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1 Introduction

Let (R,m) be a local Noetherian ring. Given d&ideal | of heightg, a closely
related object td is itsintegral closurd. This is the setideal, to be preciseof all
elements irR that satisfy an equation of the form

XM+ b XML 4 bpX™ 2 4o+ b1 X + by =0,

with b € Il andm a non-negative integer. Clearly one has thatl C v/, where

V1 is theradical of | and consists instead of the elementRafiat satisfy an equa-
tion of the formX%—b = 0 for someb € | andg a non-negative integer. While



[EHV] already provides direct methods for the computatior/bf the nature of
is complex. Even the issue of validating the equdlity I is quite hard and rela-
tively few methods are knowrCHV]. In general, computing the integral closure
of an ideal is a fundamental problem in commutative algebra. Although it is the-
oretically possible to compute integral closures, practical computations at present
remain largely out-of-reach, except for some special ideals, such as monomial ide-
als in polynomial rings over a field. One known computational approach is through
the theory of Rees algebras: It requires the computation of the integral closure of
the Rees algebrg_of | in R[t]. However, this method is potentially wasteful since
the integral closure of all the powerslo&re being computed at the same time. On
the other hand, this method has the advantage that for the integral clostian
affine algebraA there are readily availabnductors givenA in terms of genera-
tors and relationgat least in characteristic zerthe Jacobian ideal Jac Afhas the
property that JacA C A, in other wordsA C A: Jac. This fact is the cornerstone
of most current algorithms to build [deJ, V].

On a seemingly unrelated level, lét= H;(l) denote the homology modules of
the Koszul compleX, built on a minimal generating set,...,a, of I. Itis well
known that all the non-zero Koszul homology modutgsare annihilated by, but
in general their annihilators tend to be larger. To be precise, this article outgrew
from an effort to understand our basic question:

Are the annihilators of the non-zero Koszul homology modulesfH
an unmixed ideal | contained in the integral closuiref |?

We are particularly interested in the two most meaningful Koszul homology mod-
ules, namelyH; andH,_g — the last non-vanishing Koszul homology module. Of
course the case that matters most in dealing with the annihilator of the latter module
is whenR is not Gorenstein. We also stress the necessity of the unmixedness re-
quirement on in our question. Indeed, &= K[X,y, z,w] with k a field characteris-
tic zero. The ideal = (X% —xy, —xy+y?, 22 — zw —zw+W?) is an height two mixed
ideal with Ann(H;) =T = (I,xz— yz—xw+yw) and Anr(Hz) = /I = (X—Y,z—w).
It is interesting to note that this ideal has played a significant rol€HM], where
it was shown that the integral closure of a binomial ideal is not necessarily bino-
mial, unlike the case of its radical as shown by Eisenbud and Sturni&]s A
first approach to our question would be to decide if the annihilators of the Koszul
homology modules are rigid in the sense that the annihilatdf; a§ contained in
the annihilator ofH; 1. Up to radical this is true by the well-known rigidity of
the Koszul complex. If true, we could concentrate our attention on the last non-
vanishing Koszul homology. Unfortunately, this rigidity is not true. An example
was given by Aberbach: 1R = K[x,y,Z/(x,y,2)"* and IetE be the injective hull
of the residue field oR. Thenzis in the annihilator oH1(x,y; E), butZ” does not
annihilateHz(x,y; E). It would be good to have an example where such behavior
occurs for the Koszul homology of an ideal on the ring itself.

