
Math. Proc. Camb. Phil. Soc. (1994), 116, 401 4 0 1

Printed in Great Britain

Complexes acyclic up to integral closure

BY D. KATZ
Department of Mathematics, University of Kansas, Lawrence, KS 66045, U.S.A.

(Received 7 May 1993; revised 30 July 1993)

Introduction

In [R] D. Rees introduced the notions of reduction and integral closure for
modules over a commutative Noetherian ring and proved the following remarkable
result. Let R be a locally quasi-unmixed Noetherian ring and / an ideal generated by
n elements. Suppose that height (/) = h. Then the ith module of cycles in the Koszul
complex on a set of n generators for / is contained in the integral closure of the ith
module of boundaries for i > n — h. This result should be considered a dimension-
theoretic analogue of the famous depth sensitivity property of the Koszul complex
demonstrated by Serre and Auslander-Buschsbaum in the 1950s. At roughly the
same time, Hoschster and Huneke introduced the notion of tight closure and
thereafter gave a number of theorems in the same (though considerably broader) vein
for tight closure. In particular, in [HH] they showed that if R is an equidimensional
local ring of characteristic p > 0, which is a homomorphic image of a Gorenstein ring,
then for all i > 0, the ith module of cycles is contained in the tight closure of the ith
module of boundaries for any complex satisfying the so-called standard rank and
height conditions (see the definitions below). Since the tight closure is contained in
the integral closure for such rings, the result of Hochster and Huneke extends (in
characteristic p) considerably the result of Rees. In fact, their result could be
considered a dimension-theoretic analogue of the Buchsbaum-Eisenbud exactness
theorem ([BE]), which in a certain sense is the ultimate depth sensitivity theorem.
Moreover, using the technique of reduction to characteristic £>, Hochster and Huneke
have shown that their results hold in equicharacteristic zero as well, whenever the
tight closure is defined.

Unfortunately, as is often the case, the situation for non-equicharacteristic rings
is not very well understood. Indeed, if one could find the right sort of analogue to the
Buchsbaum-Eisenbud exactness theorem, a number of the unsettled homological
conjectures in commutative algebra would fall. It is the purpose of the present paper
to provide further examples of complexes (apart from Koszul complexes) satisfying
the property that for all i > 0, the tth module of cycles is contained in the integral
closure of the ith module of boundaries (without making any characteristic
assumption on the ring). We shall say that such a complex is acyclic up to integral
closure. Our main result states that if R is a quasi-unmixed local ring whose
completion is Cohen-Macaulay on its punctured spectrum, then any complex of free
modules satisfying the standard rank and height conditions is acyclic up to integral
closure provided the entries of the matrices associated to the maps in the complex lie
in a sufficiently large power of the maximal ideal. As a corollary we deduce that if
R is any three dimensional quasi-unmixed local ring, then there exists aniV̂  > 0, such
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that any complex which satisfies the standard rank and height conditions and whose
matrices have entries in the iVth power of the maximal ideal is acyclic up to integral
closure. Examples of such complexes are easy to come by. One may take a
' generically acyclic' complex in a polynomial ring in three variables over the integers
and replace the variables in the complex by an appropriately chosen system of
parameters. The details are given below.

We now briefly describe the contents of the present paper. In Section 1, we recall
relevant definitions and establish notation. In particular, we recall the definition of
the integral closure of a module given by Rees, as well as describing in more detail the
complexes to be considered. In Section 2, we prove our main result, along with a few
ancillary results. For example, we give an alternate proof of the theorem of Rees
mentioned above for ideals of the principal class. Finally, in Section 3, we present a
couple of sufficient conditions for the sort of complexes we consider to be acyclic up
to integral closure over an arbitrary (quasi-unmixed) local ring.

Section 1

Throughout, R will be a local ring with maximal ideal m. Many of the hypotheses
and conclusions of our results can be phrased for non-local rings, simply because the
properties we consider are preserved under localization. We have opted for less
generality in favour of expositional ease. Our principal objects of study will be
bounded complexes of finitely generated free R modules, i.e. complexes of the form

where Ft is a free R module of rank bt and <f>i is a bt_x x bt matrix with entries in R.
The rank of (j>i is the size of the largest non-vanishing minor of <j)t and we shall write
I(4>i) for the ideal generated by minors of size rank(^). Furthermore, unless stated
otherwise, we shall assume that each (j>t has entries in m. For each i > 0 we write
Z((F), B((F) and Ht(F) respectively for ker(^), im(0<+1) and Zt(F)/Bt(F). In
accordance with [HH], the complex F is said to satisfy the standard rank and height
conditions (henceforth abbreviated srhc) if:

(i) rank{<f>i) + rank{(j>l+1) = ra,nk(Fl), and
(ii) height{I{<pt)) ^ i, for i = 1, ...,n.

