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Introduction

Throughout we let (T,m, k) denote a commutative Noetherian local ring with
maximal ideal m and residue field k. We let I ⊆ T be an ideal generated by
a regular sequence of length c and set R := T/I. In the important paper [A],
Avramov addresses the following question. Given a finitely generated R-module M ,
when does M have finite projective dimension over a ring of the form T/J , where J
is generated by part (or all) of a set of minimal generators for I? The paper [A] gives
a fairly complete answer to this question that is expressed in terms of the geometry
of varieties in affine space defined by annihilators of certain graded modules derived
from resolutions over R. In an attempt to understand these ideas more fully, we
became interested in the idea that one might answer the question at hand by using
data about M (or its syzygies) coming from T , in particular, information gleaned
from various Fitting ideals defined over T . The following theorem from section two
is one of our main results. We use FittT (M) to denote the Fitting ideal of M .

Theorem 2.2. Suppose M has a rank over R. Then M is free over R if and only
if FittT (M) is grade unmixed.

Recall that an ideal in a Noetherian ring is grade unmixed if all of its associated
primes have the same grade. The theorem has two immediate consequences if the
ring T satisfies Serre’s condition Sc+1. The first is the suprising fact that the
Fitting ideal of any non-free R-module with a rank has embedded components, and
the second is that M has finite projective dimension over R if and only the Fitting
ideals over T of sufficiently high syzygies of M over R are unmixed.
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Carrying the theme of Fitting ideals determining finite projective dimension fur-
ther, in the third section we show how the Fitting ideal of a high syzygy of M
determines whether or not M has finite projective dimension over intermediate
complete intersections of codimension c − 1. The relevance of this comes from the
fact that if k is algebraically closed, M has finite projective dimension over R if and
only if it has finite projective dimension over every intermediate complete intersec-
tion of codimension c−1. Thus, if M does not have finite projective dimension over
R, it becomes of interest to determine over which, if any, intermediate complete
intersections M has finite projective dimension. In section three, we show that, at
least in codimension c− 1, again the answer is determined by Fitting ideals.

Section 1

In this section we fix our notation and provide a few preliminary results, including
an elementary presentation of a generalization of the result implicit in [A] that
finite projective dimension over R is determined in codimension one. We assume
throughout that c ≥ 2. We will often assume that M has a positive rank. This
means that for some r > 0 and all P ∈ Ass(R), MP is a free RP -module of rank r.
We fix d := depth(R) and δ := depth(M) and assume throughout that δ ≤ d. We
also fix a minimal presentation

Tm
φ→ Tn →M → 0,

so that the Fitting ideal of M is the ideal generated by the n×n minors of the map
φ with respect to some (equivalently an arbitrary) choice of bases for the two free
modules. We denote this ideal by FittT (M), or by Fitt(M) when the ring is clear.
In fact, FittT (M) is independent of the presentation of M and respects change of
rings. In particular, if T maps onto the ring S and M is also an S-module, then
FittS(M) = In(φ)S. By ΩiR(M) we denote an ith syzygy of M over R. The Fitting
ideals of all choices of ith syzygies are the same. Finally, by the term ‘intermediate
complete intersection of codimension t’ we mean a ring of the form T/J , where J
is generated by a set of t minimal generators for I and 1 ≤ t ≤ c− 1.

Now we turn to a proof of the fact that M has finite projective dimension over
R if and only if M has finite projective dimension over every intermediate complete
intersection of codimension one. We first require a lemma, interesting in its own
right.

1.1 Lemma. Let T , R be as above and let M be any finitely generated R-module.
Assume c = 2, h ∈ I\mI and set S := T/hT . Assume that pdS(M) = 1 and
that M has no free summands over R and write I := (f, h)T , Z := Ω1

T (M) with
Z ⊆ Tn. Then, writing “¯” to denote images in Z ⊗T k, f · ej belongs to the span
of {h · e1, . . . , h · en}, for all 1 ≤ j ≤ n. Moreover, let A be the n × n transition
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matrix over k whose columns consist of the coefficients resulting from expressing
the f · ej in terms of the h · ei and for g a minimal generator of I, set Sg := T/gT .
Then the following are equivalent :

(1) pdSg (M) <∞ (i.e., pdSg (M) = 1).
(2) {g · ej}, 1 ≤ j ≤ n, are linearly independent in Z ⊗T k.
(3) µ(Ω1

Sg (M)) = n.

Furthermore, if for some unit λ, g is equivalent to f − λh modulo m I, (1)-(3) are
equivalent to

(4) A− λIn has maximal rank, i.e., λ is not an eigenvalue of A.

Proof. Let ψ be an n× n matrix with entries in m such that

0 −→ Sn
ψ⊗1S−−−→ Sn −→M −→ 0

is exact. Then it follows readily from the Buchsbaum-Eisenbud exactness criteria
that

0 −→ Tn

(−h · In
ψ

)
−−−−−−−−→ T 2n (ψ h·In)−−−−−−→ Tn −→M −→ 0

is also exact. Therefore µ(Z) = 2n and Z is spanned by the columns of ψ and h ·In.
Now suppose some f · ej does not belong to the span of the h · ei, say f · e1. Then
there exists an n× n matrix ψ′ = (f · e1 ∗) such that Z is spanned by the columns
of ψ′ and h · In. Therefore, since FittT (M) has grade two,

0 −→ Sn
ψ′⊗1S−−−−→ Sn −→M −→ 0

is exact. If we tensor with R, we get a short exact sequence

0 −→ TorS1 (M,R) −→ Rn
(0 ∗)−−−→ Rn −→M −→ 0,

so TorS1 (M,R) has a free summand. But this is a contradiction, since this module
is isomorphic to M . It follows that all of the f · ej belong to the span of the h · ei.
This proves the first statement in the lemma and yields the existence of the matrix
A.