An obvious question is: What happens whdn integrally closed? In Section
2 we provide some validation for our guiding question. In Corollary 2.4 we show
that for anym-primary ideall that is not generated by a system of parameters and
c € R\l such thattH; = 0 andc € I : m, thenc € I. In particular, ifl is an inte-



grally closed ideal then Ar{itl1) = |. We then proceed to study afth ) for several
classes of ideals with good structure: these include syzygetic ideals, height two per-
fect Cohen-Macaulay ideals, and height three perfect Gorenstein ideals. While in
the case of height two perfect Cohen-Macaulay ideals the Koszul homology mod-
ules are faithful'see Proposition 2.20in the case of syzygetic ideals we observe
that anriH;) can be interpreted ds 11(¢), wherel1(¢) is the ideal generated by
the entries of any matrig minimally presenting the idedl(see Proposition 2)6
In the case of height three perfect Gorenstein ideals we show the weaker statement
that(annHy))? C T (see Theorem 2.32

Section 3 contains variations on a result of Burch, which continues the theme
of this paper in that they deal with annihilators of homology and integrally closed
ideals. The result of Burch that we have in mifg] psserts that if Tgh(R/1,M),
M a finitely generatedk-module, vanishes for two consecutive values déss
than or equal to the projective dimensionMf thenm(l: m) = ml. This has the
intriguing consequence thatlifis an integrally closed ideal with finite projective
dimension, thefr, is a regular local ring for alp € AsgR/I). In particular, a local
ring is regular if and only if it has am-primary integrally closed ideal of finite
projective dimension. A variation of Burch’s theorem is given in Theorem 3.1.
We then deduce a number of corollaries. For instance, we show in Corollary 3.3
that integrally closedn-primary idealsl can be used to test for finite projective
dimension, in the sense that if T¢M,R/I) = 0, then the projective dimension of
M is at most — 1. This improves Burch’s result in that we do not need to assume
that two consecutive Tors vanish. Recent work of Goto and Hayasekdl{[
and [GHZ2]) has many more results concerning integrally closed ideals of finite
projective dimension.

The annihilator of the conormal modulél? is a natural source of elements
in the integral closure of. In Section 4 we study a class of Cohen-Macaulay
ideals whose conormal module is faithful. We close with a last section giving an
equivalent formulation of our main question, and also include another question
which came up in the course of this study.

2 Annihilators of Koszul homology

We start with some easy remarks, that are definitely not sharp exactly because of
their generality. It follows from localization that aftty)  +/I. Moreover, for any
R-ideall minimally presented by a matrix we also show that arihl1) C I: 11(¢),
wherely(¢) is the ideal generated by the entries¢of Things get sharper when

one focuses on the annihilator of the first Koszul homology modules of classes of
ideals with good structural properties. We conclude the section with a result of
Ulrich about the annihilator of the last non-vanishing Koszul homology module.

2.1 The first Koszul homology module

Our first theorem is a general result about annihilators of Koszul homology. It
follows from this theorem that our basic question has a positive answer for the



first Koszul homology module in the case thas an integrally closeeh-primary
ideal. Throughout this section we assume that Koszul homology modules under
consideration araot zero.!

Theorem 2.1 Let(R, m) be a local Noetherian ring and let | be am-primary ideal
satisfying H(I) # 0and KI) > d+i. If c € R\l is an element such that gHl) =0
then one of the following conditions hold :

(@ l:c=ml:c

(b) There exists £ | and x< R such that I= J+ (cx), u(l) = u(J) +1 and
cH(J)=cH_1(J)=0.

We will need a lemma before proving Theorem 2.1.

Lemma 2.2 Let JC R be an ideal and,x € R. Assume thatl, cx) is primary to
the maximal ideal. Thek(H;(J,c)) = A(anrzH;(J,cx)).

Proof. Induct oni. Supposé = 0. The desired equality of lengths follows imme-
diately from the exact sequence

0— ((J,ex) :¢)/(J,cx) — R/(J,cX) — R/(J,cx) — R/(J,c) — 0.
Supposeé > 0 and the lemma holds for- 1. We have an exact sequence
0 — Hi(J,cx)/cHi(J,cx) — Hi(J,cx,c) — anrg(Hi—1(J,cx) — O.
But Hi(J,cx,c) = Hi(J,¢c) @ Hi—1(J,c), so
A(Hi(3,¢)) +A(Hi—1(J3,c)) = A(anre(Hi—1(3,%)) + A(Hi(J,cx) /cH;(J,cX)).

