i1 < · · · < il and l ≥ 2.

(d) There are at most 2r
− r − 1 singularities in codimension one in V .

Note that from Observations 2.3(iii), V is regular in codimension one outside of the Q(i1,...,il ). We now
identify an R1-ification of V . For i, j ∈ {1, . . . , n}, i < j , define

ηi j := p−1(ωi − hi )
p−2(ω j − h j ) ∈ K .

Then for X an indeterminate over V , ηi j satisfies the integral equation

vi j (X) := X p−1
− (τi − c′

i )
p−2(τ j − c′

j ) ∈ V [X ].

To desingularize Q(i1,...,il ) consider the finite birational extension V ↪→ V(i1,...,il ) := V [ηi1i2, . . . , ηi1il ].
From Lemma 2.5 we have3

vi1i2(X) ≡ X p−1
− (h p−2

i1
hi2)

p−1 mod (Q(i1,...,il )V [X ])

≡

p−1∏
k=1

(X + kh p−2
i1

hi2) mod (Q(i1,...,il )V [X ]).

Since S(p) is universally catenary, it follows that height one primes in V [ηi1i2] lying over Q(i1,...,il ) are of
the form

Q
[(i1,î2,...,il )|k]

:= (Q(i1,...,il ), ηi1i2 + kh p−2
i1

hi2)

for 1 ≤ k ≤ p − 1. The point is that Q
[(i1,î2,...,il )|k]

locally has one less generator: it is of the form

(Q
[(i1,ĩ2,...,il )|k]

| (ωi1 − hi1,
̂ωi2 − hi2, . . . , ωil − hil )).

3If R is a ring of characteristic p and X, Y indeterminates over R, X p−1
− Y p−1

=
∏p−1

i=1 (X + iY ).
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To see this, note that
∏p−1

i=1,i ̸=k(ηi1i2 + ih p−2
i1

hi2) /∈ Q
[(i1,î2,...,il )||k]

, so that ηi1i2 + kh p−2
i1

hi2 is locally a
redundant generator. Also, since (ωi1 − hi1) · ηi1i2 = (ωi2 − hi2)(τi1 − c′

i1
) and (τi1 − c′

i1
) /∈ Q

[(i1,î2,...,il )||k]
,

ωi2 − hi2 is a redundant generator locally.
Proceeding inductively, it is clear that in V(i1,...,il ) all height one primes lying over Q(i1,...,il ) (at most

(p − 1)l−1) are nonsingular. Now set

RV := V
[
{p−1(ωi1 − hi1)

p−2(ωi2 − hi2)}{i1,i2∈{1,...,r} | i1<i2}

]
.

For all possible {i1, . . . , il}⊆ {1, . . . , r}, i1 < · · ·< il and l ≥ 2, V ↪→ V(i1,...,il ) ↪→ RV are finite birational
extensions. From Observations 2.3(iii), RV is an R1-ification for V .

We now identify a finite birational overring of RV that is S-free. This ring would then inherit R1 from
RV by Observations 2.3(iii) and the proof would be complete, since a free S-module also satisfies Serre’s
condition S2. The rest of the proof concerns identifying this overring.

Note that A = S[ω1, . . . , ωr ] is S-free of rank pr with a basis given by

F :=

{ n∏
i=1

(ωi − hi )
ji

∣∣∣ 0 ≤ ji ≤ p − 1
}
.

For each 1 ≤ i ≤ r , define 0i : F → N ∪ {0} by 0i ((ω1 − h1)
j1 · · · (ωi − hi )

ji · · · (ωr − hr )
jr ) = ji and

0 : F → (N ∪ {0})r , f 7→ (01( f ), . . . , 0r ( f )).

Let � : (N ∪ {0})r
→ N ∪ {0} be the map sending (x1, . . . , xr ) 7→ x1 + · · ·+ xr . For every 0 ≤ k ≤ r , set

Vk :=
{

p−k
· m | m ∈ (�0)−1([(p − 1)k, (p − 1)(k + 1)))

}
and V :=

⋃
0≤k≤r Vk . By definition, the sets V and F are in bijection and it follows that ⟨V ⟩S is S-free

of rank pr . Note that A ⊆ ⟨V ⟩S and the ring generators of RV over A are all in V . Suppose that
⟨V ⟩S is an S-algebra. Then RV ↪→ ⟨V ⟩S would be a birational module finite map of rings, so that by
Observations 2.3(iii), R = ⟨V ⟩S .