Though we shall have little need for the terminology, we recall that the complex F
is said to satisfy the standard rank and depth conditions (abbreviated srdc) if
conditions (i) and (ii) hold with depth (I(<f>t)) replacing height (I(<fit)) in (ii). With this
terminology, the main theorem of [BE] asserts that F is acyclic if and only if F
satisfies srdc. Thus, the point of the results referred to in [HH], [R] and those
presented here may be viewed as attempts at describing the cycles in complexes
satisfying srhc as opposed to srdc. There are numerous ways that complexes
satisfying srhc can arise, so we pause briefly to describe a few. First of all, suppose
n — dim (R) in F and Ht(F) has finite length for all i ^ 0. Then it readily follows that
F satisfies srhc. (Note that by the New Intersection Theorem (see [PR1]), if F has
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finite length homology, n^dim(R). On the other hand, if F satisfies srhc, then
n<dim(J?), so the equality w = dim(i?) is forced.) If S^R is an extension of
Noetherian rings for which height (J) = height (JR) for all ideals J £ S, then
F = G ®SR satisfies srhc whenever G is acyclic over S. More concretely, one may
specialize a generically acyclic complex at a system of parameters (see [EH]). To
elaborate, let x = xx, ...,xd be a system of parameters and make R into a
B = Z [Xj,...,Xd] module by sending Xt to xt. Assume that S is a regular local subring
over which R is finite, whose maximal ideal is generated by (x). Let G be an acyclic
complex over Z[Xlt ...,Xd] with Z-flat, graded augmentation. By the main result of
[EH], G ®B/S is acyclic, so by the remarks above G ®Bi? satisfies srhc. For example,
if J is any ideal generated by monomials in x and / is the ideal of Z,\XX, ..-,Xd]
generated by the corresponding monomials in the Xt, then tensoring any resolution
for / with R yields a complex satisfying srhc. We shall return briefly to this type of
construction below.

We would now like to recall the definition of the integral closure of an R module.
We begin by recalling the definition of the integral closure of an ideal. An element
xeR is said to be integrally dependent on the ideal / , if a; satisfies an equation of the
form

xr + i1x
r~1 + ...+ir = 0, with ijSp, for i = %,...,r.

The set of elements integrally dependent on / form an ideal called the integral closure
of /, which we shall denote by Ia. If R is a domain then Ia = f] IV, where the
intersection ranges over all discrete valuation domains between R and its quotient
field. This is the characterization that Rees builds upon in [R] to extend the notion
of integral closure to modules.

Definition 11 . LetR be a Noetherian domain with quotient fieldKandM Si?*, a
finitely generated R module. The integral closure of M (inRh) is the R module
( OMV) PiRh, where as above, V ranges over the discrete valuation domains between
R and K.

Here we are identifying Rh £ Vh £ Kh and think of MV as the V submodule of Vh

generated by M. We shall denote the integral closure of M in Rh by Ma and suppress
the reference to Rh when convenient. One can extend the definition of Ma to the non-
domain case by defining Ma to be the elements of Rh which map to (M(R/-p)h)a for
each minimal prime ideal p.

Definition 1-2. Let F be a bounded complex of finitely generated free R modules.
F is said to be acyclic up to integral closure if for all i > 0, Zt(F) £ (Bt(F))a.

In the following proposition we record several equivalent conditions for a complex
satisfying the standard rank condition (i.e. condition (i) in the definition of srhc) to
be acyclic up to integral closure. In particular, the proposition implies that we may
check for acyclicity up to integral closure by passing to the completion of R and
modding out minimal primes. Before stating the proposition, we need a bit more
notation. An element veRh may be regarded as a column vector and as such
corresponds in obvious fashion to a linear form in the polynomial ring R[U1,..., Uh].
We write l(v) for this linear form. For M £ Rh, we write L(M) for the ideal generated
by the forms l(v), veM.
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PROPOSITION 1-3. Suppose that F satisfies the standard rank condition and
height (/(04)) > 0, for all i > 0. The following conditions are equivalent:

(i) F is acyclic up to integral closure;
(ii) F (x) (R/~p) is acyclic up to integral closure for all minimal prime ideals p;

(iii) F ® {R/(nilrad (R)) is acyclic up to integral closure;
(iv) Statements (i), (ii) and (iii) hold withR* replacing R,for R* the completion ofR;
(v) L(Zt(F)) £ (L(Bt(F)))a, for i>0;

(vi) IfR is reduced, Zt(F) = (Bt(F))a, for i > 0.

Proof. The equivalence of statements (i), (ii) and (iii) follows from Definitions 1-1
and 1 -2. Suppose for the moment R is a domain with quotient field K. Since F satisfies
the standard rank condition, the complex becomes exact when tensored with K. Thus
Zt(F)K = Bt(F)K, for all % > 0. By [R, theorem 1-5], it follows that Zt(F) is integral
over Bt(F) if and only if / ^ ( F ^ f i f L ^ F ) ) ] is an irrelevant ideal of R[L(Zt(F))],
where ^[^(^(F))] denotes the subring oiR[U1,..., Uh] generated over-ft by the linear
forms generating L(Z{(F)). (Here, h = rank(i^).) It is not difficult to see that this
latter condition holds if and only if in R[UV ..., Uh], the ideal L(Zt(F)) is integral over
the ideal L(Bi(F)). Thus (i) and (v) are equivalent when -ft is a domain. Since each
I(<f>t) has height greater than zero, the standard rank condition holds modulo each
minimal prime. Therefore, the equivalence of (i) and (v) in general follows from the
domain case, the definitions, and the fact that elements of a ring are integral over an
ideal if and only if their images modulo each minimal prime are integral over the image
of the ideal. Using statement (v) and faithful flatness, one can see that the statements
in (iv) are equivalent to statement (i). To finish the proof, it suffices to see that
(^(F))a £ Z{(F) always holds when R is reduced, and for this it suffices to assume
that R is a domain. Suppose ve(Bi(F))a. Then l(v) is integral o v e r i ^ ^ F ) ) and hence
integral over L(Z((F)). But L(Zt(F)) is generated by the linear forms in the kernel of
the ring homomorphism from R[Ult..., Uh] toi?[L(S4_!(F))] determined by <fit. Since
this kernel is prime, l(v) belongs to it and hence to L(Z((F)). Hence veZt(F).

