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Seétion 1. Introduction. ‘

Let S be an Artinian local ring. Let X = {X,,... ,X,} and ¥ = {Ys,... Yo} be
two sets of indeterminates. Then the polynomial ring B = $[X;Y] is a bigraded S-
-algebra. Let R,, denote the §-module generated by monomials of the form P where P
is a degree 7 monomial in X and @ is a degree s monomial in ¥. We say that PQ is a
monomial of degree (7,s). R decomposes as R — G}r;s>0 R, and R R,y = Ryys,sss for
all 7,5,a,b,€ N. An element of R, is called bihomogen;us of degree (7, s). Anideal I C R
generated by bihomogeneous elements is called a bihomogeneous ideal. Therefore 4 = R/I
is a bigraded algebra, the bigraded component of degree (r,8) being A, = R,.,/I,,. The

Hilbert function of 4 is defined as - ’
H(r,s) = AA,,)

where A denotes length as an S-module. Van der Waerden [W] studied the function
H(r,s). The original idea of Hilbert functions of multigraded algebras is due to Lasker [L],
as pointed out by Van der Waerden in w). ,

In [W], it is proved that if S is a field and d = dim(A4)—2, then for lazge 7 and s, H(r,s)
is given by a polynomial P(r, s) of the form Dirica®ii(}) (;), where a;; are integers. This
has been extended to the Artinian case by Bhattacharya [B]. Among the numbers a;j, the
‘ones for which i+J = d are especially interesting. Let us denote them by e;;(I}. These.are
called the degrees of I in [W]. Van der Waerden proved that the degrees are non-negative
integers and pointed out their geomefric iﬁterpretation.

A proper bihomogeneous ideal 7 is called projectively irrelevant if for some non-negative
integers @ and b, (X ¥yy cr, pr'ojectively relevant otherwise. According to Theorem
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6 of [B], if I'is not projectively irrelevant, then e;;{I) > 0 for all 4,7. This is clearly not
true. For example take I = 0 (examples with I- # 0 can be constructed; see section 5).
Then H(r,s) = A(5)("F™) (°*1™) for all r,5 > 0. Therefore emn = A(S) and the other e;;
are zero. In this note we point out some of the elementary differences between Hilbert
functions of bigraded versus N-graded algebras and indicate a few of the similarities as
well. In section two we will identify the total degree of P(r,s). In general, it is not quite
the “expected value” dim(A) — 2. In section three, we will prove a formula for the degrees

of I using the Hilbert series

Qint2i A) =Y > MA)8.

r=0 s=0

The bigraded algebra A can be made into a graded algebra by setting A, = D, ,,_, 4rs.
. Hence A = @, An. In section four we will show that the multiplicity of 4, e(4), is
the sum of-the (Iegrees of I provided the ideals generated by A;q and Ap; have positive
height. As a consequence, we recover a formula prbved in [V] about the multiplicity of

Rees algebras localized at their homogeneous maximal ideals. Finally, in section five we

present some examples.

Section 2. The total degree of the Hilbert polynomial.

The results of Bhattacharya and Van der Waerden show that the total degree of the
Hilbert polynomial P(r,s; A) corresponding to the Hilbert function H(r,s) = A(A,,) is
at most dim(A) — 2 := d. To see that the total degree of P(r,s;A) is not d even if |
is a projectively relevant ideal, consider the ideal I = (Xo) N (Yo,Y:) in the bigraded
polynomial ring R = k[Xo;Ys, Y1, Y2] over a field k. Then for A = R/I, dim(A) =3 and [
is projectively relevant. Set P = (Xy) and @ = (Yp,Y1). From the exact sequence

0—+A—R/POR/Q—R/(P+Q)—0

we obtain P(r,s;4) = P(r,s; R/ P) + P(T,S;R/Q) — P(r,s; R/P + Q)‘ =0+1-0=1.
Thus deg(P(r,s;A)) = 0 < dim{A) — 2. In this section we will determine the total degree,
deg(P(r,s; A4)) of the Hilbert polynomial of A.