Thus, it only remains to be shown that ⟨V ⟩S is an S-algebra. We first note that it is an A-module. To
see this, it suffices to show that multiplication by ring generators of A over S define an endomorphism
on ⟨V ⟩S . Set Ei :=

〈⋃
0≤k≤i Vk

〉
A for each 0 ≤ i ≤ r . We proceed by induction on i . Clearly, E0 ⊆ E .

Now assume that Ei−1 ⊆ E for some 1 ≤ i ≤ r . Consider p−i
·m ∈ Vi and ω j −h j for some 1 ≤ j ≤ r . If

0 j (m) ̸= p − 1, then clearly (ω j − h j ) · p−i
· m ∈ ⟨V ⟩S . Suppose that 0 j (m) = p − 1. Let c′

j denote the
image in S[ω j ] of the element C ′ in Lemma 2.4 under the map sending W → ω j , where we take h = h j .
From the relation (see Lemma 2.4)

(3.4.1) (ω j − h j )
p
= ω

p
j − h p

j + c′

j p(ω j − h j ) ≡ c′

j p(ω j − h j ) mod (p2 A),

we see that (ω j − h j ) · p−i
· m ∈ Ei−1 ⊆ ⟨V ⟩S . Thus Ei ⊆ ⟨V ⟩S and by induction, ⟨V ⟩S is an A-module.

To finish the proof, it suffices to show that the product of two elements from V lies in ⟨V ⟩S . This is
verified below. Consider x := p−umu ∈ Vu and y := p−vmv ∈ Vv. If mu · mv ∈ F then xy ∈ V and we
are done. Suppose mu · mv /∈ F . Write

mumv = α ·

r∏
j=l+1

(ωi j − hi j )
a j ,
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where 0 ≤ l ≤ r − 1 is such that a j ≥ p for all l + 1 ≤ j ≤ r and α ∈ F . For each l + 1 ≤ j ≤ r , write
using (3.4.1)

(ωi j − hi j )
p
= p2bi j − pc′

i j
(ωi j − hi j )

for some bi j ∈ S. Setting β := α
∏r

j=l+1(ωi j − hi j )
a j −p, we have that β ∈ F and 0 j (β) ≤ p − 2 for all

l + 1 ≤ j ≤ r . We thus have

xy = p−(u+v−r+l)β

r∏
j=l+1

(pbi j − c′

i j
(ωi j − hi j )).

We verify that every monomial in the above expression lies in ⟨V ⟩S . First consider

p−(u+v−r+l)β

r∏
j=l+1

(pbi j ) ∈ S · p−(u+v−2r+2l)β.

We have

(p − 1)u + (p − 1)v − (2p − 2)(r − l) ≤ (p − 1)u + (p − 1)v − p(r − l) ≤ �0(β)

so this implies S · p−(u+v−2r+2l)β ⊆ ⟨V ⟩S . Next, consider the monomial

p−(u+v−r+l)β

r∏
j=l+1

(−1)c′

i j
(ωi j − hi j ).

Now β ′
:= β

∏r
j=l+1(ωi j − hi j ) ∈ F since 0 j (β)≤ p−2 for all l+1 ≤ j ≤ r . Since ⟨V ⟩S is an A-module,

it suffices to show p−(u+v−r+l)β ′
∈ ⟨V ⟩S . But this is the case since

(p − 1)(u + v − r + l) ≤ �0(mu) + �0(mv) − (p − 1)(r − l) = �0(β ′).

Finally, for the case of a general monomial, it suffices to show by symmetry that for each l +1 ≤ t ≤ r −1,

p−(u+v−r+l)β

( t∏
j=l+1

pbi j

)( r∏
j=t+1

(−1)c′

i j
(ωi j − hi j )

)
∈ ⟨V ⟩S.

Since ⟨V ⟩S is an A-module, it suffices to show that p−(u+v+2l−r−t)β
∏r

j=t+1(ωi j − hi j ) ∈ ⟨V ⟩S . Note
that β ′

= β
∏r

j=t+1(ωi j − hi j ) ∈ F . We have

�0(β ′) = �0(mu) + �0(mv) − p(r − l) + (r − t)

≥ (p − 1)u + (p − 1)v − p(r − l) + (r − t)

= (p − 1)(u + v − r) + pl − t

≥ (p − 1)(u + v − r) + pl − t + (p − 2)(l − t)

= (p − 1)(u + v − r) + (2p − 2)l − (p − 1)t,

so that p−(u+v+2l−r−t)β ′
∈ ⟨V ⟩S and thus the proof is complete.