As mentioned above, if R is a d dimensional local ring, finite over a regular local
subring S (e.g. R is a complete local domain) and xlt • ••,xd is a system of parameters
which generates the maximal ideal of S, then certain generically defined complexes
'evaluated' at the xt satisfy srhc. We show in the next proposition that this holds for
every system of parameters in a quasi-unmixed local ring. Recall that .ft is said to be
quasi-unmixed if its completion is equi-dimensional.

PROPOSITION 1-4. Suppose that R is a d dimensional quasi-unmixed local ring and
Xj,. ..,xd form a system of parameters. LetB = Z[Xly. ••,Xd] and makeR into aB module
by sending Xt to xv Let F be an acyclic complex of finitely generated free B-modules with
graded, Z-flat augmentation. Then F ®BR satisfies srhc.

Proof. Since R is quasi-unmixed, it is well-known that for any ideal J £ R,
height (J) equals the minimum of the heights of the ideals (JR* + p/p), for R* the
completion of R and p a minimal prime oiR*. I t follows that F(g)BR satisfies srhc
if and only if F ® B (i?*/p) satisfies srhc for every minimal prime ideal p £ R*, so we
may assume that R is a complete local domain. Suppose that we could find a
d-dimensional Cohen-Macaulay local ring S and a minimal prime Q £ S such that
R = S/Q and the pre-images of the x( form a system of parameters in S. Then by the
main result of [EH], F ®B<S is an acyclic complex, so F ®B<S satisfies srdc. Since S
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is quasi-unmixed, it follows from the foregoing that F ®BR satisfies srhc. To see the
existence of S, we use the Cohen structure theorem. While it is well-known that we
can find a d-dimensional Cohen-Macaulay (in fact, complete intersection) local ring
mapping onto R, we want to observe that this can be done so that the pre-image of
the x's remains a system of parameters.

To this end, let T be an unramified regular local ring and P ^ T a prime ideal
satisfying R = T/P. We write / for the ideal generated by a set of pre-images of the
xt in T. Then dim (T) = height (I+P) s* height (/) + height (P), by Serre's theorem, so
d = dim(i?) = dim (T)— height (P) < height (7). By Krull's principal ideal theorem,
height (/) ^ d, so dim(7T) = d + height (P). Since I + P is primary for the maximal
ideal of T, it follows that (working modi) we may find elementsy1,...,yseP such that
(xj, ...,xd,y^, ...,ys)T is primary for the maximal ideal of T, where s = height(P).
Thus, taken together the x's and the t/'s form a maximal regular sequence in T. We
now take S = T/(yv ...,ys)T and Q = P/(yv ...,ys)T.

We want to close this section by mentioning a conjecture which underscores the
importance of investigating properties of complexes satisfying srhc. This conjecture
is an integral closure analogue of the Buchsbaum-Eisenbud exactness theorem.
Though it has not been formally named (as far as I know), it has been discussed in
private conversation for a number of years. (Personally, I have discussed the
conjecture or aspects of it with C. Huneke and P. Roberts). The conjecture is a
theorem for local rings containing a field by the work of Hochester and Huneke (and,
as mentioned above, one has the same conclusion but with tight closure replacing
integral closure, whenever the former is defined).

Conjecture. Let R be a quasi-unmixed local ring and F a complex satisfying srhc.
Then F is acyclic up to integral closure.

An immediate consequence of this conjecture would be a positive solution to the
monomial conjecture of M. Hochster (and hence a positive solution to a number of
well-known conjectures in commutative algebra). We indicate briefly the implication.
Let R be a d dimensional local ring and x1,...,xd a system of parameters. The
monomial conjecture asserts that (xx... xd)

k$(x*+1, ...,xd'
+1)R for all k > 0. By

passing to the completion and modding out a prime ideal of maximal dimension, one
may assume that R is a complete local domain, hence quasi-unmixed. If the
monomial conjecture fails then one has an equation of the form

holding in R. Let B = Z[X1, ...,Xd] and G be the acyclic complex providing a
minimal resolution for the ideal (Xk+1, ...,Xa

+1, Xk ...Xa)B. If the conjecture above
holds, then F = G ®BR is acyclic up to integral closure. It follows that the one-cycle
(av ..., ad, — 1)' (' t ' for transpose) is integral over -BX(F). However, one can show that
the last row of the matrix corresponding to B^F) has entries in (xlt ...,xd)R. It would
then follow that 1 e (x1, ...,xd)a, which cannot be. As we will have occasion to refer to
this complex throughout this paper, for future reference we call this complex (or any
complex derived from it by specializing a system of parameters) the MC complex.
If d = 3 and x, y, z form a system of parameters, then the MC complex has the form
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where ^>1 = (xk+1 yk+1 zk+1 x* yk zk) and

02 =

' 0 0 - z *
-yk 0 0

0 -xk 0
^ 3 = « 0 y

0 z - x
\ —x —y 0/

Thus, while the monomial conjecture asserts no MC complex has a one-cycle of the
form (a,b,c, — If, the conjecture above would assert that every one-cycle is integral
over the submodule of R* generated by the columns of <j>2.