Definition 2.1. The relevant dimension of A = R/I, denoted-by rdim( A} is defined as

max{dim(R/ P)}, where P ranges over the projectively relevant primes associated to I.
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Theorem 2.2. Let S be an Artinian local ring and B = §[X;Y] as above be the polyno-
mial ring in m -+ n + 2 indeterminates. Let | G R be a relevant bihomogeneous ideal and
put A= R/I. Let P(r,s;A) denote the Hilbert polynomial corresponding to the Hilbert

Tunction H(r,s) = MAr.). Then deg(P(r,s;4)) = rdim(4) — 2.

Proof. Since I is relevant, at least one of the primary components of I is relevant. By taking
a primary decompostion in which all the primary components are bih'omogenous, we can
write I = J N K, where all the associated primes of J (resp. K') are projectively irrelevant
(resp. relevant). Then J + K is also projectively irrelevant. Therefore P(r,s;R/J) =
P(r,s; R/J + K) = 0. By the exact sequence |

0—+A—>R/JOR/K - R/J+ K —0

we get P(r,5;4) = P(r,s; R/K). Since rdim(4) = dim(R/K) = dim(R/K), we may
assume that I has no projectively irrelevant components and we are reduced to proving
that deg(P(r,s; 4)) = dim(4) — 2. If L is a bihomogeneous prime with dim(R/L) < 1,
then I is projectively irrelevant. Hence dim(4) > 2. Set dim(A) = d + 2. We can view
A as a graded ring @,y A, whose nth graded component A, is D, s smn Ars. Assume
P(r,s;A) = H(r,s) for all r,s > q. For n > 2q, set n = 2¢ + k. Put

Bn = AnO 57 An—l,l @B An—-q-i—l,q—l

Ca = An—q,q & An—9—1,9+1 b @ Aq,n—q
Dn = Aq—»l,n-—q—i—l DB AGn-

Since I has no projectively irrelevant component, the ideals (X)A and (V')A have positive
height. Set £; = 5, Ap_i; and F; = @BrsiAin-i. Then By & A/(Y)A and F
A/(X)A. Therefore di;n(Eg) <d4 1 and dim_(Fg) < d+ 1. Since E (resp. F;)is an F,
(resp. Fy)-module, dim(Z;) < d+ 1 and dim(F;)} < d + 1. Hence for large n, ,\(An._,-,,-)
and A(4;,,—;) are given by polynomials of degree at most d. Hence A(Bn) and A(D,,) are

given by polynomials of degree at most d. Since -

MAz) = A(Ba) + A(Cr) + A(D,),
and since A(A,) is given by a polynomial of degree d + 1 for large n, A(C,) is given by
~ a polynomial of degree d + 1 for large n. Since n = 2¢ + k,n—q =g+ k. Hence for

i=0,1,... R,
' /\(An—q—i,q+i) = P(n —4q- i:q + Z:AJ
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Thus

rR—2q
MCa)= D, Pln—q~i,g+iA).

i=0

Since deg(P(r,s; A)) < d, we may now conclude that deg(P(r,s; A)) = d.

Section 3. The Hilbert series.

Let X, Y, S, R, I and A have the same meaning as in the introduction. The Hilbert
series of A is given by Q(t1,%2) = %0 o Doemo A(Ars)tit3. By an argument analogous
to the proof of Theorem 1.11 of [A-M], there exists a polynomial N(t;,%2) € Z[ty,t2] s0
that Q(t1,t2) = N(t1,22)/(1 — £)™+1(1 — )"t . Write the Hilbert polynomial of A as
P(r, 8 A) = >ico E?:e @ij (r—:—i) (3-;‘—j) . ‘

Theorem 3.1, Fori=0,1,...,mandj=0,1,...,m:
(_1)m+n—i—j gmin—i=iy

aii = T - { -3
t) (m —_ g)!(ﬂ, —_ J)! at;nﬂ;atg J tyemig==l

Proof. The argument is essentially the same as the one for the coefficients of the Hilbert
polynomial for N-graded rings. For the sake of completeness, we include the proof. The

proof is modeled after the proof of Proposition 4.1.g of [B-H]. We write

NG = gV (i, 1)
atiat% t1=te=1
Then : |
m R NEDN(—1)H] D(t1,12)
Q(il,iz) - ; ; i!j!(l _ tl)m-z—l-—i(l — tg)"+1_j‘ - (1 — tl)"‘+1(1 —_ tz)rﬂ-l
where
, m = NGD ; i
D(t1,t2) = N(t1,82) — ;;:zb 751_—(11 ~1)'(t2 = 1)