To prove the equivalence of statements (1)-(4), suppose (1) holds. Then exactly
the same proof as above shows that there is an n×n matrix α with entries in m such
that (α | g · In) minimally presents M over T . Thus {g · ej}, 1 ≤ j ≤ n, is part of a
minimal generating set for Z, so (2) holds. Now suppose (2) holds. Since µ(Z) = 2n
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and the g ·ej are part of a minimal generating set for Z, there exists and n×n matrix
β such that (β | g · In) presents M over T . But rad(FittT (M)) = rad((det(β), g)T )
has grade two, so det(β) is a non-zerodivisor on Sg, and therefore

0 −→ Sng
β−→ Sng −→M −→ 0

is exact. Thus, (1) and (2) are equivalent. The proof of the equivalence of (1) and
(3) is similar, so (1)-(3) are equivalent. Finally, if g is equivalent to f − λh modulo
m I, then A− λ · In is the matrix of coefficients expressing the g · ej in terms of the
h · ei, so the equivalence of (2) and (4) is immediate. Thus (1)-(4) are equivalent
and the proof of the lemma is complete. �

Let g ∈ I be a minimal generator. If g′ is any other minimal generator having the
same image as g in I ⊗T k, then since I · Tn ⊆ Z, the images of the g · ej in Z ⊗T k
agree with the images of the g′ · ej . Thus, Lemma 1.1 shows that M has finite
projective dimension over T/(g) if and only if M has finite projective dimension
over T/(g′) (which we expect, by [A; Theorem 3.9]). Moreover, if the image of g in
I ⊗T k is not a unit multiple of h, then, up to images in I ⊗T k, g = f − λh for
an appropriate unit λ. This means that for the case c = 2, we have determined the
intermediate complete intersections of codimension c − 1 over which M has finite
projective dimension and that these rings correspond to the elements of k that are
not eigenvalues of the transition matrix A.

With the previous lemma in hand, we may give an elementary proof of the
following result from [A]. While this result is not stated explicitly, it follows readily
from [A; Theorem 3.9] and elementary properties of cones in affine space.

1.2 Corollary. Suppose that k is algebraically closed. Let R be as above and M
be any R-module. Then the following are equivalent :

(1) pdR(M) <∞.
(2) pdS(M) <∞, for all intermediate complete intersections S.
(3) pdS(M) <∞, for all codimension c− 1 intermediate complete intersections

S.
(4) pdS(M) <∞, for all intermediate hypersurfaces S.

Proof. We prove that (1)-(4) are equivalent by induction on c. Assume for the
moment that the base case c = 2 holds and that (1)-(4) are equivalent for all rings
R′, where R′ is an intermediate complete intersection of codimension d < c (with
d replacing c in (1)-(4)). Now take c > 2. That (1) implies (2) follows easily from
reverse induction on depth(M), starting with the case depth(M) = depth(R). That
(2) implies (3) is trivial. To see that (3) implies (4), let T ′ be any intermediate com-
plete intersection of codimension one. Then, we can regard R as a T ′-module and as
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such, it has codimension c− 1. Any intermediate complete intersection between T ′

and R of codimension c−2 corresponds to an intermediate complete intersection of
codimension c−1 between T and R, so M has finite projective dimension over such
a ring, by hypothesis. Therefore by induction, M has finite projective dimension
over T ′. Finally, suppose (4) holds. Fix T ′′, an intermediate complete intersection
of codimension c−1. Condition (4) and the induction hypothesis imply that M has
finite projective dimension over T ′′. This is true for all such T ′′, so that if S is any
intermediate complete intersection of codimension c − 2, the c = 2 case applied to
S and R shows that M has finite projective dimension over R.

Now, to prove the base case, suppose c = 2. Then (1) implies (2) as before.
Moreover, conditions (2)-(4) are all the same. So assume (2) holds. Replacing
M with a high syzygy over R, we may further assume depth(M) = depth(R).
Therefore, we want to show that M is free over R. Write M = G ⊕ N , where G
is a free R-module and N has no free summand over R. Suppose N 6= 0. Write
I = (f, h)T and note that for S := T/(h), pdS(N) = 1. We now apply the lemma
to N . Since k is algebraically closed, we can find λ ∈ k an eigenvalue for the
transition matrix A in Lemma 1.1. Thus, for Sλ in Lemma 1.1, pdSλ(N) = ∞,
which contradicts the assumption (2). So N = 0 and M is free, as required. �

1.3 Example. Here is an example showing how the corollary can fail if the residue
field is not algebraically closed. Set T := Z2[[x, y]] and I := (x2, y2)T . Thus,
R = T/I is zero-dimensional, so no R-module has finite projective dimension un-
less it is a free R-module. To see that a module has finite projective dimension
over every intermediate hypersurface between T and R, by the comments follow-
ing Lemma 1.1, it suffices to check that it has finite projective finite projective
dimension over the three intermediate hypersurfaces determined by the polynomi-
als x2, y2 and x2 + y2. Let M be the module presented over R by the matrix