Using the induction hypothesis, we obtaifH;(J,c)) = A(H;j(J,cx)/cHi(J,cx)) =
A(anrgHi(J,cx)). O

Proof of Theorem 2.1. Suppose€a) does not hold. Then there exist& m such
thatcx is a minimal generator df. We can writel = J + (cx), for an ideald C |
satisfyingu(l) = u(J) + 1. We will see below thal must bem-primary.

On the one hand, from the exact sequences

0— Hi(J)/cHi(J) — Hi(J,c) — anngH;i_1(J) — 0

and
0— Hi(3)/exH (3) — Hi(J,69) — annxHi_1(J) — 0

1The statements of Theorem 2.1, Corollary 2.3 and Corollary 2.4 have been changed from the
original published version of this paper. In Theorem 2.1 we have added the conditip(ljhatd +i,
whered is the dimension oR. In Corollaries 2.3 and 2.4, we have added the corresponding condition
thatp(l) > d+ 1. The proofs of 2.1 and 2.5 have been changed as well. We note that the statement
of our main result in this section, Corollary 2.5, did not require change. We thank Janet Striuli for
pointing out to us that the proof of our original version of Theorem 2.1 was not correct.



we get
A(Hi(J,¢)) = A(Hi(3)/cHi(J)) + A(annHi_1(J))

and
A(Hi(J,ex)) = A(Hi(J)/cxH (J)) + A(annxHi-1(J)).
On the other hand,

A(Hi(9)/exH(J)) > A(Hi(J)/cHi(J)) and A(annxHi—1(J)) > A(anreHi(J)).

SincecH;(J,cx) = 0, Hi(J,cx) = ann:H;(J,cx), soA(H;(J,cx)) = A(H;(J,c)), by
Lemma 2.2. It follows from this that(H;(J)/cHi(J)) = A(Hi(J)/cxH (J)). Thus,
cHi(J) = cxH(J), socH;(J) = 0, by Nakayama’s lemma. Now, assume for the
moment thatl is m-primary. Then since

AManngHi_1(J)) = AannyHi_1(J)),

it follows thatA(Hi_1(J)/cHi—1(J3)) = A(Hi—1(J)/cxH_1(J)), socH_1(J) =0, as
before.

To see thatl is m-primary, suppose(l) =r+1. Writing| = (z,...,%,cX),
with J = (z,...,%), if J were notm-primary, it would have to have height— 1.
LetP be a heightd — 1 prime containing. Note that ¢ P, soH;(z1,...,z;Rp) =
sincecH;(J) = 0. By [E], Theorems 17.4 and 17.6—i < gradéJp) <d—1, so
M(l) =r+1< (d+i), a contradiction. Thus] must bem-primary, and the proof
is complete. O

Corollary 2.3 Let (R,m) be a local Noetherian ring and let | be an-primary
ideal satisfying ) >d+1. Ifc¢Zl and c-Hy(l) =0, thenl:c=ml : c.

Proof. If | : ¢ properly containsnl : c, then by Theorem 2.1, there exists_ | and
x € m such that = J+ (cx), u(l) = u(J) + 1 andc-Ho(J) = 0. But thenc € J, so
| = J, a contradiction. O

Corollary 2.4 Let (R,m) be a local Noetherian ring and let | be an-primary
ideal satisfying () > d+ 1. If c € R\l is an element such that-&i;(I) = 0 and
cel:m,thencel.

Proof. Sipcem C 1 :c, we havemc C ml, by Corollary 2.3. By the determinant
trick, ce . O

Corollary 2.5 Let (R,m) be a local Noetherian ring and let | be an integrally
closedm-primary ideal with H(l) # 0. ThenAnn(H) = I.