Hence, D(ty,1,) is the remainder of the Taylor series of N(ty,%2) about the point (1,1)
having terms of degree > m + Lin # - 1 and degree > n +1in ¢y — 1. Thus D(iy,12) is
divisible by (1 — ;)™ +1(1 — t5)"*!. Therefore A(Ay,) is the coefficient of 773 for all large

r and s in the power series expansion of

m n NG (1) : ’
% —
( ) E(tlati) T EZi!j!(l__tl)m-i-l—-i(l_tz)n-l-l—j'

i=0 j=0
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Since the coefficient of 1713 in E(t1,12) is given by a polynomial for all 7 and s,
(**) E(t,t2)= Y, P(nsA)us.
(r,s)EN? -
Here we are using the fact that two polynomials in Zlz,yl commdmg at (r,s) for all large

r and s must be equal. Now-expand the rational functions in (*) to get

s = 33 X S5 () (C "I+ )as).

i=0 j=
Comparing this with (¥*) yields the desired formula.

We conclude this section ‘with an example showing that Theorem 2.4 in Amao’s paper

[A] is not quite correct. According to this, if § is an Artinian ring and we take the

polynomial ring B = §[X1,.. y XmiYi,. .., Yp)over § and M = D, 50 Mrs is a finitely
generated blgraded R~module then there ex1sts g(t1,12) € Zft1,13] s0 that
g(t1,12)
MMy )tity =
smzerz—:o (Mra)it (1—ty)pFt(L — 1)

where p+¢+2 = dimg(M). Recall the analogous theorem for the Hilbert series of a finitely
generated module M = €D,,5o My over a Noetherian graded ring A = @5, An = Ag[A1].
If the dimension of M is d then for some f(2) € Z[t], 22720 AM )™ = f)/(1— 1)
Unfortunately, this does not extend to bigraded modules as Amao claims. This is evident
from the following S

Example 3.2, Let & be a field and set R = E[X,Y;Z, W] be the four dimensional

polynomial ring bigraded by the sets {X Y} and {Z,W} in the usual way. Let f =

XZ-YW. A bigraded resolution of A = R/(f) is given by the exact sequence

0— R(-1, —1)-+R—}A—>0

It follows readily from this that the Hilbert series for A is given by

. , i (1 b tltg)
Q(tl :;%A) - (1 _ 11)2(1 . t2)2 ’

According to Amao’s theorem there exist p, ¢ € N and g(t1,12) € Z[ty,12] such that
(1- tity) _ g(t1,t2)
-0l P - - )P (- t)
where p+ Q+ 2 = dim(A) = 3. Hence p+¢q = 1. Without loss of generality we may assume
that p= 0,q = 1, Hence 1 — {122 = (1 —11)g(t1,12). But this is a contradiction since 1—1

does not divide 1 — ?112. : y
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Section 4. Multiplicity and Degrees.

~ For the bigraded S-algebra A = §[{X;Y]/I as above, one may also view A as a graded
algebra A = @, 5, An where A, is the direct sum of the bigraded components A, with
r+s=mn. Now let d =-dim(A). Then A(A,) for large » is a polynomial in = of degree d—1.
The coefficient of n¢=1/(d — 1)!, denoted by e(A), is called the multiplicity (or degree) of
A. In this section we demonstrate the connection between e(A) and the degrees of I. As
a consequence, we recover a formula in [V] for the multiplicity of the Rees algebra B[J1]
localized at its homogeneous maximal ideal where B is a local ring and J C B is.a,n ideal

of positive height.

Theorem 4.1. If (X)A and (Y)A have positive height, then

itj=d—2"

Proof. As in the proof of Theorem 2.1, A(4,) = A(Bn)+MCr)+A(Dy). Since dim(4) = d
and height({(X)A) and height((Y)A) are positive, A(Bn) and MD,) are polynomials of
degree at most d— 2 for large n. Let P(n) denote the Hilbert polynomial corresponding to
the Hilbert function A(A,). Since height((X)4) and height((Y)A) are positive, rdim(4) =
dim(A) = d. Hence the total degree of P(r,s;4)is d—2. Continuing with the notation in
the proof of Theorem 2.1, for n 2 ¢,

n—24g n—gq
P(r)=ACa)= 3y Pln—g—iqtiA)= > P(n—1i,5;4).
i=0 i=g .