α :=
(

x y
x+ y x

)
. A straightforward calculation shows that over each of these

hypersurfaces, the columns of the matrix
(
x2 0 y2 0
0 x2 0 y2

)
are in the span of

the the columns of α. Thus, α presents M over the given hypersurfaces. On the
other hand, det(α) = x2 + xy + y2, which is a non-zerodivisor in the given rings.
Therefore, M has projective dimension one over each of these rings, and therefore
over every intermediate complete intersection of codimension one. Moreover, it is
interesting to note that if one takes h := y2 and f := x2 as in Lemma 1.1, then the

transition matrix A =
(

0 1
1 1

)
. The characteristic polynomial of A is λ2 + λ+ 1,

so A has no eigenvalues over Z2.
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Section 2

In this section we prove one of our main results, Theorem 2.2, which says that
M is free over R if and only if FittT (M) is grade unmixed. This has the surprising
consequence that if T satisfies Sc+1, then every finitely generated non-free module
M over R with a rank has the property that FittT (M) has an embedded component.
A test for finite projective dimension over R then follows readily from the theorem.
The results in this section (and the next) rely heavily upon the following crucial
proposition.

2.1 Proposition. Let M be a finitely generated R-module, rank(M) = r. Suppose
that h := h1, . . . , hc−1 is part of a minimal generating set for I and set S := T/(h).
Then pdS(M) = 1 if and only if In(φ) + (h) = Ir + (h).

Proof. We first note that since MP is free of rank r for all P ∈ Ass(R) = Ass(T/I),
FittT (MP ) = FittT (RrP ) = IrP . Since Ass(T/I) = Ass(T/Ir), it follows that
In(φ) ⊆ Ir, so In(φ) + (h) ⊆ Ir + (h) always holds.

Suppose pdS(M) = 1. Then there exists an n× n matrix ψ over T such that

0 −→ Sn
ψ⊗1S−−−→ Sn −→M −→ 0,

is exact. Thus, In(ψ)S = In(φ)S, by invariance of Fitting ideals. Therefore,
(In(φ), h)T = (∆, h)T , where ∆ = det(ψ) is a non-zerodivisor on S. Take P in
Ass(T/(In(φ), h)). Then P ∈ Ass(T/(∆, h)), so depth(TP ) = c. Since In(φ) and
I have the same nilradical, P contains I, so P ∈ Ass(T/I). Thus, In(φ)P = IrP ,
so (Ir, h)P ⊆ (In(φ), h)P . Since this holds for all P ∈ Ass(T/(In(φ), h)), we have
Ir + (h) ⊆ In(φ) + (h), which gives what we want.

Conversely, suppose that (In(φ), h)T = (Ir, h)T . Then, writing I = (h, l)T , for
some l, (Ir, h) = (lr, h). Therefore In(φ) is principal modulo (h). It follows that
(In(φ), h) = (∆, h) and that ∆ ≡ λlr modulo (h), for some n×n minor ∆ of φ and
unit λ. Let ψ be the n× n submatrix of φ whose determinant is ∆. Over S, let N
denote the cokernel of ψ. In other words, we have an exact sequence

0 −→ Sn
ψ⊗1S−−−→ Sn −→ N −→ 0.

Since the submodule of Sn spanned by the columns of ψ is contained in the one
spanned by the columns of φ, it follows that N maps surjectively onto M . Let K
denote the kernel of this map. We show K = 0, which will complete the proof.

Take P ⊆ T such that P ∈ Ass(N). It is enough to show that KP = 0. By the
Auslander-Buchsbaum formula, depth(SP ) = pdSP (NP ) + depth(NP ) = 1. Since
P contains lS, this implies that P ∈ Ass(T/I). It follows that MP is isomorphic to
(Sr/l · Sr)P , as SP -modules. Now, aside from the original presentation matrix φ,
M is also presented over SP by the matrix l · Ir. By invariance of Fitting ideals, we
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have In−i(φ)SP = lr−iSP , for i = 0, . . . , r. Since ann(NP ) = (∆SP :SP In−1(ψ))
(see [BE]), we have

lSP = (lrSP :SP l
r−1) = (∆SP :SP In−1(φ)) ⊆ (∆SP :SP In−1(ψ)) = ann(NP ),

so l annihilates NP . Therefore, we may regard NP and KP as RP -modules. Since
MP is free over RP , NP = MP ⊕ KP , as RP -modules, and also as SP -modules.
Thus, FittSP (NP ) = FittSP (MP ) · FittSP (KP ). Since FittSP (NP ) = FittSP (MP ),
it follows that FittSP (KP ) = SP , so KP = 0, which completes the proof of the
proposition. �

We may now state and prove the main result of this section.

2.2 Theorem. Let M be a finitely generated R-module having rank r. Then M is
free over R if and only if FittT (M) is grade unmixed.