Section 2

In this section we prove the results stated in the introduction which allow us to
give characteristic free examples of complexes that are acyclic up to integral closure.
We begin by giving an alternate proof to the theorem of Rees concerning Koszul
complexes, in the special case where the elements in question are part of a system of
parameters. Before doing so, we record a fundamental observation, due to Ratliff,
concerning relations on subsets of systems of parameters in quasi-unmixed local rings
(see [LR1, theorem 2-12]).

Ratliff's fundamental observation. Let R be a quasi-unmixed local ring and
x1; ...,xra a subset of a system of parameters (i.e. height(/) = n, for/ = (xlt ...,xn)R).
For all i ^ 0, if rxi+1e(xl, ...,xt)R, then re((xlt ...,xi)R)a.

PROPOSITION 2-1 (cf. [R; Theorem 3-1]). Let R be a quasi-unmixed local ring and
x1; ...,xn a subset of a system of parameters. Write

for the Koszul complex on x1; ...,xn. Then K. is acyclic up to integral closure.

Proof. We use Ratliff's fundamental observation in conjunction with well-known
properties of the Koszul complex. Since the image of xlt ...,xn remains part of a
system of parameters modulo any minimal prime (a well-known property of quasi-
unmixed local rings), by Proposition 1-3 we may assume that/? is a domain. Fix i > 0
and set / = (x1, ...,xn)R. Suppose i/rt(z) = 0. Then we have an R linear combination
of the columns of i]ri equal to zero whose coefficients are the coordinates of z. Each
row of this vector equation gives rise to an equation of the form

z, x, +... +z, x,- = 0.

Hence each z( is integral over an ideal generated by a subset of the x's and therefore
integral over /. Moreover, the structure of the matrix i/rt makes it clear that each
coordinate of z appears in such an equation, hence the coordinates of z belong to /„.
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One of the other hand, it is well known that for each j , multiplication by x^ kills the
homology of K. In fact,

x1z = ±zhCh±...±zh0u,
where C} ,...,C} are the columns of ^ri+l involving a;;- and z}, ...,zs are the
corresponding entries of z. Thus IZt(K) £ IaBt(K). Hence I(Zt(K) V) £ I^B^K) V)
for each discrete valuation domain V contained in the quotient field of R. Since
IV = Ia V is principal, we obtain Zt(K.) V £ B((K) V. That is, the tth module of cycles
is integral over the ith module of boundaries, as desired.

Remark 22. Let R be a quasi-unmixed local ring and / £ R an ideal minimally
generated by the elements xlt ...,xn. Suppose that height (7) = h. We would like to
indicate how the previous argument can be used to prove Rees's theorem in its full
generality. In other words, letting K. as above denote the Koszul complex on
x1,...,xn, we want to see that Zi(K)^Bi(K)a for i>n — h. As in the proof of
Proposition 21 , it suffices to show that IZt(K) £ 7a-B4(K) for i > n — h. Moreover,
since Koszul complexes on different minimal generating sets for / are isomorphic, it
follows that we are free to change minimal generating sets (as the condition
IZt(K) ^IaBt(K) holding for one Koszul complex will hold for any other Koszul
complex isomorphic to it). Therefore, by standard general position arguments (i.e.
prime avoidance arguments) we may further assume that any subset xti,...,xin

consisting of h elements of the xt's generates an ideal having height h. Suppose now
that i > n — h and frt(z) = 0. As before, we consider this to be a dependence relation
on the columns of xjrt with the coordinates of z as coefficients. Again, each row of this
vector equation gives rise to an equation involving coordinates of z and n — i+l of
the x's. Since i > n — h,n — i+l ^h. Thus, Ratliff's fundamental observation applies
and we may argue as before to see that Iz £ IaBt(¥L).

Our next result discusses the situation for complexes F satisfying srhc for local
rings of dimension less than or equal to three. The results for dimension less than or
equal to two are rather easy, but we include them for the sake of completeness. The
result for dimension three can be obtained from the theorem below, but contains in
rather pure form the essence of the more general argument, so isolating it seems
worthwhile.

PROPOSITION 2-3. Let (R, m) be a quasi-unmixed local ring and F as above a complex
satisfying srhc. Then

(i) if dim (R) = 1 or dim (R) = 2, then F is acyclic up to integral closure;
(ii) if dim (R) = 3, there exists N > 0, such that if each matrix <j>t has its entries in mN,

then F is acyclic up to integral closure.