Now suppose that p = 2. From the proof of [2, Lemma 3.2] we know that the integral closure
of S[ωi ] is Ri = S[τi ] for τi :=

1
2 · (ωi + hi ). It also tells us that if fi = h p

i + 4gi , then τi satisfies
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li (T ) := T 2
− hi T − gi ∈ S[T ], where T is an indeterminate over S. Since li (T ) and l ′i (T ) are relatively

prime over the quotient field of S/2S, 2 ∈ S[τi ] is square-free. Finally, we also know that Ri is S-free for
all i . Let V denote the join of the Ri , that is, V = S[τ1, . . . , τr ]. By Lemma 3.1, V is a free S-module.
Note that V is birational to R and satisfies Serre’s condition S2. From Observations 2.3(i), we have that
V [1/2] is integrally closed. Moreover, 2 ∈ V is square-free since for each 2 ≤ i ≤ r , li (T ) and l ′i (T ) are
relatively prime over the quotient field of S[τ1, . . . , τi−1]/Q for all height one primes Q ⊆ S[τ1, . . . , τi−1]

containing 2. Thus V is regular in codimension one and hence V = R is a free S-module. □

Here is the main theorem of this paper.

Theorem 3.5. Let S be an integrally closed domain with fraction field L and p a prime integer that
remains a nonzero prime in S. Let f1, . . . , fr be square-free elements such that K := L( n1

√
f1, . . . ,

nr
√

fr )

is a class one radical tower, where, for each 1 ≤ i ≤ r , ni = pdi and di ∈ S is a unit. Then the integral
closure of S in K is a free S-module. If S is Cohen–Macaulay or an unramified regular local ring, then
the integral closure of S in K is Cohen–Macaulay.

Proof. Write ni = pdi , so that di is a unit in S, for all 1 ≤ i ≤ r . Note that this condition is the same as
assuming p | ni but p2 ∤ ni , if S were local. Set ωi := ( ni

√
fi )

di , so that ωi is a p-th root of the square-free
element fi . Let R0 denote the integral closure of S in K0 := L(ω1, . . . , ωr ), a class one radical extension
of L . Then, by Theorem 3.4, R0 is free over S. We now claim that each ωi is square-free in R0. Set
A0 := S[ω1, . . . , ωr ]. Since p does not divide any fi , if Q ⊆ R0 is a height one prime containing ωi ,
then p ̸∈ Q. Thus, (R0)Q = (R0[1/p])Q = (A0)Q∩A0 . Thus, it suffices to show that each ωi is square-free
in A0. Without loss of generality, we may assume i = 1.

Let Q be a height one prime in A0 containing ω1. Since p ̸∈ Q, it suffices to show that ω1 is square-free
in B[ω1], where B := S[1/p, ω2, . . . , ωr ]. By Proposition 2.2, B is integrally closed and f1 is square-free
in B. By Observations 2.3(ii), B[ω1] ∼= B[X ]/⟨X p

− f1⟩. Thus, Q corresponds to a height two prime Q′

in B[X ] containing X and X p
− f1, and thus, Q′ is a height two prime containing X and f1. It follows

that Q′
= ⟨X, P⟩, where P ⊆ B is a height one prime containing f1. Since P BP = f1 BP , we have

Q′B[X ]Q′ = (X, f1)B[X ]Q′ . Therefore, modding out X p
− f1 gives Q B[ω1]Q = ω1 B[ω1]Q , which is

what we want.
Now, we may regard each ni

√
fi as a di -th root of ωi , and we write di

√
ωi =

ni
√

fi . If we let K0 denote
the quotient field of R0 and R denote the integral closure of S in K , then R is the integral closure of
R0 in K0( d1

√
ω1, . . . , dr

√
ωr ). Each di is a unit in R0 and by the paragraph above, ωi is square-free in R0.