Proof. If M is a free R-module, then FittT (M) = FittT (Rr) = Ir. Thus, FittT (M)
is a perfect ideal, and perfect ideals are grade unmixed. Conversely, suppose
FittT (M) is grade unmixed. Then any prime P associated to FittT (M) is a grade
c prime containing I and is therefore an associated prime of I. But the proof
of Proposition 2.1 shows that FittT (M)P = IrP for any such prime P , therefore,
FittT (M) = Ir. As we would like to invoke Corollary 1.2, we pass to a faithfully
flat extension T̃ of T having algebraically closed residue field (see [EGA; Lemma
19.7.1.3]). Note that we still have the equality FittT̃ (M ⊗T T̃ ) = IrT̃ . Setting
R̃ := T̃ /IT̃ , we have that R̃ is faithfully flat over R. If M ⊗R R̃ were free over R̃,
then M would be free over R and we would be done. Thus, we may assume T = T̃ .

Now, let h := h1, . . . , hc−1 be any c − 1 elements in I forming part of a mini-
mal generating. Since FittT (M) = Ir, In(φ) + (h) = Ir + (h), so by Proposition
2.1, pdT/(h)(M) = 1. Since this holds for all choices of h, Corollary 1.2 implies
that M has finite projective dimension over R. Moreover, since depthT/(h)(M) =
depth(T/(h))− 1, depth(M) = depth(R), so M is free over R. �

The proof of Theorem 2.2 gives a little more than we have stated. We record
this as a corollary for future reference.

2.3 Corollary. Suppose that M has rank r. The following are equivalent :

(1) M is a free R-module.
(2) FittT (M) is grade unmixed.
(3) FittT (M) and I have the same associated primes.
(4) FittT (M) = Ir.
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2.4 Corollary. Suppose T that satisfies Serre’s condition Sc+1 and M has rank r.
If M is not free over R, then FittT (M) has embedded associated primes. In fact,
the minimal primes over In−r(φ) are embedded primes of FittT (M).

Proof. The first statement follows immediately from the theorem. For the second
statement, by [E; Prop. 20.7], Ir · In−r(φ) ⊆ In(φ) = FittT (M). On the one hand,
since MP is free of rank r over R for all P ∈ Ass(R), In−r(φ)R is not contained in
any P ∈ Ass(R), so height(In−r(φ)) > c = height(FittT (M)). On the other hand,
since In(φ) ⊆ Ir, Corollary 2.3 gives that (In(φ) : Ir) defines the locus of primes for
which M is not free over R, so (In(φ) : Ir) and In−r(φ) have the same radical. Thus,
if P is a prime in T minimal over In−r(φ), IrP is not contained in In(φ)P , so the
PP -primary ideal In−r(φ)P consists of zero divisors modulo FittT (M)P . Therefore,
P is an embedded associated prime of FittT (M). �

The next corollary is an immediate consequence of Theorem 2.2, and gives a
criterion for M to have finite projective dimension over R in terms of a Fitting
ideal defined over T .

2.5 Corollary. Suppose that T satisfies Serre’s condition Sc+1. Then M has finite
projective dimension over R if and only if FittT (Ωd−δR (M)) has no embedded primes.

2.6 Remark. In principle, one would like to have a formula for the Fitting ideal
of Ωd−δR (M) in Corollary 2.5, but this seems to require an explicit description of
the R syzygies of M , which is tantamount to invoking constructions along the lines
of Eisenbud-Shamash (see [A2; section 9]). Unfortunately, these constructions are
iterative and do not readily lead to closed form expressions. Another approach,
also iterative, is to use a construction from homological algebra that yields a free
resolution of the first module in a short exact sequence of modules, given free
resolutions of the other two terms. Applying this to the short exact sequence of
T -modules 0 −→ Ω1

R(M) −→ Rn −→M −→ 0, the first map in the resulting resolution
for Ω1

R(M) can then be taken as a presentation from which the Fitting ideal can
be calculated. We sketch the construction, for the reader’s convenience. Let (F, φi)
be a free resolution of M over T and (G, ψi) be a free resolution of I over T , e.g.,
the Koszul complex. Then the augmentation of the acyclic complex G ⊗ F0 maps
onto M , so the comparison theorem gives a map of complexes G ⊗ F0

α−→ F. Let
(H, ρi) be the mapping cone of α. Then H is an acylic complex. If we truncate this
complex to

· · · −→ H3
ρ3−→ F2 ⊕ (G1 ⊗ F0)

(φ2|α1)−−−−→ F1,

then we still have an acylic complex, and it is easy to see that the map (φ2|α1)
gives a presentation for Ω1

R(M). Thus, we have a free resolution of Ω1
R(M) as a

T -module. One can now iterate this construction to produce free resolutions and
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Fitting ideals over T of higher R syzygies of M . It should be noted that even if
we just want the matrices presenting the ΩiR(M) over T , this construction shows
that we need to know the maps further along in the T resolutions of the ΩjR(M),
for j < i.

We conclude this section with some examples. The first example illustrates the
conclusion of Theorem 2.2 (and its corollaries) and the next three examples illustrate
the extent to which the hypotheses in Theorem 2.2 are required.

2.7 Example. Let k be a field and T := k[[x, y, z]]. Set set f := xz−y2, g := x3−z2,
I := (f, g)T and R := T/I. Then R is a one-dimensional complete intersection
domain of codimension 2. For M := k, by Theorem 2.2 we expect the Fitting ideal
of Ω1

R(M) = mR to have an embedded associated prime. The construction in the
remark above readily gives the following presentation over T

T 5


y z 0 0 x2

−x 0 −z y 0
0 −x −y −x −z


−−−−−−−−−−−−−−−−−−−−−−→ T 3 −→ Ω1

R(M) −→ 0.