Proof. We first note thai(l) > d+ 1. Indeed, sinceli (1) # 0, is not generated by
aregular sequence. Thus, by the main resul&df [ cannot be generated by a sys-
tem of parameters. Thug(l) > d+ 1. Now, suppose arih (1) properly contains

|. Takec € (annHy(1)\l)N (I : m). By Corollary 2.4,c € 1 =1, a contradiction.
Thus, aniHy(1) =1. O

Syzygetic ideals: It follows from the determinant trick that the annihilator of
Im/1M+1 s contained il for all m. Hence, another piece of evidence in support
of our question is given by the close relationship betwklgrand the conormal
modulel /12. This is encoded in the exact sequence

0—3(1) — Hy — (R/H"—1/12 0,

whered(l) denotes the kernel of the natural surjection from the second symmetric
power Sym(1) of | onto 12, Sym,(1) — 12, see BV]. We will exploit this exact
sequence in at least two occasions: Proposition 2.6 and Theorem 4.1. We recall
that the ideal is said to besyzygetiavhenevei(l) = 0.

Proposition 2.6 Let R be a Noetherian ring. For any R-ideal | minimally presented
by a matrix¢, annH;) C I: 11(d), where 1 (¢) denotes the ideal generated by the
entries of¢. If, in addition, | is syzygetic theann(Hy) =1: 11(¢).

Proof. Let Z; andB; denote the modules of cycles and boundaries respectively. If
x € ann(H1) one has that for € Z; the conditionxz€ B; means that each coordi-
nate ofzis conducted intd by x. Thusx € | :11(¢). The reverse containment holds

if 1 is syzygetic. In fact, in this situation one actually has tHat— (11.(¢)/I)".
Thusl: 11(¢) € Ann(Hy). O

Corollary 2.7 Let R be a local Noetherian ring, and let | be an ideal of finite
projective dimension n. ThegannHy )"t C 1.

Proof. Assumel is minimally presented by a matrix. By the above proposi-
tion, anr(H1) C I : 11(¢). The result then follows immediately from the following
proposition of G. Levin (unpublished). The proof follows from a careful analysis
of Gulliksen’s Lemma, 1.3.2 inGL]. O

Proposition 2.8 Let R be a local Noetherian ring and let | be an ideal of finite
projective dimension n, minimally presented by a maitithen(l : 11(¢))™1 C 1.

Remark 2.9 In general, the idedl: 1;(¢) may be larger than the integral closure
of I. For example the integrally closd®tideal | = (x,y)?, whereR is the local-
ized polynomial ringk[X,y](xy), is such that : 13(¢) = (x,y). However, Levin s
proposition shows that : 11(¢))? C .



Height two perfect ideals: The first case to tackle is the one of height two perfect
ideals in local Cohen-Macaulay rings. However the Cohen-Macaulayness of the
Hi's gets into the way. Indeed we have the following fact:

Proposition 2.10 Let R be a local Cohen-Macaulay ring and let | be a height two
perfect R-ideal. Then for all(with H; # 0) one hasAnn(H;) = 1.

Proof. Consider the resolution of the iddal
0O-R ! SR —| -0

The submodule of 1-cycles &., Z;, is the submodul&™1 of this resolution.
Also, for alli one hasz; = A'Z;. All these facts can be traced taHi]. This im-
plies that for anyi < n— 2, H; = H; — this multiplication is inH, (K). Thus the
annihilator ofH; will also annihilate, sayH, ». But this is the canonical module
of R/I, and its annihilator i$. The conclusion now easily follows. O

Gorenstein ideals:Let us consider a perfeat-primary Gorenstein ideal in a local
Noetherian ringR. In this situation, ifl is Gorenstein but not a complete inter-
section then AnfH;) # |I. Otherwise,R/I would be a submodule dfi;. By a
theorem of GulliksenGL], if Hy has a free summand then it must be a complete
intersection. Actually, using Gulliksen’s theorem one shows thaisifn-primary,
Gorenstein but not a complete intersection, then the socle annibiaté&ombin-

ing Proposition 2.6 and the work oEHV] yields the following result:

Proposition 2.11 Let(R,m) be a local Noetherian ring with embedding dimension
at least2 and let | be anm-primary ideal contained irm? with R/l Gorenstein.
Suppose further that | is minimally presented by a mapriand that k(¢) = m,
where L (¢) denotes the ideal generated by the entrieg.ofhenannH;) C 1.