Moreover, the going down property in the extension S ⊆ R0 ensures that the set {ω1, . . . , ωr } satisfies A1

in R0. Thus, by Proposition 2.2, R = R0[ d1
√

ω1, . . . , dr
√

ωr ]. It follows that R is a free R0-module. Since
R0 is a free S-module, we have that R is a free S-module, which is what we want. The second statement
follows immediately from the first. □

4. Applications

In this section we focus our attention on applications of the results from the previous section to the case that
S is an unramified regular local ring of mixed characteristic p > 0. Our first applications of Theorem 3.5
deal with cases where we adjoin n-th roots of elements in S such that the resulting extension need not be
a class one radical extension. The resulting integral closure R may not be Cohen–Macaulay, but does
have a small Cohen–Macaulay algebra, i.e., a module finite R-algebra R̃ such that R̃ is Cohen–Macaulay.
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For the theorem below, we assume S to be an unramified regular local ring of mixed characteristic p.
Let {p, x2, . . . , xd} = {p, x} be a minimal generating set for the maximal ideal of S. For all k ≥ 1, we set
Tk(x) := S[ k

√
x2, . . . , k

√
xd ]. We choose k-th roots of the xi so that if k = ab, then

(
k
√

xi
)a

= b
√

xi , for all i .
Thus, if k | l, then Tk(x) ⊆ Tl(x). It follows from Observations 2.3(ii) that Tk(x) is an unramified regular
local ring of mixed characteristic p, for all k ≥ 1. Set W (x) :=

⋃
k≥1(Tk(x)p∧p2

∩ S). It is not difficult to
see that if we take the union of W (x), as {x} ranges over regular systems of parameters for S, this set
is considerably larger than S p∧p2

. For example, if f = m + h p, where m is a monomial in x2, . . . , xd ,
which are part of a regular system of parameter for S, then f ∈ W (x).

Theorem 4.1. Let S be an unramified regular local ring of mixed characteristic p. Assume f1, . . . , fr are
square-free, satisfy A1 and belong to W (x), for x = x2, . . . , xd such that p, x2, . . . , xd is a regular system
of parameters. Let ω

ni
i = fi be roots in some field extension of L such that p | ni and p2 ∤ ni for each i ,

and write R for the integral closure of S in L(ω1, . . . , ωr ). Then R admits a small Cohen–Macaulay
algebra.

Proof. Set Tk = Tk(x), for all k. The strategy is to replace S by Tk for some k and apply Theorem 3.4.
Because we wish to pass to Tk for some k, f j will not be square-free in Tk if f j is divisible by some xi .
So we first need to remove any factor of xi appearing in any f j . After re-indexing, we may assume
that x2, . . . , xt are exactly those xi appearing as factors among the f j . Because the elements f1, . . . , fr

satisfy A1, for any xi with 2 ≤ i ≤ t , there is exactly one f j such that xi divides f j . We may re-index the
f j to assume xi divides fi−1, for 2 ≤ i ≤ t , and therefore no xi divides any f j if i > t . For 2 ≤ i ≤ t ,

write fi−1 = xi f ′

i−1.
Now, by assumption, each f j is in T p∧p2

k j
for some k j , with 1 ≤ j ≤ r . If we take k := k1 · · · kr · p, then

we have f j ∈ T p∧p2

k , for all j , and moreover, p | k. We can do this since if a | b, then T p∧p2

a ⊆ T p∧p2

b .
We start by removing the factor x2 from f1. We wish to prove that f ′

1 ∈ T p∧p2

k . Now, by assumption,
in Tk we have f1 = h p

+ bp2. Thus,

(x2 f ′

1) = ( p
√

x2 )p f ′

1 = h p
+ bp2,

so that in Tk/pTk , we have ( p
√

x2 )p f ′

1 ≡ h p. Since Tk/pTk is a UFD, it follows that in Tk/pTk , f ′

1 is a p-th
power, say f ′

1 ≡ h p
0 . Thus, in Tk , f ′

1 = h p
0 +ap, for some a ∈ Tk . Therefore, f1 = x2h p

0 +x2ap = h p
+bp2.

It follows that, in Tk/pTk , we have

0 ≡ h p
− x2h p

0 ≡ (h − p
√

x2 h0)
p,

and thus, h ≡ p
√

x2 h0 mod pTk , so that h = p
√

x2 h0 + cp for some c ∈ Tk . Thus,

( p
√

x2 h0 + cp)p
+ bp2

= x2h p
0 + ax2 p.