Thus, FittT (Ω1
R(M)) = m ·I, and m is an embedded associated prime.

2.8 Example. Theorem 2.2 fails for c = 1. Indeed, let k be a field and x, y, z be
indeterminates over k. Set T := k[[x, y, z]], f := xz − y2, I := fT and R := T/I.
Let M be defined as the cokernel of the map from R2 to R2 given by the image of

the matrix
(
y x
x y

)
. Then depth(M) = depth(R) (since M is just Ω2

R(k)) and M

has infinite projective dimension over R. On the other hand, it is easy to see that
the same matrix presents M over T , so FittT (M) = I is unmixed.

2.9 Example. Theorem 2.2 fails if I is not generated by a regular sequence. Let k
be an infinite field and T be the polynomial ring in n ·m variables over k, localized
at its homogenous maximal ideal. Let φ be the corresponding generic n×m matrix
and assume m > n and n ≥ 2, so that I := In(φ) is not a complete intersection. Let
M denote the cokernel of φ over T and take R := T/I. Then M is an R-module
of maximal depth and has infinite projective dimension. But FittT (M) = In(φ) is
unmixed.

2.10 Example. Theorem 2.2 fails if M does not have a rank. Indeed, just take any
case in which R has dimension zero, i.e., T is Cohen-Macaulay and I is generated
by a maximal regular sequence. Then for any R-module M , FittT (M) is m-primary
and therefore unmixed.

Section 3

In this section we demonstrate further connections between the Fitting ideals of
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modules over R and the property of having finite projective dimension. Let M be an
R-module. In our proof of Theorem 2.2, we made crucial use of Corollary 1.2 which
guarantees that M has finite projective dimension over R if and only if M has finite
projective dimension over every intermediate complete intersection of codimension
c − 1 (if k is algebraically closed). Thus we adopt the view in this section that it
is of interest to know whether or not M has finite projective dimension over any
intermediate complete intersection of codimension c − 1, and if so, how are these
rings determined. In fact, one answer to this question is given by [A, Theorem
3.9], where finite projective dimension over intermediate complete intersections is
determined by the support variety of M . We will mention this in a remark below,
but for now our goal remains to express this property in terms of various Fitting
ideals.

As one can generally replace M by a high syzygy over R, some of the proofs
of our results focus on modules M satisfying depth(M) = depth(R). Note that in
this case, were M to have finite projective dimension over R or any intermediate
complete intersection, then M would have finite projective dimension over T and
thus M would be a perfect T -module. Before getting to the main result of this
section, we begin with a lemma which tells us about the resolution of such an M
over T .

3.1 Lemma. Let M be a perfect T module of grade c. Assume there exists a
regular sequence h1, . . . , hc−1 ∈ ann(M) such that for S := T/(h1, . . . , hc−1)T , M
has finite projective dimension over S . Then :

(1) There exists an n× n matrix ψ over T such that the minimal resolution for

M over T is C ⊗T K, where C is the complex 0 −→ Tn
ψ−→ Tn −→ 0 and K

is the Koszul complex on the hi.
(2) Let g1, . . . , gc−1 ∈ ann(M) be a regular sequence and suppose there exists

an n × m matrix α over T such that the matrix (α|g1 · In| · · · |gc−1 · In)
is a minimal presentation of M over T . Then m = n and for S′ :=
T/(g1, . . . , gc−1)T , pdS′(M) <∞.

Proof. For (1), by grade considerations and the fact that pdS(M) < ∞, it follows
that pdS(M) = 1. Since annS(M) contains a non-zerodivisor, it follows that there
exists an n× n matrix ψ over T such that

0 −→ Sn
ψ⊗S1S−−−−→ Sn −→M −→ 0,

is exact. Therefore, h1, . . . , hc−1,det(ψ) form a regular sequence in T . If we set
J := (h1, . . . , hc−1)T and N := coker(ψ), then we have that TorTi (T/J,N) = 0, for
all i > 0. Since this Tor may also be computed as the homology of C ⊗T K, (1)
follows.
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For (2), since C ⊗T K is a minimal resolution of M over T , the n × cn matrix
(ψ|h1 ·In| · · · |hc−1 ·In) is a minimal presentation for M over T . Thus, µ(Ω1

T (M)) =
cn, so the number of columns in the matrix (α|g1 · In| · · · |gc−1 · In) equals cn, so

m = n. Therefore, (S′)n
α⊗S′1S′−−−−−→ (S′)n −→ M −→ 0 is a minimal presentation of

M over S′. On the other hand, the hypothesis on M implies that the grade of the
ideal of n× n minors of (α|g1 · In| · · · |gc−1 · In) is c. It follows easily from this that
g1, · · · , gc−1,det(α) form a regular sequence. Thus,

0 −→ (S′)n
α⊗S′1S′−−−−−→ (S′)n −→M −→ 0,

is exact, so pdS′(M) <∞. �

The next lemma is a generalization of the first part of Lemma 1.1. We omit the
proof as it is analogous to the proof of its counterpart.

3.2 Lemma. Assume that M is an R-module that does not have a summand iso-
morphic to R. Set Z := Ω1

T (M) ⊆ Tn. Assume h1, . . . , hc−1 are part of a minimal
generating set for I and pdS(M) = 1, for S := T/(h) . Take f ∈ I such that f
together with the hi generate I. Then the images of f · ej, 1 ≤ j ≤ n, belong to the
span of the images of the hi · ej, 1 ≤ i ≤ c− 1, as vectors in Z ⊗T k.