Proof. By Proposition 2.6 and our assumption we obtain thateanc | : 11(¢
I: m. Our assertion now follows from Lemma 3.6 i€HV] since (I : m)?
[(1:m).

0l

For an height three perfect Gorenstein ideale have some evidence that
(annHy))? = 1 -ann(H;). If this were to hold in general, it would imply that
| C ann(H;) C 1. Thus far, we can prove the weaker result that the square of the
annihilator ofH; is in the integral closure df

Theorem 2.12 Let R be a local Noetherian ring wittha(R) £ 2 and let | be a
height three perfect Gorenstein ideal minimally generated byaelements. Then

(annHy))? 1.

Proof. Letay,...a, denote a set of minimal generatorsl oNotice thatB; andZ;
are submodules d®" of rankn— 1; in general, if is a submodule dR" of rankr,



we denote by d€E) the ideal generated by the< r minors of the matrix with any
set of generators @ (as elements dR").

Let ¢c € R be such thatz; c B;. It suffices to prove that? € T since the
square of an ideal is always integral over the ideal generated by the squares of
its generators. Note thaf'~'detZ;) c detB;). LetV be a valuation overring
of R with valuationv; the ideallV is now principal and generated by one of the
original generators, sat = a. By the structure theorem of Buchsbaum and Eisen-
bud [BE], we may assume that is one of the maximal Pfaffians of the matrix
presentingl. Sincel is generated by, B,V is generated by the Koszul syzy-
gies (az,—4a,0,...,0),(as,0,—a,...,0),...,(a,,0,0,...,—a). Hence dgB1V) =
(@ 1) = IV, As for Z;V, one has that déf;V) includes the determinant
of the minor defininga? (a is the Pfaffian of the submatrix Thus c"%12V C
I"-1v, which yields thatc"~1 € I3V, as cancellation holds. Hence, we have that
(n—1)v(c) = v(c" 1) > v(I"3V) = (n—3)v(IV). Finally, this yields

V() > 2n;i’v(|V) > V(IV)

and, in conclusiong? € T. 0

Remark 2.13 Itis worth remarking that the above proof shows much more. Recall

that!® denotes the integral closure of the ideal generated by alR such that
x? € 12, By [BE], n= 2k+ 1 is odd. Our proof shows that

(ann(Hy)) c 1'%

As k gets large this is very close to our main objective, proving that(H1)) C I.

2.2 Last non-vanishing Koszul homology module
Let us turn our attention towards the tail of the Koszul complex.

Proposition 2.14 Let R be a one-dimensional domain with finite integral closure.
Then any integrally closed ideal is reflexive. In particular, for any ideal | its bidual
(171)~1is contained in its integral closure

Proof. We may assume th& is a local ring, of integral closurB. An ideallL is
integrally closed ifL. = RNLB. SinceB is a principal ideals domair,B = xB for
somex. We claim thakBis reflexive. LelC = B~! = Homg(B, R) be the conductor
of B/R. Cis also an ideal oB, C = yB, and therefor€ 1 = y='B~! = y~C, which
shows thaC~! = B. This shows thafL™1)" c (R™1)"1n((xB)" 1)~ =L. The
last assertion follows immediately by settihg L = 1. O