Proof. Since R is quasi-unmixed, for any ideal J^R, height (J) equals the
minimum of the heights of the ideals (JR* + p/p), for R* the completion of R and p
a minimal prime of R*. Hence F ® (i?*/p) satisfies srhc for each p, so we may assume
that R is a complete local domain (using Proposition 1-3). If dim (R) = 1, n ^ 1, so the
complex is (now) acyclic. If dim (R) = 2, then F is exact at F2. Let (R', m) denote the
integral closure of/?. Then R' is Cohen-Macaulay, so Zl(¥)R' = B1(F)R'. Hence, for
each discrete valuation domain V, Zt(F) V = JBX(F) V, so F is acyclic up to integral
closure. Suppose now that dim (R) = 3. If n ^ 2, the preceding arguments show that
F is acyclic up to integral closure. If n = 3, again by the same arguments, we have
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that Zt{F) is integral over Bt(F) for i = 2,3. In fact, we may pass to R' and assume
that Ht(F) = 0, for i = 2,3. Thus, i?' is a complete 3-dimensional local domain such
that R'P is Cohen-Macaulay for all non-maximal prime ideals. In this situation it is
well-known that the annihilator of the second local cohomology module H2

m\R') is m-
primary and that the first homology of the complex F has finite length. Let xlt x2, x3

be a system of parameters contained in this annihilator and assume that N is large
enough so that mN S (xl,x2,x3)R

r = 1. We now assume each <fi( has entries in / . By
Roberts' theorem, [PR2] (or its generalizations [S], [HH], or [W]), multiplication by
/ kills H^F). Let zeZ1(F). By the comparison theorem, we have a commutative
diagram

,, x2, x3) R' > 0,

where the bottom row is the Koszul complex on x1,x2, x3 and the maps 6t are induced
by 80 which takes 1 to z. Thus there are column vectors vx, v2, v3 in F2 such that
<f>2{vt) = xtz and the vt form the columns of 61. Let a, b, c be the entries of any
row of 82. Since 62\jr3 = 0, ax3 — bx2 + cx1 = 0. By Ratliff's fundamental observation,
a, b, cela. Hence the entries of <f>362 belong to IIa. Therefore the entries of 61ifr2

belong to IIa. Suppose the first row of 61 has entries alt blt cv Then, since the (1,1)
entry of 6X ijr2 belongs to IIa, we have an equation

— a1x2 + b1 x1 = h1 xx 4- h2 x2 + h3 x3

with htela. Bringing the left hand side to the right, we obtain a relation on the xt

from which we deduce that ax, bxela. Similarly, we see that the remaining entries of
d1 belong to Ia. Thus each vf has its coordinates in Ia and we obtain a vector relation
Iz £ 7oim(^2). As in the proof of Proposition 2-1, this shows that z is integral over
2?j(F) as desired.

Remark 2-4. Let R be a 3-dimensional quasi-unmixed local ring and x, y, z a system
of parameters. As mentioned in the previous section, the monomial conjecture asserts
that for all k > 0, the complex MC associated to the ideal (xk+1, yk+1, zk+1, xkykzk)R
has no one-cycles of the form (a,b,c, —1)'. In [H], Hochster has shown that the
conclusion of the monomial conjecture holds for the system of parameters xm,ym, xm

for m > 0 . Hence the complex associated to (xmk+m, ymk+m
t zmk+m^ (Xyz)mlc)R, has no

one-cycle of the form (a, b,c— I)1. The proposition above strengthens this conclusion,
in that it shows that every cycle in the latter complex is integral over the
corresponding module of boundaries. Of course Hochster's result holds in arbitrary
dimension. It would be extremely interesting to have the conclusion of statement (iii)
in Proposition 2*3 hold in arbitrary dimension as well. At this point, we are confined
to local rings Cohen—Macaulay on their punctured spectrum, since we need to be able
to choose a system of parameters in an appropriate 'universal annihilator'. We
proceed to do this in the following theorem.

THEOREM 2-5. Let {R,m) be a quasi-unmixed local ring whose completion is
Cohen-Macaulay on its punctured spectrum. Then there exists an N > 0 with the
following property. If F is any complex satisfying srhc and each matrix <j>t has its entries
in -m,N, then F is acyclic up to integral closure.
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Proof. Let F as above be a complex satisfying srhc. Using Proposition 1-3, we may
assume that R is complete and therefore Cohen-Macaulay on its punctured spectrum.
In particular, the homology of F has finite length in degree greater than zero. Let A
denote the product of the annihilators of the local cohomology modules Hl

m(R) for
i = 0,..., dim (R) — 1. The hypotheses on R insure that A is m primary and again, by
Roberts' theorem ([PR2], [S], [HH], or [W]), multiplication by A kills H^F), for
i > 0. We would like to compare the complex F with the Koszul complex on a system
of parameters from A in a manner analogous to what was done in the proof of
Proposition 2-3. However, for a given i > 0, the truncated complex ending in
Ft/Bt(F) need not be exact. Nevertheless, we can extend an initial map as before, if
we raise certain elements in the system of parameters to large enough powers. This
type construction is spelled out in greater generality as Lemma 9-16 in [HH].