Subtracting x2h p
0 from both sides of this last equation, we have that p2 divides the left-hand side of the

equation, so p2 divides the right-hand side of the equation, giving p | a. Thus, f ′

1 ∈ T p∧p2

k , as required.
We now note that the set C := { k

√
x2, f ′

1, f2, . . . , fr } satisfies A1 in Tk . This follows since a height one
prime in Tk contracts to a height one prime in S, and the set {x2, f ′

1, f2, . . . , fr } satisfies A1 in S. Note,
however, that for j ≥ 2, the f j need not be square-free in Tk , since f2, . . . , ft−1 are divisible by x2, . . . , xt ,
respectively.
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Now, we repeat the process removing x3 from the element f2. The same argument as above shows
f ′

2 ∈T p∧p2

k ∩S and { k
√

x2, k
√

x3, f ′

1, f ′

2, f3, . . . , fr } satisfies A1 in Tk . Continuing this process we eventually
arrive at the following set up:

(a) f̃1, . . . , f̃r ∈ T p∧p2

k ∩ S and no f̃ j is divisible in S (or Tk) by any xi .

(b) f̃ j = f j for t ≤ j ≤ r and f j = x j f̃ j , where f̃ j = f ′

j , for 1 ≤ j ≤ t − 1.

(c) The set { k
√

x2, . . . , k
√

xt , f̃1, . . . , f̃r } satisfies A1.

We now observe that f̃1, . . . , f̃r are square-free elements in Tk , and not divisible by p. The latter
statement holds, since the f̃ j are not divisible by p in S, and therefore are not divisible by p in Tk ,
since pS = pTk ∩ S. To see that f̃1, . . . , f̃t are square-free in Tk , it suffices to show they are square-free
in Tk[1/p], since p does not divide any f̃ j . However, the set { k

√
x2, . . . , k

√
xd , f̃1, . . . , f̃r } satisfies A1, so

Proposition 2.2 gives us what we want.
For ease of notation, set k

√
xi := yi for 2 ≤ i ≤ d. We make one more ring extension. Set

T̃ := Tk[ n1
√

y1, . . . , nt
√

yt ] and let Ẽ denote its quotient field. Here we are choosing ni
√

yi so that
( ni
√

yi )
k
= n j

√
xi . Then T̃ is an unramified regular local ring of mixed characteristic p, and since f̃1, . . . , f̃r

are square-free in Tk , satisfy A1, and each f̃ j ∈ T p∧p2

k , they remain such in T̃ . It follows that

F := Ẽ
(

n1

√
f̃1, . . . ,

nr

√
f̃r

)
is a class one radical extension of Ẽ . Thus, by our assumption on the n j , if we let R̃ denote the integral
closure of T̃ in F , then Theorem 3.5 implies that R̃ is Cohen–Macaulay. The proof of the theorem will
be complete, once we observe that R ⊆ R̃, and for this it suffices to see that L(ω1, . . . , ωr ) ⊆ F .

To finish, we note that, since f j = x j+1 f̃ j , for 1 ≤ j ≤ t − 1 and f j = f̃ j , for t ≤ j ≤ r ,

L(ω1, . . . , ωr ) ⊆ L
(

n1
√

x2, . . . ,
nt
√

xt ,
n1

√
f̃1, . . . ,

nr

√
f̃r

)
.

Since ( ni
√

yi )
k
= n j

√
xi , L

(
n1
√

x2, . . . , nt
√

xt ,
n1

√
f̃1, . . . ,

nr

√
f̃r

)
⊆ F , which gives what we want. □

Remark 4.2. In Theorem 4.1, we can remove the restrictions that f1, . . . , fr be square-free and satisfy A1,
by allowing extra factors involving x2, . . . , xd . For example, if f1, . . . , fr ∈ W (x), and each f j = m j f̃ j ,
where m j is a monomial in x2 . . . , xd and f̃1, . . . , f̃r are square-free and satisfy A1, the same proof shows
that f̃1, . . . , f̃r belong to W (x) and that there is a finite extension T̃ of R such that T̃ is an unramified
regular local ring of mixed characteristic p with quotient field Ẽ , so that

F := Ẽ
(

n1

√
f̃1, . . . ,

nr

√
f̃r

)
is a class one radical extension of Ẽ .4 Thus, the integral closure R̃ of T̃ in Ẽ is Cohen–Macaulay, and
therefore a small Cohen–Macaulay algebra for R.

Corollary 4.3. Let S be an unramified regular local ring of mixed characteristic p, and g1, . . . , gs ∈ S, not
divisible by p (and not necessarily square-free) and suppose that in S we can write each gi := q

ci1
i1

· · · qcit
it

as a product of primes qi j . Let ω
ni
i = gi be roots in some field extension of L such that p | ni and p2 ∤ ni

4In this scenario, f̃1, . . . , f̃r will not be square-free and satisfy A1 until all xi have been removed from all f j .
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for each i . Let R the integral closure of S in K := L(ω1, . . . , ωr ). Suppose there exists W (x) as in
Theorem 4.1 such that each qi j ∈ W (x). Then R admits a small Cohen–Macaulay algebra.