We can interpret the above result as an annihilation of Koszul cohomology. Let

| = (ai,...,an) and letK* denote the Koszul complex

2 m

O—>R—>Rm—>/\Rm—>-~—>/\Rm—>O,



with differentiald(w) = zAw, wherez= a;€; + - - - +a,em. One sees that! =11z,
andB! = Rz Thus(171)~! is the annihilator ofH!. On the other hanti! =
Hm 1= Exti(R/I1,R). Let us raise a related issu@:~1)~! is just the annihilator

of Exts(R/I,R), so one might want to consider the following question which is
obviously relevant only if the rin& is not Gorenstein. LeR be a Cohen-Macaulay
geometric integral domain and lebe a height unmixed ideal of codimensignls
annExt3(R/I,R)) = annHy_q) always contained ifi? Notice that the annihilator
of the last non-vanishing Koszul homology can be identified WitkJ : 1) for J an
ideal generated by a maximal regular sequence irisidais follows since the last
non-vanishing Koszul homology is isomorphic(tb: 1) /J.

We thank Bernd Ulrich for allowing us to reproduce the following result [
which grew out of conversations at MSHerkeley:

Theorem 2.15 (Ulrich) Let (R, m) be a Cohen-Macaulay local ring, let | be an
m-primary ideal and let JC | be a complete intersection. Thernt §J: 1) C 1.

In particular the annihilator of the last non-vanishing Koszul homology of | is
contained in the integral closure of I.

Proof. We may assume that ht= htl. We may also assume thRthas a canonical
modulew. We first prove:

Lemma 2.16 Let A be an Artinian local ring with canonical modute and let
| C Abe anideal. Thef:, (0:al)=10w.

Proof. Note that O, (0:al) = Wr/y- TO showlw = wg/o; note that the socle
of lwis 1-dimensional as it is contained in the socleawnfHence we only need to
show thatl w is faithful overR/0: 1. Letx € anrklw, thenxlw = 0, hencexl = 0,
hencexc0:1. O

Returning to the proof of Theorem 2.15, it suffices to show (BatJ: 1))w C lw.
But(J:(J:1))wCJIw:, (J:rl). So it suffices to showw:, (J:rl) Clw. Re-
placing R,w by R/J, wg/; = w/Jw we have to show Q; (0 r 1) C lw, which
holds by Lemma 2.16. O

3 Variations on a theorem of Burch

Theorem 3.1 below is a variation of Burch’s theorem mentioned in the introduction,
and strengthens it in the cabkds integrally closed. We then deduce a number of
corollaries.

Theorem 3.1 Let (R, m) be a local ring, | an integrally closed R-ideal having
height greater than zero and M a finitely generated R-module. Bodfset J .=
annTor(R/1,M)). Let(F., ;) be a minimal free resolution of M. imaggd;) is
contained inmJ;R_1, then

image ¢t ®r1g/ ) NsoclgR 1/1F 1) = 0.




Proof. Takeu € Rk _; such that its residue class modulbelongs to

image¢: ®r1g/ ) NsoclgR-1/1F-1).

Thenu = ¢(v) +w, for ve Rk andw € IF_1. For allx € m, ¢:(xv) = 0 modulo
IFi_1. Thus for allj € J, there existz € k1 such thatd;,1(z) = jxv modulo
IF:. It follows that we can writejxv = ¢1(2) + wp, for wp € IF. Therefore,
jxu= o¢(jxv) + jxw = ¢¢(Wp) + jxw. By hypothesis, we gejxu € mJIF, for all
j € J and allx € m. Therefore, by cancellation,c I;/_1. But sincel is integrally
closedu € IF;_1, which gives what we want. O

In the following corollaries, we retain the notation from Theorem 3.1.

Corollary 3.2 Suppose | is integrally closed amgtprimary. Ifimagg¢;) is con-
tained inmJR_1, then:

(a) imagdd:) C IF_1.
(b) kR Cimag€dr1).

Proof. For (a), ifimage(¢: ® 1g/ ) were not zero, then it would contain a non-zero
socle element, sindeis m-primary. This contradicts Theorem 3.1, &) holds.

For (b), it follows from (a) that Tog(R/I,M) = R/ /(imag€di,1) + IF), sOkR is
contained in imag@:1) + |F, and(b) follows via Nakayama’s Lemma. O

The next corollary shows that integrally closedprimary ideals can be used to
test for finite projective dimension.