To begin, let / = (xly ...,xd)R be an ideal generated by a system of parameters
contained in A. Unlike the proof of Proposition 2-3, we cannot require only that the
entries of the <f>t belong to / . Some of these maps must have entries in I2, but we shall
see precisely which ones. In fact, suppose Ht(F) = 0, for i = s, ...,n and that the
entries of <fit belong to I2 for 1 =% i ^ s and to / for s+ 1 < i < n. By induction on n
(the length of the complex) we may assume that Zt(F) £ (Bt(F))a, for i > 1. (We may
repeat the arguments given in the proof of the first part of Proposition 23 to handle
the base cases n = 1,2.) Now, let ZGZJ(F) and select any n of the â , say Xj, ...,xn. As
above, there exist column vectors v1,...,vn such that ^>2(vt) = xtz. Thus we may find
60,61 which start a map of complexes

0

where the bottom row is the Koszul complex on xv ...,xn, dQ{\) = z, and 61 takes the
standard basis of Kx to the x(. In order to find a map 62, d1 i/r2 must map to im ((f>3).
Of course, it need not. It does however map to ker (<p2). Since multiplication by xx

multiplies ker (02) into im (^3) we can multiply d0 and dx by xx and find a map d2 such
that the diagram

... >K2-
!^Ki -^KQ > Rj(xlt ..., xn)R >0

commutes. If we continue in this manner, we can find maps 0} for j = 0, ...,s— 1 so
that the diagram

R/(xu ..., xn) R > 0

commutes. Since F is exact at Fj for j ^ s, there is no problem in finding the
appropriate ^ ' s which extend from the rest of the Koszul complex to F. Using
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Ratliff's fundamental observation, as in the proof of Proposition 23, we see that each
6] for s—l^j^n has entries in Ia. Since <j>s has entries in P and
<t>s &8-i = (@s-2xi) frs-i* ̂  follows that the entries oi(6s_2xx) \lrs_x belong toPIa. Fixing
one such entry, it follows that we may write a quadratic equation in the generators
of / with coefficients from Ia on the left hand side and coefficients from 8S_2 on the
other. Observe that the monomials of degree two in the xt appearing in the right hand
side of this equation are distinct. Bringing one side of this equation to the other, we
obtain a quadratic relation on the generators of 7. By [LR2, (414-2)] the coefficients
in such a relation must lie in Ia. Hence any entry of 6S_2 appearing in such an
equation must be in Ia. Since all of the entries of 6S_2 will appear in such an equation,
they all belong to Ia. At the next square in the diagram, ^s_1(^s_2^1) = {ds-z

x\) ^s-2-
Since 0g_x has entries in P and 6S_2 has entries in Ia, we can, in a similar manner,
obtain a cubic relation on the generators of/, from which we deduce that 6S_Z has
entries in Ia (again, using [LR2, (4-142)]). Continuing in this way, we eventually
arrive at the conclusion that 61 has coefficients in/a. Thus (x1,...,xn)z^IaB1(F). If
we now repeat the argument as often as necessary, using the remaining generators of
/ (but always taking subsets of length n), we conclude Iz^IaB1(F). Since this
relation holds modulo each minimal prime, we may ' cancel' / from both sides over
any discrete valuation domain (as before), to conclude z€(B1(F))a, as desired.

Remark 2-6. (i) The proof of the theorem shows that for all complexes F whose
maps have entries in a sufficiently large power of the maximal ideal, IZt(F) ^ IaBt{¥),
so this is a stronger conclusion than the 'uniform annihilation' granted by Roberts'
theorem (or theorems of a similar ilk in [HH]). Of course (at present) the condition
is applicable to a considerably smaller class of complexes. However, it seems doubtful
that a similar argument along the lines above that is more 'complex specific' is
readily available. In other words, given a complex F, for any natural choice of /
killing the homology, it is usually not the case that the entries of the maps in the
complex belong to /. For example, if one takes the MC complex determined by the
ideal (xk+1, yk+\ zk+\ xkykzk)R, it is well-known that x*+1, yk+1, z*+1 kill the homology
of the complex, but the entries of the complex do not lie in the ideal they generate.
On the other hand, the entries of the complex clearly lie in the ideal generated by
x,y,z, but these need not kill the homology (in general).

(ii) In [W], C. Wickham has shown that if R is a local ring admitting a dualizing
complex, then some power of A (the product of the local cohomological annihilators)
kills the homology in every complex satisfying srhc. (Actually a much subtler
statement regarding the powers of the annihilators is given.) Thus, by choosing /
generated by a subset of a system of parameters contained in an appropriate power
of A, we may repeat the argument given in the proof of Theorem 2-5, to see that
complexes F (satisfying srhc) whose maps have entries either in / or P are acyclic up
to integral closure.