Proof. We first point out that our elements g j are products of primes and not a unit times a product of
primes. We begin with the reduction used in the proof of Theorem 6.1 in [1], which we repeat for the
reader’s convenience. Write each gi := q

di1 ni +ei

i1
· · · qdit ni +eit

it
. Then for

γi := q
di1
i1

( ni
√

qi1 )
ei1 · · · qdit

it
( ni
√

qit )
eit ,

γ
ni
i = gi , so S[ ni

√
gi ] ⊆ S[ ni

√
qi1, . . . ,

ni
√

qit ], and hence L( ni
√

gi
)
⊆ L( ni

√
qi1, . . . ,

ni
√

qit ). Doing this for
each gi shows K is contained in F := L( n1

√
q1, . . . , nr

√
qr ). Thus, R is contained in the integral closure,

say T , of S in F . Since q1, . . . , qr are distinct primes in S, they are square-free and satisfy A1, and by
assumption, they belong to V . Thus, by Theorem 4.1, T admits a small Cohen–Macaulay algebra, which
in turn, is also a small Cohen–Macaulay algebra for R, which completes the proof. □

Corollary 4.4. Let S be an unramified regular local ring of mixed characteristic p and g1, . . . , gr ∈ S,
square-free and satisfying A1. Let n1, . . . , nr be as in Theorem 4.1. Assume each gi = mi + bi p2, where
mi is a monomial in x2, . . . , xd and bi ̸= 0. Then R admits a small Cohen–Macaulay algebra.

Proof. If h = xe2
2 · · · xed

d is a monomial in x2, . . . , xd , then m = {( p
√

x1 )e1 · · · ( p
√

xd )ed }
p in Tp. Thus, each

g j ∈ W (x), and the result follows from Theorem 4.1. □

Example 4.5. The above results provide small Cohen–Macaulay algebras for many non-Cohen–Macaulay
rings. Here is a concrete example. Consider Example 3.10 in [2]. We start with an unramified regular
local ring of mixed characteristic 3, say S, and take x, y ∈ S such that 3, x, y form part of a regular
system of parameters for S. Take a := xy4

+ 9, b := x4 y + 9, f = ab2 and ω a cube root of f . If R is
the integral closure of S in the quotient field of S[ω], then, as shown in [2], R is not Cohen–Macaulay.
Set T := S[ 3

√
x, 3

√
y ]. Then T is an unramified regular local ring such that 3, 3

√
x, 3

√
y form a part of

a minimal generating set of the maximal ideal of S. Then a, b ∈ T are square-free, mutually coprime
and lie in T 3∧9. By Theorem 3.5, the integral closure of T in the quotient field of T [ 3

√
a,

3
√

b ], say R̃, is
Cohen–Macaulay. Since R̃ is a module finite extension of R, it is a small Cohen–Macaulay algebra for R.

We note two things about the constructions in this paper:

(i) In the above example, f ∈ S3∧9, but the integral closure of S in the quotient field of S[ω] is not
Cohen–Macaulay. So, the square-free hypothesis in Theorem 3.4 cannot be dropped.

(ii) The integral closure in a general square-free p-th root tower with elements from S p∧p need not be
Cohen–Macaulay. Consider Example 4.10 in [7]: Setting S := Z[X, Y ](p,X,Y ) for some prime number p ≥

3, take f1 := X2p
− pX2p

+ p2 and f2 := (XY )p
+ p(XY )p

+ p2. Then f1, f2 ∈ S p∧p
\ S p∧p2

are square-
free and mutually coprime. If R is the integral closure of S in L( p

√
f1,

p
√

f2 ), then proj dimS(R) = 1.

Example 4.6. Here is an example illustrating Theorem 3.4. Take S = Z3[[X, Y ]], where Z3 denotes the
3-adic integers and f := X3

+ 9, g = Y 3
+ 9. Then f, g ∈ S3∧9 are square-free and mutually coprime.