. . - - r derR—p -
Write the Hilbert polynomial P(r,s; A) as EL; %’R‘—;%_—Pj!—+ terms of total degree < d—3.

Then
n—gd—2 d—2—p

P{n) = Z Z al;(!v(zd———z)z,z_ o) T

i=g p=>0

n—gd—2

-SSR L0 o]

i=q p= k=0

d—2

_ Z 2., (d ~ 2) (z) (—=1)kn?* rféd—?-p+k g

— ]
p=0 k=0 (d 2) d p i.::g
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-y ;) (1) @ " i-;+: Byt

P=0 k=0

(by Lemma 2.8 of [V])

S L0

p=0 k=0

nd=1 [dz—g } .
= em—— ap + ..
(d— 1) =
(by Lemma 2.7 of [V]). Since Gp = €p 4-2_p, the result follows.
Example 4.2. If height((X)4) or height((Y)A) fail to be positive, the multiplicity of A '
may not equal the sum of the degrees of I. Let £ be a field, R = k[XO,Xl;YO,YI,Kg] and
1= (XoY0,X1Y1). Then dim(A) = 3 = rdim(A). Hence deg(P(r,s;4)) = 1. To calculate
the degrees of I, consider the bigraded Koszul complex

0 R(-2,-2) » R*(~1,-1) 5 R = A > 0.

It follows that

: - 1—131,)?
QUtr12;4) = Q(ta, 123 B) — 2:02Q(tr, 123 R) + £43Q (11, 13 ) = g 4 z1)2(112—)t2)3'

By Theorem 3.1,

_ () 821 gy,

a0 (1 - 1)!(2 - 0)! ‘%% thgzl =

I S (RN

T Aoz oy =2

t1=to=1

Similarly, one may calculate the Hilbert series of Aasa graded algebra and obtain QA =
(1+12)*/(1 - #). By Corollary 11.2 of [A-M], e(A) = 4. Thus e(4) > e1o + oy .

- In the above example, one can see that the Hilbert series of the graded algebra A can
be obtained from the Hilbert series of the bigraded algebra A by putting {; = 1, = ¢. This
is true in general. We state this as a pfoposition and leave the proof to the reader.
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rProposition 4.3, Let A = @, 55 Ars be a bigraded algebra over an Artinian local
ring Age. Put Q(t1,%2) = Yoo Soeeo A(Ars)tits. For the corresponding graded algebra

s=0

A= @50 An, put P(1) = Torg MAn)". Then P(t) = Qt,1).

We conclude this section by giving an application of Theorem 4.1 to Rees algebras,
thereby generalizing Theorem 3.1 of [V}, We now change our notation and let (R, m) be a
local ring of dimension d > 0 and J C B an ideal of positive height. Then the Rees algebra
R[J%], ¢ an indeterminate, is the graded R-algebra. ' '

T=R[J)=ROJIOIF S .

T has.a unique homogeneous maximal ideal, namely M = (m, Jt). It is well-known that
dim(Tyr) = d+1. Let I bean m-primary ideal of R. Then (I, J¢)T is M-primary. We wish
to obtain a formula for e((f, J)Tar) in terms of the degrees of a certain bihomogeneous

ideal. Consider the bigraded algebra

A= @ Ir‘Js/Ir‘+1Js
7,820
over the Artinian local ring R/T = Ago. To determine e({I,Jt)Tp), we will need to know
the total degree of the Hilbert poiyﬁomiai P(r,s; A) corresponding to the Hilbert function
AU‘"P/I-‘"“J“’). Bhattacharya finds the degree of P(r,s; A) in Theorem 7 of [B] to be
dim(A) — 2. Unfortunately the incorrect result {B, Theorem 6] is used in doing so. That
the degree of P(r,s; A) is d — 1 is proved in Theorem 2.7 in {K-V] which also proves that

a—1
P(r,s;4) = ; (d B ; B j) (j) e.j(f|J) + terms of lower degreel
where @ = a(J) = analytic spread of J := dim(@,», JH/md™), eo(I}J) = e(I) and
ej{I|J), are positive integers. (The reader should note ‘the first and second authors’ own
error. While the proof of Theorem 2.7 in [K-V] correctly shows that e;(I|J} =0, j 2 ¢,
e;(I[J) # 0, § < a, the inequality ¢;(I]J) = e(J -+ I) in part (i) of Theorem 2.7 is valid
only for 0 < 7 < height{J) - 1, not 0 < § < a — 1. Consequently, one must replace a{J)
by height(J) in [K-V] Corollaries 2.8 and 3.7.)