(iii) We can get a bit more mileage from the arguments presented in Proposition
2-3 and Theorem 2-5 by using the following lovely result due to Itoh (see [I]). Let R
be a quasi-unmixed local ring and / an ideal generated by a subset of a system of
parameters. Then (In+1)a f\In = / „ / " for all n ^ 1. Using this result, we may repeat
the arguments above requiring only that the entries of the maps appearing in the
complex belong to Ia or (P)a. In particular, we obtain the following corollary.
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COROLLAEY 2-7. Let (R,m) be a complete quasi-unmixed local ring of dimension d.
Suppose that depth(R) = d—l and R satisfies Serre's condition S^y. Let
A = ann (//^(i?)) and suppose Aa = *n. Then, any complex F satisfying srhc is acyclic
up to integral closure.

Proof. Without loss of generality we may assume that the residue field of R is
infinite. Le t / be a minimal reduction of A, and therefore >m. Then arguing as before,
using the remark above, it follows that IZ-^F) c IaB1(F) for any complex F, since all
maps have entries in m and therefore Ia. Since the conditions of the corollary imply
the only non-zero homology can occur at-Fj, this proves the corollary.

Remark 2-8. If (R, m) is a complete three dimensional local ring with depth (R) = 2
satisfying Serre's condition S2 and ann(H2

m{R)) = m (i.e. R is Buchsbaum), then
Roberts' theorem applied to any MC complex shows that the monomial conjecture
holds for R. The Corollary above improves this somewhat in that it shows that the
monomial conjecture holds if one assumes only that the annihilator reduces the
maximal ideal.

The last result of this section shows again the advantage of having maps whose
entries belong to certain annihilating ideals. In the proposition below we extend an
argument due to L. Burch from the setting of ideals with finite projective dimension
to the setting of complexes and annihilators of homology. (See [B], theorem 5.)

PROPOSITION 2-9. Let F (as above) be a complex of finitely generated free R modules
such that the homology o /F is non-zero only at F1 and Fo. Let I = ann (H^F)). Suppose
there exists an R module L such that the nth and n+ 1st maps in the minimal resolution
for L are non-zero and have their entries in I and 1a, respectively. ThenlZ^F) £ ^B^F).
In particular, the cycles in F are integrally dependent on the boundaries.

Proof. Let

G: ...^G2^G1-^>G0^L-^0

be a minimal resolution of L and setM = coker (<j>2). SinceM has projective dimension
rc-1, Torn(M,L) = Torn+1(M,L) = 0. Let zeZx{F) and e be the first standard basis
element of Gn. Since i/rn has entries in /, {\]rn ® 1M) (e ® z') = 0, where z' denotes
the image of z in M. Thus e ® z '= (f n+1 ® 1M) (to'), for w' e Gn+1 ® M. Thus
e® z = (^n+1 ® lFi)(w) + b1 in Gn®F1, for some 616im(lC)i ® <p2). Let iel. Then
i(e® z) = (i/rn+1 ® 1F ) (iw) + ib1, so (\jrn+l® \.F)(iw)eim(\.G ®^2). Therefore
(^n+i ® 1M) (iw') = 0. Consequently iw = (frn+2 ® lF ) (u) + b2, for ueGn+2 ®F1 and
6 2 e i m ( l G n + i ® <f>2). Thus

hence e ® iz = (i/rn+1 ® lF) (b2) + ib1. Since ^ n + 1 has entries in Ia, if we interpret this
last equation in terms of F, we obtain Iz ^ IaB^F), as desired.

Section 3

In this section we offer a couple of observations regarding the possibility that every
complex satisfying srhc over a quasi-unmixed local ring is acyclic up to integral
closure. In the first statement below, we consider the situation for generically defined
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complexes evaluated at a system of parameters. Should this statement hold,
Proposition 32 implies that any (minimal) resolution of an ideal generically defined
by monomials becomes acyclic up to integral closure when evaluated at a system of
parameters. Of course this would have as an immediate consequence the validity of
M. Hochster's monomial conjecture. I t follows from Proposition 3-4 below that
should our second statement hold, then the conjecture stated at the end of Section
1 is valid.

Let F as above be a complex satisfying srhc. In the proof of Proposition 2-3 and
Theorem 2-5 we found an ideal / with the property that IZ{(F) £ IaBi(F), and saw
that this implied that the complex F was acyclic up to integral closure. Since there
exists a c > 0 such that I(Ia)

c = (/Jc+1, it follows that if we let J = (Ia)
c+1, then

JZt(F) = JBf(F) for all i > 0. Whenever there exists an ideal J with this property, we
shall say that J efficiently kills the homology of F. It follows readily that every
complex F satisfying srhc will be acyclic up to integral closure, if we can find an ideal
which efficiently kills its homology. We now consider the following statement.

Statement 3-1. Let R be a Noetherian ring and

an exact sequence of bounded complexes of finitely generated free R modules. Assume that
there exists an ideal Jx efficiently killing the homology of K and an ideal J2 efficiently
killing the homology of L. Then there exists an ideal I efficiently killing the homology
ofG.

Suppose now that R is a d dimensional quasi-unmixed local ring and xlt... ,xd is
a system of parameters. Let B = Z[Xlt ...,Xd] and make R into a B module by
sending Xt to xt. Let if be a graded Z-flat B module admitting a filtration
0 = No £ iVx c ... c JV, = iVsuch that each Ni+1/Nt = Z (for example, N could be B/H
for any ideal H generated by monomials in the Xt such that H contains some power
of each Xt). Finally, let G be any resolution of N over B. Then we have:

PROPOSITION 3-2. / / Statement 3-1 holds, then G®BR is acyclic up to integral
closure.