Let L denote the fraction field of S and let R be the integral closure of S in L( 3
√

f , 3
√

g ). Then R is a
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free S-module of rank 9 with a basis given by V = V0 ∪ V1 ∪ V2, where

V0 := {1, 3
√

f − X, 3
√

g − Y },

V1 := {3−1( 3
√

f − X )2, 3−1( 3
√

f − X )( 3
√

g − Y ),

3−1( 3
√

g − Y )2, 3−1( 3
√

f − X )( 3
√

g − Y )2, 3−1([3] f − X )2( 3
√

g − Y )},

V2 = {9−1( 3
√

f − X )2( 3
√

g − Y )2
}.

5. Concluding remarks

In this section we make a few remarks concerning our assumptions, and how they might be successfully
altered. As mentioned in the introduction, our primary assumption that the elements whose roots we
take belong to S p∧p2

stems from the success we have had with this assumption in [3; 6; 7], together
with the fact that there is an unramified prime over p with trivial extension of residue fields. In [2], for
square-free f not a p-th power modulo pS, i.e., f ̸∈ S p∧p, it is noted that S[ω] is already integrally closed.
Unfortunately, as shown in [6] and [7], adjoining p-th roots of even two square-free elements that are not
in S p∧p presents considerable difficulties. In particular, if ωp

= f and µp
= g, then S[ω, µ] need not be

integrally closed, nor need its integral closure be Cohen–Macaulay, when S is regular. However, we can
extend Theorem 3.4 by adjoining multiple elements that are not in S p∧p if we assume they are sufficiently
independent modulo pS. Suppose that we start with a class one tower over S as in the statement of
Theorem 3.4. and suppose that S ↪→ T is an integral extension of integrally closed domains such that T is
S-free, p ∈ T is a principal prime and the fi ∈ T remain square-free. Write E for the fraction field of T .
Then applying Theorem 3.4 to T , the integral closure of T in E( p

√
f1, . . . ,

p
√

fr
)

is T -free. Therefore,
the integral closure of S in E( p

√
f1, . . . ,

p
√

fr ) is S-free. This is exactly what happens when we adjoin
p-th roots of square-free elements linearly disjoint modulo p alongside a class one tower.

Definition 5.1. Let F denote the fraction field of S/pS. The elements g1, . . . , gt in S are said to be
linearly disjoint modulo p if gi /∈ F p for all i and there is an isomorphism of F-vector spaces

F
(

p
√

g1
)
⊗F · · · ⊗F F

(
p
√

gt
)
≃ F

(
p
√

g1, . . . ,
p
√

gt
)
,

where gi is the image of gi modulo p.

Note that if S/p is integrally closed, then g ̸∈ F p if and only if gi /∈ S p. The following proposition
extends the crucial result Theorem 3.4 from Section 3.

Proposition 5.2. Let S be an integrally closed domain with fraction field L such that p ∈ S is a
nonzero principal prime. Let f1, . . . , fr , g1, . . . , gt ∈ S be square-free elements satisfying A1 such
that L( p

√
f1, . . . ,

p
√

fr ) is a class one tower and the gi are linearly disjoint modulo p. Then, the integral
closure of S in K := L( p

√
f1, . . . ,

p
√

fr , p
√

g1, . . . , p
√

gt ) is a free S-module. In particular, if S is Cohen–
Macaulay or an unramified regular local ring, then the integral closure of S in K is Cohen–Macaulay.

Proof. By Observations 2.3(ii), T := S[ p
√

g1, . . . , p
√

gt
]
≃ S[X1, . . . , X t ]/(X p

1 − g1, . . . , X p
t − gt) where

the X i are indeterminates over S. The linear disjointness modulo p hypothesis on the gi implies that
p ∈ T is a principal prime. By Observations 2.3(i), T [1/p] is integrally closed. Since T is S-free, these
facts imply that T is integrally closed. To conclude that the fi ∈ T are square-free, we can assume p ∈ S
is a unit, since fi /∈ pS for all i . Applying Proposition 2.2 to S[1/p], we see that the fi ∈ T are all
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square-free. Thus the fi define a class one tower over T and hence by Theorem 3.4, the integral closure
of T in L( p

√
f1, . . . ,

p
√

fr , p
√

g1, . . . , p
√

gt ) is a free T -module and hence a free S-module. □

Remark 5.3. With Proposition 5.2 in hand, it is not difficult to see that Theorem 3.5 can be extended in a
similar way.

When S is a complete unramified regular local ring of mixed characteristic p > 0 whose residue field
is F-finite, there is an alternate way of dealing with elements that do not belong to S p∧p, as the following
proposition shows.