Theorem 4.4. e((I,Jt)Tx) = eO(I[J) +er{I}J) + - eq1(J|J). In particular, e(Tm) =
e(R) + ex(MJ) -+ + eas(m]]). .
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Proof. To calculate e((1, Jt)Tur), set K = (I,Jt) and consider the powers of K. For any

n 20,
Kt=I"@I"'Jtg...@Jrt"g J Hntl g, ..

80
A(ffn/K"+1) — Z A(In—t'J:'/In-{-I—iJi) - E ,\(I"J"/I’"‘*‘ljs).
i=0 r+s=n

Write A, = @, ,_, I"J°/I™*1]*, Then A = Dn>o An and e(KTy) = e(A). In view of
Theorem 4.1, it only remains to show that Agy and Ajq generate ideals of positive height.
We do this by viewing 4 as R/IR, where R = R[I%,Ju] (¢,u indeterminates). Let P CR
be a prime minimal over JR. We must show It Z P and Ju ¢ P. Since R is the Rees
algebra of R[Ju] with Tespect to TR[Ju], it is well-known that J¢ cannot be contained in
P. Since d > 0 and IRp is principal, height(P) = 1. Now, thinking of R as the Rees
algebra of R[[t] with respect to JR[I1], it follows that Ju ¢ P, as well (since PN R[I{]
has height greater than zero). This finishes the proof. '

Section 5. Examples.

Example 5.1, Let R = k[X,,... »Xm; Yo,...,Yz] be a polynomial ring in m 4 n + 2
variables over the field k, m > 2, n > 2. Let M be a t X (t + 1) matrix whose entries are
forms of degree (d,e), d > 1, e > 1. Let I be the jdeal generated by the ¢ x ¢ minors of M
Hence each minor is a bihomogeneous polynomial of degree (2d, ze). Suppose height(7) = 2.
Then A = B/I has the following bigraded resolution |

0 — R (—td — d,—te ~ €) — R (=1d,—te) > R — A — 0.

Hence Q(t1,12; A) = (1 — (¢ + 1)eldzte + ety dtetey 11 — 1)1 — 1), Since I is an
unmixed height two ideal, and (X)A and (Y)A have positive height, rdim(A) = dim(A) =
m+n 2 4. Hence deg(P(r,s;4)) = m + n — 2. By Theorem 3.1

' ? | t 41\ ,
Cm,m—2 = ( ;l)eggemml,rh-l = 2( -;1)(16,87““2’,1 = ( :; )d“

Hence e(A) = (*11)e? + 2(*11) de+ ("31)d® = (*31)(d + ¢)2. This is in ‘agreement with the

formula in Example 1.5 of [H-M].

Example 5.2. Let ag,a1,...,a4 be a sequence of non-negative integers satisfying ag +
e+tag > 1. We construct a bihomogeneous ideal in the ring R = ki Xoy... , Xa;Y0,... Yy
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over a field k so that the degrees of I are ag,... ,24. In other words, the Hilbert polynomial
P(r,s; A) of the bigraded algebra A = R/I has the form

P(r,s;A) = ;a,(dia) (f) + f(ry)

where f(r,s) € Q[r,s] is a polynomial of total degree at most d — 1. Consider the ideals
Qo = (YGGO:YI: -‘-" :Yd—l)JQi = (-Xgi:Xla v :Xt'-—-layﬂa s )del—i)

fori=1,...,d. Set I = geNgiN---Ngg and put J; = (goN-«Ng;)+giy1, fori=0,... ,d-1.