The next theorem is the main result of this section. It tells us in terms of
Fitting ideals when M has finite projective dimension over at least one intermediate
complete intersection of codimension c− 1.

3.3 Theorem. Suppose that k is infinite and M does not have finite projective
dimension over R. Let Ω := Ωd−δ+1

R (M) denote the d− δ + 1 syzygy in a minimal
free resolution of M over R and assume rank(Ω) = r. Write W for the subspace of
Ir ⊗T k spanned by the image of FittT (Ω). Then the following are equivalent :

(1) M has finite projective dimension over some intermediate complete inter-
section of codimension c− 1.

(2) dimk(W ) ≥ 1 .
(3) dimk(W ) = 1.

Proof. Without loss of generality, we may replace M by Ω and assume rank(M) = r,
depth(M) = depth(R) and that M has no summand isomorphic to R (see [A2;
Corollary 1.2.5]). Now suppose h1, . . . , hc−1 ∈ I are part of a minimal generating
set for I and pdS(M) < ∞, for S := T/(h1, . . . , hc−1)T . Then pdS(M) = 1, so
by Proposition 2.1, In(φ) + (h) = Ir + (h), which implies In(φ) 6⊆ m Ir. Indeed,
suppose In(φ) ⊆ m Ir. Then Ir ⊆ (h, mIr)T . Choose f ∈ I such that I =
(f, h1, . . . , hc−1)T . Then Ir is generated by fr−1(h), fr−2(h)2, . . . , (h)r, which is a
contradiction. Thus In(φ) 6⊆ m Ir, so dimk(W ) ≥ 1.
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Conversely, suppose dimk(W ) ≥ 1. Let p ∈ In(φ)\m Ir and write p′ for the image
of p in W . Now, we can think of Ir ⊗T k as the degree r piece of the fiber ring
F of I, which is a polynomial ring in c variables over k. Thus p′ is a homogenous
form of degree r. Since k is infinite, we may perform a change of variables in F to
assume that there is a linear form l′ in F such that p′ = (l′)r + q′, for q′ a form
of degree r not having (l′)r as one of its monomials. Let h′1, . . . , h

′
c−1 be linear

forms in F such that F = k[h′1, . . . , h
′
c−1, l

′] and let h1, . . . , hc−1 denote their pre-
images in I. Then h1, . . . , hc−1 form part of a minimal generating set for I, and
by construction, (p) + (h) = Ir + (h). Thus In(φ) + (h) = Ir + (h), so M has
finite projective dimension over the intermediate complete intersection S := T/(h),
by Proposition 2.1. Thus (1) and (2) are equivalent. It remains to show that (2)
implies (3).

Suppose dimk(W ) ≥ 1. Then there is an n×n submatrix ψ of φ such that detψ
has a non-zero image in W . We now make the following claim :

Claim : For each 1 ≤ i ≤ r − 1, In−i(ψ) ⊆ m Ir−i.
Before proving the claim, we note that for each i invariance of higher order Fitting

ideals gives In−i(ψ) ⊆ Ir−i (since MP is free of rank r for all P ∈ Ass(R)) . We now
prove the claim by induction on i. Suppose i = 1 and In−1(ψ) 6⊆ m Ir−1. Without
loss of generality, we may assume that the determinant of the (n − 1) × (n − 1)
submatrix ψ′ of ψ consisting of the first n − 1 rows and columns does not belong
to mIr−1. Then the images p and q of det(ψ) and det(ψ′) in the fiber ring F are
forms of degree r and r− 1. Because k is an infinite field, we may find linear forms
h′1, . . . , h

′
c−1 in F such that p and q have non-zero images in F/(h′). Let f ′ ∈ F

be a linear form in F such that F = k[f ′, h′1, . . . , h
′
c−1]. Then as in the previous

paragraph, M has finite projective dimension over the the intermediate complete
intersection S := T/(h). In fact, the minimal resolution for M over S is given by

0 −→ Sn
ψ⊗S1S−−−−→ Sn −→M −→ 0,

where as elements of S, det(ψ ⊗S 1S) = ufr and det(ψ′ ⊗S 1S) = vfr−1, for units
u, v. Let s1, . . . , sn ∈ S denote the elements along the nth column of ψ⊗S 1S . Then
ufr = det(ψ⊗S 1S) = s1δ1 +· · ·+sn−1δn−1 +sn det(ψ′⊗S 1S), for suitable minors δi
of ψ⊗S 1S . Since each δi is divisible by fr−1 in S (since In−1(φ) ⊆ Ir−1), we obtain
uf = s1t1 + · · · + sn−1tn−1 + snv. It follows that after elementary row operations
we may assume that ψ ⊗S 1S still has ψ′ ⊗S 1S as the upper left (n− 1)× (n− 1)
block and f as its (n, n)-entry. Thus we obtain a presentation (necessarily minimal)
over T for M of the form

[∗ f · en|h1 · In| · · · |hc−1 · In].