Proposition 5.4. Let (S,m, k) be a complete unramified regular local ring of mixed characteristic p > 0
with k F-finite. Then there exists an unramified regular local ring T of mixed characteristic p > 0 such
that T is finite over S and S ↪→ T p∧p.

Proof. Complete p to a minimal system of generators of m, say m = (p, x2, . . . , xd) = (p, x), and let x ′

i
denote the image of xi in S/pS. Let F denote the Frobenius map on S/pS. By hypothesis, E := S/pS is
an F-finite regular local ring and E1/p is obtained by adjoining to E the p-th roots of the x ′

i and the p-th
roots of a basis of k over k p. Take T to be the S-algebra obtained by adjoining the p-th roots of the xi

and the p-th roots of a fixed set of lifts of a basis of k over k p. By construction, S ↪→ T p∧p. Moreover, it
follows easily that T is regular local with maximal ideal generated by (p, p

√
x2, . . . , p

√
xd ) and residue

field k1/p.5 □

Remark 5.5. Let S, x and T be as in the preceding proposition, so that S ⊆ T p∧p. Assume further
that the residue field k is perfect. Thus, T = Tp(x), where for k ≥ 1, Tk(x) has the same meaning as in
Theorem 4.1. We want to observe, that in this case, Tp(x) ∩ S =

⋃
k≥1(T (x)p∧p2

∩ S) = W (x). Suppose
f = h p

+ ap2, with h, a ∈ Tk(x), for some k > p, and f ∈ S square-free. We can write f = h p
0 + bp, for

h0, b ∈ T . Then 0 ≡ h p
− h p

0 ≡ (h − h0)
2 mod pTk(x), from which it follows that h ≡ h0 mod pTk(x).

Thus, h = h0 + cp, for some c ∈ Tk(x). Therefore f = (h0 + cp)p
+ap2

= h p
0 +dp2, for some d ∈ Tk(x).

Thus f − h p
0 ∈ p2Tk(x) ∩ T = p2T , since T is integrally closed and Tk(x) is integral over T . It follows

that f ∈ T p∧p2
, which is what we want.

Consider the question of the existence of maximal Cohen–Macaulay modules over the integral closure
of a complete regular local ring S of mixed characteristic p > 0 with perfect residue field, in an arbitrary
p-th root tower over its quotient field K . One of the main differences between our point of view in this
paper and our earlier ones is that we do not restrict ourselves to birational Cohen–Macaulay modules or
algebras (see Theorem 4.1), whereas the constructions in [2; 6; 7] are all birational. Thus, results like
Proposition 5.4 simultaneously allow us to move beyond the birational assumption and also enable us to
restrict attention to the case of general square-free towers with elements chosen from S p. Indeed, choose
an unramified regular local ring T such that S ↪→ T p∧p as in Proposition 5.4. Let L ′ be the fraction field
of T and set K := K [L ′

]. Note that Proposition 2.2 implies that square-free elements of S that are not
divisible by the regular system of parameters used to construct T from S remain square-free in T . It
is then clear that K embeds in a finite field extension of it, say K̃ , obtained by adjoining p-th roots
of mutually coprime square-free elements of T coming from T p∧p to L ′. Let R be the integral closure
of S in K̃ . It then suffices to show that R admits a maximal Cohen–Macaulay module. In summary,

5That T is regular can be checked one element at a time. After adjoining the p-th roots of the xi , we get a URLR. When we
adjoin the p-th roots of the units in question, the generators of the maximal ideal remain the same at each step.



558 DANIEL KATZ AND PRASHANTH SRIDHAR

in attempting to construct a maximal Cohen–Macaulay module or algebra over R, we can simply start
over and assume that the elements whose roots we adjoin are mutually coprime, square-free and come
from S p∧p.

Finally we address the question of units. As pointed out in the introduction, when the exponents ni are
units, the ring S[

n1
√

f1, . . . ,
nr
√

fr ] is integrally closed and a free S-module. It is not difficult to show that
if, say, in Theorem 3.5 we allow some of the ni to be units, while the other ni = pdi with di a unit, then
the conclusion of the theorem still holds. The conclusions of our other results then follow in this case as
well. However, we have focused on the case that the ni are nonunits, since we are motivated by the case
where S is an unramified regular local ring of mixed characteristic p, and the extensions of quotient fields
have degree divisible by p. We could also consider the case that some of the fi are units. However, this
potentially introduces roots of unity and we lose the property that the degree of the extension of quotients
field equals pr . We address the issue involving roots of unity in a forthcoming paper [4].
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