By considering exact sequences of the form
0— R/giN-—Ngix1 — (RIg 0 Nqi)®R/giy1 — B[Li =0

it is easily seen that

P(r,8;4) = ZP(T,S,R/q,) ZP r, 8 R/ J:).

i=0

Any prime containing J; contains ¢;+¢i41 for some j < i. Hence dim(R/J;) < d+1. Hence
deg(P(r,s; R/ J;) < d — 1. Thus to calculate the degrees of I it is enough to calculate the
degrees of ¢; for i = 0,1,...,d. If @; = 0, then ¢ = R and P(r,s;R/q:) = 0. To
caleulate P(r,s; R/qo), let ag > 1. Then R/qo = k[Xo,... ,Xa1Y,, Y4/ (Ys°). Putting
S = k[Xo,... ,Xa;Ya, Y4, it follows from the exact sequence

_ oo
0 — 8(0,—ap) —— S — R/go — 0
that . : ‘
r+dys+1 r+dyfst+1l—a T
Posri = () - (R () = w(l) + a0
where fo(r) € Qfr] has degree less than d. By a similar argument we get P(r,s;R/q4) =
aq(3) + fa(s), where fa(s) € Qls] has degree less than d. For ¢ = 2,...,d— 1 we get

P(r,s; R/ ¢i) = ax(d ) ( ) + fi(r, )
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where fi(r,s) € Q[r, s] has total degree less than d. Hence

P(r,s; R/I) = f o ( . i) (f) + f(r,9)

i=0
where f(r,s) denotes the terms of degree less than d.
Let I be a bihomogeneous ideal of the polynomial ring R = § [X,Y], where as before,
§ is an Artinian local ring, X = {X,,... »Xmb Y = {¥;,...,Y,} and set 4 = R/I.
Suppose rdim(A4) = d + 2. Write

Pr, 5, 4) = Zd:a,- (di i) (f) + f(ry9)

i=0

where f(r,s) represents the terms of total—degree less than d. We say that the sequence
of degrees @9, 21, .. 584 is rigid if there exist ¢, with 0 < i< j < d such that a; = 0 for
k < iand k > j and the other degrees are non-zero. For instance, in the example above,
we may take d =2, ap = 1, a; = 0, a3 = 1 to obtain an ideal 7 C k[Xq, X1,X2;Y5, 13, Y2)
whose sequence of degrees is 1,0,1 (and is therefore not rigid).

Question 5.3. If § above is a field and A = R/Iis Coheh—Macaulay or a domain, then
is it true that the sequence of the degrees of I is rigid 7 Neither of these conditions is
necessary for the rigidity of the degree sequence as ea,sj examples show, Our last example

illustrates this, as well as most of the main tesults in this paper,

Example 5.4. C. Huncke gave the following example of a height two Cohen-Macaulay
bihomogeneous ideal I in B = k[Xo, X1,X2;Y0,Y1,Y2) so that I is neither prime nor a
complete intersection and the sequence of degrees of I is rigid. Consider the matrix

_ (Xe Y3 Yy
M = (X, Y? Y,

and let [ = (8),6,,63) denote the ideal of (signed) 2 2 minors of M (obtained by deleting
the first, second and third rows, resp.). By the Hilbert-Burch theorem R/I = A is Cohen-
Macaulay. Since Y — Y3 = (Y — Y1)(Y3 + Y + Yo¥1) € I, but neither factor belongs to
I, I is not prime. Consider the bigraded resolution of A

_ .
0 — R*—1,-8) — R(0,-3)® R(—1,—-1)® R(~1,-2) 5 R — A — 0.

It follows that the Hilbert series of A is given by'N(tl,té)/(l — 11 *(1 — 13)%, where
N(t}_,tg) =1~ ig — i1ty tlt% + 2tltg By ‘Theorem 31,
1 82N (ty,15)
Sl R B
2. t-z t1=tg=1

=2
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DN (ty,12)
€11 = ~f; a8,
Oty 014
1PN (t,1a)
€2 =91 8l

Hence the sequence of the degrees of I is 2,3,0, which is rigid. Additionally, since the

Hilbert series of A as a graded algebra is obtained by putting ¢; = 2 =t in Q(t1,t2; A),

we get Q(t; A) = 142t + 2:2/(1 — )*. Thus e(A), which is the value of 1+ 2¢ + 212 at
t=1,is 5 = eg + €11 + €p2. This is what Theorem 4.1 predicts.

t1=13=1

= 0.

t1=ig=1

Added in proof : Since the first author delivered a talk at Trieste on these matters,

the comprehensive account of multigraded Hilbert functions [K-R] has come out. The

interested reader is encouraged to consult this paper.
i
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