Proof. As before, we are free to assume that R is a complete local domain. Induct
on s the number of terms in the filtration of N. When s = 1, N = Z. If G is the Koszul
complex on the Xf, then G ® B f l is the Koszul complex on the xt, and the result
follows from Proposition 2-1. If G is not the Koszul complex on theXi ; then we can
employ the argument that follows to compare G ®BR with the Koszul complex on
the xt in a manner that allows us to conclude that G®BR is acyclic up to integral
closure. Now assume s > 1. There exists an exact sequence

0 —• Z —>N—>M —•> 0

with M a Z-flat graded B module admitting a length s — 1 filtration with factors
isomorphic to Z. I t follows that there exists an exact sequence of resolutions
(over B)

0—>K^G'-^L-+0,

where K is the Koszul complex on the X{, L is a resolution of M and G' is a resolution
of N obtained in standard fashion from K and L (so each G'} = K^ @Lj). By the proof
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of Proposition 2-1, the comments above and induction on s, there exist ideals Jx and
J2 which (respectively) efficiently kill the homology of K®Bi? and L®Bi?. Since

0—>K®BR—>G'®BR—^L®B.R—>0

is an exact sequence of complexes, by Statement 3-l there exists an ideal / which
efficiently kills the homology of G' <E)BR. We need to relate G' ®Bi? to G ®BR. To
this end, let S (as in the proof of Proposition 14) be a d-dimensional complete
intersection local ring mapping onto R in which the pre-images of the x's form a
system of parameters. By the main result of [EH], G®BS and G'®B£ are (not
necessarily minimal) resolutions of N®BS. Using standard facts about minimal
resolutions, we can find split exact complexes F and F' of finitely generated free S
modules such that ( G ® B S ) e F = ( G ' ® J j S ) ® F . Thus (G®Bfl) © (F®SR) =
(G' ®Bi?) © (F' ®5i2). Since F®S7? and F'®5i? remain split exact, it follows readily
that / efficiently kills the homology of (G' (£)BR) © (F'®5i?) and from this that I
efficiently kills the homology of G.

The second statement we wish to consider is a dimension-theoretic analogue of the
Auslander-Buchsbaum formula. The formula states that if M is a finitely generated
module with finite projective dimension over a Noetherian local ring R, then

depth (M) + proj. dim. (M) = depth (R).

It follows that if F (as above) is a complex of finitely generated freei? modules which
is exact at F} for j 2* 2, then for PeAss(F1/B1(F)), depth(RP) < n-l. We offer a
possible analogue for complexes satisfying srhc, and record immediately the
ramifications of such a statement.

Statement 3-3. Let R be a quasi-unmixed local ring and F a complex satisfying srhc.
Suppose Zt(F) =Bt(F)afor i Ss 2 and P e A s s ^ / ^ F y . Then height(P) < n-l.

PROPOSITION 3-4. Let R be a quasi-unmixed local ring. If Statement 3-3 holds, then
every complex satisfying srhc is acyclic up to integral closure.

Proof. Without loss of generality, we may assume that R is a domain. We proceed
by induction on n, the length of the complex. If n = 1 or n = 2, we may repeat the
argument given in the proof of the first part of Proposition 2-3 to see that F is acyclic
up to integral closure. Suppose n ^ 3. By induction, we need only show Z^F) is
integral over B^F). Since F tensored with the quotient field of R is exact, there exists
O#Ae.R with AZ^F) ^B^F) ^B^F),,. Thus, either ZX{F) c B^F^ or AeP for
some PeAss(i^1/j51(F)a). Suppose the latter condition holds. By Statement 3-3,
height (P) ^ n — 1. Localize at P. Since height (I(<f>n)) ^ n, I(<j>n)P = RP. Hence,
im ((pn)P is a summand of (Fn_1)p and we may split off this irrelevant term to obtain
a complex F' of length n— 1. By induction, F' is acyclic up to integral closure. Hence,
F'J(Bl(F'))a=F'JZ1(F') is a torsion-free RP module. Thus P = 0, so A = 0,
contradiction.

Remark 35. Regarding Statement 31, it is a simple matter to check that if Jx and
J2 respectively kill the homology of K and L, then Jx J2 kills the homology of G.
Needless to say, it does not seem to follow that Jx J2 efficiently kills the homology of
G if J1 and J2 efficiently kill the homology of K and L. Perhaps a refinement of the
spectral sequence arguments given in [PR2] or [W] will do the trick, but efforts along
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these lines have eluded the present author. Regarding Statement 3-3, in order to
settle the monomial conjecture it would be sufficient to verify the statement for
F = G ®S-S, for R a complete integrally closed local domain, S a regular local
subring and G the MC complex on a regular system of parameters. In fact, as
Proposition 3-4 shows, for Pe Ass (F1/B1(F)a), height (P) = 0, once it is known that
height (P) ^ dim(i?)—1. The former would follow at once if one could show that
PnSe Ass (GJB^G)^. For then, G exact implies ^(G),, = .B1(G), so height
(P n S) = 0.
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