It follows that the image of f · en is not in the span of the images of the hi · ej in
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Z ⊗T k, for Z := Ω1
T (M). But this contradicts Lemma 3.2. Therefore, we must

have In−1(ψ) ⊆ m Ir−1 and the case i = 1 of the claim has been shown.
Now suppose that i > 1 and In−i(ψ) 6⊆ m Ir−i. Then there exists an (n − i) ×

(n − i) minor of ψ whose image w′ in F corresponds to a non-zero form of degree
r − i. As before, we select linear forms h′1, . . . , h

′
c−1 ∈ F such that p and w′ are

non-zero in F/(h′). Then, for S := T/(h), M has finite projective dimension over
S and its resolution is given by ψ ⊗S 1S . For f such that I = (f, h),

f i−1 · In−i(ψ ⊗S 1S) ⊆ In−1(ψ ⊗S 1S)

over S, by ([E; Prop. 20.7]). Thus,

f i−1 · In−i(ψ) ⊆ In−1(ψ) + (h) ⊆ m Ir−1 + (h).

It follows immediately from this that f i−1 ·In−i(ψ) ⊆ m Ir−1+(h)Ir−2. This implies
that (f i−1)′ ·w′ is zero in F/(h′), which is a contradiction. Thus, In−i(ψ) ⊆ m Ir−i,
for all i in the required range and the Claim has been verified.

To complete the proof that dimk(W ) = 1, we take any h1, . . . , hc−1 forming part
of a minimal generating set for I such that for S := T/(h), M has finite projective
dimension over S and its minimal resolution is given by ψ ⊗S 1S . Then by Lemma
3.1, we may assume that φ = (ψ|h1 · In| · · · |hc−1 · In). Thus, In(φ) is generated
by det(ψ) together with the ideals hi · In−i(ψ), for i = 1, . . . , n. By the Claim,
In−i(ψ) ⊆ m Ir−i for 1 ≤ i ≤ r− 1. Therefore hi · In−i(ψ) ⊆ m Ir, for 1 ≤ i ≤ r− 1.
For r ≤ i ≤ n, we clearly have that hi · In−i(ψ) ⊆ m Ir. It now follows that the
image of det(ψ) in W spans W , so dimk(W ) = 1 as desired. This completes the
proof of the theorem. �

3.4 Remark. In Theorem 3.3 we cannot replace Ωd−δ+1
R (M) by Ωd−δR (M) if we wish

to include the stronger statement that dimk(W ) = 1. This is because Ωd−δ+1
R (M)

does not have a free summand, while Ωd−δR (M) could. Indeed, suppose δ = d and
we could write M = N ⊕R as R-modules. If it were the case that the dimension of
the image of FittT (N) in Ir−1 ⊗T k were one, then since FittT (M) = FittT (N) · I,
it would follow that the dimension of the image of FittT (M) in Ir ⊗T k would be
c. However, the proof of the theorem shows that taking Ωd−δR (M) suffices for the
equivalence of (a) and (b).

The results we have obtained about finite projective dimension in codimension
c− 1 take particularly nice forms when we assume the depth(M) = depth(R). For
in this case we just have to consider the Fitting ideal of M itself. The next two
corollaries summarize what we have obtained for such a module. The first of these
corollaries tells when M has finite projective dimension over some intermediate
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complete intersection of codimension c−1 and relates it to another well-known con-
dition, while the second tells how to obtain all other codimension c−1 intermediate
complete intersections over which M has finite projective dimension, once we know
of one such ring.

3.5 Corollary. Let k be infinite and M be an R-module having rank r, infinite
projective dimension and no free summand. If depth(M) = depth(R), the following
are equivalent :

(1) M has finite projective dimension over some intermediate complete inter-
section of codimension c− 1.

(2) M has a periodic resolution over R.
(3) FittT (M) 6⊆ m Ir.

Proof. The equivalence of (1) and (2) is well-known, and follows from the results
in [A] (c.f. Corollaries 3.12 and 4.5). That (1) and (3) are equivalent follows from
Theorem 3.3 and the remark above. �

For M in Corollary 3.5, if FittT (M) 6⊆ m Ir, the proof of Theorem 3.3 shows how
to obtain a ring in codimension c− 1 over which M has finite projective dimension.
Let ∆ be a maximal minor of φ not in mIr. Then any minimal generating set
f, h1, . . . , hc−1 having the property that ∆ = λfr+g, where g ∈ Ir ∩ (h)+m Ir, for
a unit λ, is such that M has finite projective dimension over T/(h). If f1, . . . , fc is
the original set of generators, then such a generating set can be gotten by taking
the generating set f1, f2 − ε2f1, . . . , fc − εcf1, for appropriate units εi.

We will use the following notation in the next corollary. Let f, h1, . . . , hc−1 be
a minimal generating set for I and assume pdS(M) = 1, for S := T/(h). Let
g1, . . . , gc−1 also be part of a minimal generating set for I and write Sg for T/(g).
For each 1 ≤ i ≤ c−1, we can write gi = αi ·f+βi,1 ·h1+·βi,c−1 ·hc−1+p, with the αi,
βr,s units and p ∈ m I. By Lemma 3.2, the images of the f ·ej belong to to the span
of the images of the hi · ej in Z ⊗T k, for Z := Ω1

T (M) ⊆ Tn. Let A1, . . . , Ac−1 be
n×n matrices over k such that in Z⊗T k the equation f ·In = h1·A1+· · ·+hc−1·Ac−1

holds. Let A(α, β) denote the (c−1)n×(c−1)n matrix consisting of (c−1)×(c−1)
blocks arranged so that the (i, j)th block is the n× n matrix αi ·Aj + βij · In Then
A(α, β) is the matrix of coefficients obtained by expressing the images in Z ⊗T k of
the vectors gi · ej in terms of the images of the vectors hi · ej .