Corollary 3.3 Suppose that | is integrally closed amg¢tprimary. Then M has
projective dimension less than t if and onlyTiér (R/1,M) = 0.

Proof. The hypothesis implies thdt = R. Therefore, imagg.) is automatically
contained ilmmJR_1. By part(b) of Corollary 3.2/ C imagd 1), SoR =0, by
Nakayama’s Lemma. O

Corollary 3.4 Let JC R be an ideal and | an integrally closegtprimary ideal. If
JCm(lJ:1NJ), thenJCI.

Proof. Apply Corollary 3.2 withM = R/J andt = 1. O
Corollary 3.5 Suppose that R is reduced and M has infinite projective dimension

over R. Then for all & 1, the entries of; do not belong tan-annM). In partic-
ular, each map in the minimal resolution of k has an entry not belongimg’to



Proof. Let | be anym-primary integrally closed ideal. If the entriesfafbelong to
m-annM), then imagéd;) is contained inJFR_;. By Corollary 3.2, imagéb:)

is contained iNF_1. But the intersection of the integrally closedprimary ide-
als is zero, therefore, imagg) = 0, contrary to the hypothesis . Thus, the
conclusion of the corollary holds.

The last statement follows in the caRés regular from the fact that the Koszul
complex on a minimal set of generators of the maximal ideal gives a resolution of
k. If Ris not regular, thek has infinite projective dimension, and the result follows
at once from the first statement. O

In regard to the above corollary, it is well-known that the Koszul complex of a
minimal set of generators of the maximal ideal is part of a minimal resolutién of
in all cases, so for the maps occuring in the minimal resolution up to the dimension
of the ring, the last statement is clear. The new content of the last statement is for
the maps past the dimension of the ring.

Corollary 3.6 Suppose | is integrally closed ama € Asg(R/I). If imagg¢:) is
contained inJk_1, e.g.,Tor(R/I,M) = 0O, then either M has projective dimen-
sion less than+ 1 or m € AsgTori_1(R/I,M)).

Proof. SupposeM has projective dimension greater than or equal+tdl. Then
R_1 # 0. By hypothesis, the socle Bf_1/IF_1 is non-zero, so a non-zero element
uin this socle goes to zero und@r 1 ® 1r. But the theorem implies that the im-
age ofuin Tor_1(R/I,M) remains non-zero, so the result holds. O

4 The conormal module

We end the article with a result in the spirit of our investigation. More precisely
we show that the conormal modulgl? is faithful for a special class of Cohen-
Macaulay ideals.

Theorem 4.1 Let (R,m) be a Gorenstein local ring and | a Cohen-Macaulay al-
most complete intersection. Lptbe a matrix minimally presenting I. 1i(¢) is a
complete intersection, therfI? is a faithful R/I-module.

Proof. Let g denote the height of, write n =g+ 1 for the minimal number of
generators of = (ay,...,an). We may assume that the ideals generated by any
g of the g’s are complete intersection ideals. legt with 1 <i < n, denote the
n-tuple(0,...,0,1,0,...,0) where 1 is in tha-th position. Finally, note thatl; is
the canonical module d®/I1.

Let us consider the exact sequence

0—3(1) — Hy > (R/D" 5 1/12 = 0,

whered(1) is the kernel of the natural surjection Syfh) — 12, see BV]. Notice
that for anye’ = 3 riej + By € Hy, where3 riaj = 0, one ha$(¢') = (r; +1)e1 +



..+ (ry+1)en while for any element ifR/1)" one hast((r1 +1)e;+ ...+ (rn+
1)en) =rias+...+ran+12. Apply (—)" = Homg (—,Hs) to the above exact
sequence. We obtain

0— (1/12)Y ™ Hom((R/1)", H1) 25 Hom(H1, Hy) = R/l — 3(1)" — 0.

To conclude it will be enough to show thdt/12) is faithful.