3.6 Corollary. In addition to the notation and assumptions of the preceding para-
graph, suppose that M is an R-module of rank r having no free summand. Suppose
further that depth(M) = depth(R). Fix a maximal minor ∆ of φ not in m Ir. Then
the following are equivalent :

(1) pdSg (M) <∞.
(2) The image of the set {gi · ej}i,j in Z ⊗ k is linearly independent.
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(3) µ(Ω1
Sg (M)) = n.

(4) A(α, β) has maximal rank.
(5) (∆) + (g) = Ir + (g).
(6) The image of ∆ in the fiber ring of I is not in the ideal generated by the

images of the gi.

Proof. Using Lemma 3.1, the proof of the equivalence of (1)-(4) is essentially the
same as the proof of the second statement in Lemma 1.1. Now assume (1) holds, so
that M has projective dimension one over Sg. As in the proof of Proposition 2.1,
there is an n × n matrix ψ over T such that ψ ⊗ 1Sg gives the minimal resolution
of M over Sg and Ir + (g) = (det(ψ)) + (g). By Theorem 3.3, det(ψ) = λ∆ + t,
where λ is a unit and t ∈ m Ir. Thus, Ir + (g) = (λ∆ + t, g) ⊆ (∆, g) + m Ir, so (5)
holds, by Nakayama’s lemma. That (5) implies (1) follows from Proposition 2.1.
The equivalence of (1) and (6) follows from the proof of Theorem 3.3. �

Note that it follows from Corollary 3.6 that the intermediate complete intersec-
tions of codimension c−1 over which M has finite projective dimension are precisely
those whose ideal generators give rise to a transition matrix A(α, β) over k having
maximal rank.

When k is algebraically closed, we have the following complementary statement
to Theorem 3.3. In 3.7, we retain the notation and hypotheses from 3.3.

3.7 Proposition. Assume k is algebraically closed. There exist h1, . . . , hc−1 in I,
part of a minimal generating set, so that for S := T/(h), M has infinite projective
dimension over S if and only if dim(W ) < dimk(Ir ⊗T k).

Proof. Indeed, by Corollary 1.2, M has infinite projective dimension over some such
S if and only if M has infinite projective dimension over R if and only if Ωd−δ+1

R (M)
has infinite projective dimension over R if and only if FittT (Ωd−δ+1

R (M)) ( Ir (by
Corollary 2.3) if and only if dimk(W ) < dimk(Ir ⊗T k). �

Several of our results can be interpreted in terms of the support variety of M .
To do this, we recall the definition and some facts established in [A]. For the sake
of convenience, we will also assume that k is algebraically closed. Let V denote the
affine space over k determined by the vector space I ⊗T k. If one fixes a minimal
generating set f1, . . . , fc for I, one obtains a basis for V . Any h ∈ I\m I determines
a point (or line through the origin) in V and similarly, any subset h1, . . . , ht of a
minimal generating set determines a linear subvariety. Without going into detail,
the support variety X of M is the algebraic subset of V defined by the homogenous
ideal in the polynomial ring of Eisenbud operators that annihilates the graded mod-
ule Ext∗R(M,k). More concretely, it follows from (3.9)-(3.11) in [A] that X consists
of the points in V that correspond to the intermediate hypersurfaces over which M
has infinite projective dimension.
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3.8 Corollary. Suppose k is algebraically closed. Taking syzygies from a min-
imal free resolution of M over R, assume that s := rank(Ωd−δR (M)) and r :=
rank(Ωd−δ+1

R (M)). Let U and W respectively denote the images of the Fitting ideals
over T of these modules in the vector spaces Is⊗T k and Ir⊗T k. Then the following
statements hold for the support variety X of M .

(1) dim(X) = 0 if and only if dimk(U) = dimk(Is ⊗T k).
(2) dim(X) = 1 if and only if dimk(W ) = 1.
(3) dim(X) > 1 if and only if dimk(U) < dimk(Is ⊗T k) and dimk(W ) = 0.

Proof. From the preceding paragraph, dim(X) equals zero if and only if M has
finite projective dimension over R, and from Corollary 2.3, this holds if and only if
FittT (Ωd−δR (M)) = Is. For (2), by the geometry of cones in affine space, dim(X) = 1
if and only if there exists a (c−1)-dimensional linear subvariety L that intersects X
only at the origin. The latter happens if and only if there is a (c− 1)-dimensional
linear variety L so that every line in L intersects X at the origin, which in turn hap-
pens if and only if M has finite projective dimension over each of the corresponding
hypersurfaces (by the comments above). By Corollary 1.2, this happens if and only
if M has finite projective dimension over the intermediate complete intersection of
codimension c−1 corresponding to L, and therefore (2) holds by Theorem 3.3. The
equivalence in (3) is an immediate consequence of (1), (2) and Theorem 3.3. �
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Birhkaüser, 1-63.
[BE] D. Buchsbaum and D. Eisenbud, What annihilates a module?, J. Algebra 47 (1977),

231-243.
[E] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Graduate

Texts in Mathematics, Springer Verlag 150 (1995).
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