First, we claim that the image 6f belongs td;(¢)/I. In fact, any element of
Hom((R/I)",H;1) can be written as a combination of elementary homomorphism
of the form

Gi((1+1)e) =¢ Gi((1+1)e) =0, ifi#j,
with € = Y rje; + By € Hy, wherey rja; = 0. Thus, for any’ € H; we have

(8"(&))(€) =&i(B(") =& (S (rj+1)ey) = (rf+1)e.

Observe thafr{ +1)e = (ri +1)€' in Hy. Indeedfie —rie’ = y (rirj —rirj)ej + Bu.
Buty (rirj —rir})e; is a syzygy of the complete intersectitm, . ..,4,...,an) and
thus it is a Koszul syzygy of the smaller ideal: hence it iBin In conclusion,
8" (&) is nothing but multiplication by; + 1 € 11(¢)/I. Given thate andi were
chosen arbitrarily one has that the imag®bfis 11(¢) /1.

Notice that the number of generatorslgfd) is strictly smaller tham. So we
can say that the image 6f is given say by(8"(&>),...,0Y(&n)). Write, for some

¢ € R/I,
8" (&) = 'chi 8" (&).
Henceg1 — ¥i-,Gi & € Ker(8") = Im(T[V7) so that we can fingt€ (1/12)V such that

€1 chi §=1(y)=yom
i>

The restriction of these homomorphisms to the first component of(k®m)", H1)

gives an homomorphism frofR/I to H;. Now, something that annihilatgsvould

also annihilate the restriction, but that restriction is faithful. O

Remark 4.2 From the proof of Theorem 4.1 we also obtain that Hoth),H1) =
R/11(¢). In addition, ifl1(¢) is Cohen-Macaulay of codimensi@nthen by the
theorem of Hartshorne-Ogus we have thét) (which isS) is Cohen-Macaulay
and therefore depthi1> >d —g—2.

Unfortunately, there is not much hope to stretch the proof of Theorem 4.1 as
the following example shows.

Example 4.3 Let R be the localized polynomial ring[x,y|xy). The ideall =
(x> —y°, X%y, xy*) is such that?: | = (I,x3?®). In this casdi(¢) = (x,y)? so that
(1) = u(l1(9)) = 3.



5 More Questions

We end by considering some other closely related questions which came up during
the course of this investigation. We lebe anm-primary ideal of the local rindR
minimally generated by elements, and le} be the annihilator of th&h Koszul
cohomology ofl with respect to a minimal generating setl of

Set d equal to the dimension of R. i1s & - - - J,_q contained inin-d?

Notice that the Koszul homology df vanishes for values larger than- d,
so that the product above represents all the interesting annihilators of the Koszul
homology ofl. Furthermore, a postive answer to this question gives a positive
answer to our main question. This follows since edchontainsl. Along any
discrete valuationw, this means that(l) > v(J) for all i. A positive answer to the
guestion above implies that

n—d

Zv(Ji) > (n—d)v(l) > r_]ztjv(.]i).

It would follow thatv(J;) = v(I) for all i, implying thatJ; C I forall 1 <i <n-—d.
Conversely, ifJy C T for all 1 <i < n-—d, then clearlyd; - J--- J,_4 is contained
in In-d, so the above question is equivalent to saying that I for all 1 <i <
n—d. This form of the question suggests using homotopies to compare the Koszul
complex of a set of generators lowith the free resolution of. However, we have
not been able to use this idea to settle the question.

Another question which arose during our work is the following:

Let n be the number of minimal generators ofratprimary ideal | in
a Cohen-Macaulay local ring R with infinite residue field, and let d be
the dimension of the ring. For every j,<dj < n—1, choose j general
minimal generators of I, and le be the ideal they generate. LefH
denote thén— j)th Koszul homology of a minimal set of generators of
I. Is

Ann(Hn,j) - Jj : (Jj : |) cl1?

We have positive answers to this question for the two extrenjes:d and
j =n—1, in the latter case assumihgg integrally closed.
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