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Two-variable Hilbert-Samuel Polynomials

We now show the existence of the Hilbert-Samuel polynomial associated to two
m-primary ideals.

Theorem D6. Let (R ,m, k) be a local ring of dimension d, and I, J ⊆ R
m-primary ideals. Then there exists a numerical polynomial PI,J(n,m) of degree
d such that λ(R/InJm) = PI,J(n,m), for n,m >> 0. Moreover, if we write the
terms of total degree d in PI,J(n,m) as

1
d!{e0(I|J)nd+

(
d
1

)
e1(I|J)nd−1m+· · ·+

(
d

d − 1

)
ed−1(I|J)nmd−1+ed(I|J)md},

then each ei(I|J) > 0.

Proof. We use HI,J(n,m) to denote λ(R/InJm) for all n,m. Without loss of
generality, we may assume the residue field of R is infinite.We now induct on d.
If dim(R) = 0, then the conclusion of the theorem is clear.

Assume d > 0. By (x) in the General Discussion above, and its predecessor in
the previous section, if we write S := L, for L := (0 : mt), for t >> 0, the
lengths HI,J(n,m) and the lengths λ(S/InJmS) differ by a constant for large
n,m. It follows that we may assume that R has positive depth, and hence I and
J have positive grade.
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Two-variable Hilbert-Samuel Polynomials

Thus, there is a ∈ I, a non-zero divisor, such that (InJm : a) = In−1Jm, for all
n > c and m ≥ 1. Set R∗ := R/aR . For n > c, the exact sequence

0 → R/In−1Jm ·a→ R/InJm → R∗/InJmR∗ → 0,

gives
HI,J(n,m)− HI,J(n − 1,m) = λ(R∗/InJmR∗).

Since dim(R∗) = d − 1, by induction on d, the lengths of R∗/InJmR∗ agree
with a polynomial of degree d − 1, all of whose top coefficients are positive.

Thus, HI,J(n,m) agrees with a polynomial numerical polynomial PI,J(n,m) of
degree d, for n,m >> 0.

If we write the terms of degree d in PI,J(n,m) as in the statement of the
theorem, item (viii) in the discussion above shows ei(I|J) = ei(IR∗|JR∗) > 0,
for 0 ≤ i ≤ d − 1.

Since ed(I|J) = e(J) > 0 (by part (xiii)), the proof is complete.
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A special case of Lech’s Lemma

Proposition D6. Let (R ,m, k) be a two-dimensional local ring with infinite
residue and I = (a, b)R an ideal generated by a system of parameters.
Assume that a ∈ I is a non-zerodivisor and a superficial element for I. Then,

e(I) = lim
n→∞

1
n2 · λ(R/(an, bn)R).

Proof. Let’s first note that e(In) = e((an, bn)R), for all n. To see this, let
ajbj ∈ In be a monomial generator of degree n. Then

(aibj)n = (an)i(bn)j ∈ (an, bn)nR .

This shows aibj is integral over (an, bn), and thus In and (an, bn)R have the
same integral closure, and thus, the same multiplicity. Therefore,

n2e(I) = e(In) = e((an, bn)R) ≤ λ(R/(an, bn)R) ≤ n · λ(R/(a, bn)R).

Here we are using the fact that if I ⊆ R is an m-primary ideal in a local ring of
dimension d, then for any r ≥ 1, e(Ir ) = rde(I).
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A special case of Lech’s Lemma

Dividing the displayed equation by n2 and taking the limit as n → 0 we have,

e(I) ≤ lim
n→∞

1
n2 · λ(R/(an, bn)R)

≤ lim
n→∞

1
n · λ(R/(a, bn)R)

= e(b,R/aR)

= e(I/aR)

= e(I),

since a ∈ I is a superficial, non-zerodivisor.
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The key step

Here is the main result in the Rees-Sharp proof.

Theorem E6. Let (R ,m, k) be a two-dimensional local ring and I, J ⊆ R
m-primary ideals. Then,

e(IJ) ≤ 2e(I) + 2e(J).

Proof. We may assume that the residue field of R is infinite. By modding out
the stable value of (0 : mt), we may assume I, J have positive grade.

By Theorem F5, there exists an ideal K ⊆ I generated by a
system of parameters with K = I. By the comments following Theorem O5,
e(K) = e(I).

On the other hand, one also has KJ = IJ, and thus, e(KJ) = e(IJ).

Therefore, we may replace I by K , then change notation to assume that
I = (a, b)R is generated by a system of parameters.

From our work in the previous section, we may further assume that I = (a, b)
with a a non-zerodivisor and a superficial element for I.
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The key step

Let F = R2, and observe that for all n ≥ 1, we have a surjective R-module
map F/JnF → (an, bn)R/(an, bn)Jn. Thus,

2 · λ(R/Jn) ≥ λ{(an, bn)R/(an, bn)Jn}.

Therefore,

λ(R/(an, bn)) + 2λ(R/Jn) ≥ λ(R/(an, bn)) + λ{(an, bn)R/(an, bn)Jn}
= λ(R/(an, bn)Jn)

≥ λR/(InJn).

If we multiply the left hand side of this inequality by 2
n2 and take the limit as

n → ∞, we get 2e(I) + 2e(J) (using Lech’s lemma on the first term).

Multiplying the far right side of the inequality by 2
n2 and taking the limit as

n → ∞ gives, e(IJ), which completes the proof.
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Teissier’s Theorem

We now have all of the pieces required to prove the main result of this section.

Proof of Theorem A6. We may assume the residue field of k is infinite, and
proceed by induction on d := dim(R). We let ei(I|J) denote the mixed
multiplicities of I and J, and set ei := ei(I|J). We need to prove that
e2

i ≤ ei−1ei+1, for all 1 ≤ i ≤ d − 1.

Suppose d = 2. We must prove e2
1 ≤ e0e2. By item (iv) in the general

discussion, for all r , s ≥ 1, we have

e(Ir Js) = e0r2 + 2e1rs + e2s2.

On the other hand, by Theorem E6,

e(Ir Js) ≤ 2e(Ir ) + 2e(Js) = 2r2e(I) + 2s2e(J).

Thus,
e0r2 + 2e1rs + e2s2 ≤ 2e0r2 + 2e2s2,

for all r , s ≥ 1. Therefore,

0 ≤ e0r2 − 2e1rs + e2s2,

for all r , s. Since e0 > 0, if we substitute r = e1 and s = e0 into this last
expression, we can divide by e0 and conclude e2

1 ≤ e0e2.
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Teissier’s Theorem

Now suppose d ≥ 3. By item (x) in the General Discussion, we may assume
that I, J have positive grade. By Proposition C6, there exists a ∈ I, a
non-zerodivisor that is superficial for the pair I, J.

Set R∗ := R/aR , so dim(R∗) = d − 1. Then for n >> 0, we have an exact
sequence

R/In−1Jm ·a→ R/InJm → R∗/InJmR∗ → 0.

It follows that for n,m >> 0,

PI,J(n,m)− PI,J(n − 1,m) = PIR∗,JR∗(n,m).

By item (viii) in the General Discussion,

ei(I|J) = ei(IR∗, JR∗),

for 0 ≤ i ≤ d − 1. Therefore, by induction, we have e2
i ≤ ei−1ei+1, for all

1 ≤ i ≤ d − 2.

Since the argument is symmetric in I and J, we may take b ∈ J superficial for
I, J and repeat what we have just done with the roles of I and J reversed to
pick up the last relation e2

d−1 ≤ ed−2ed .
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Teissier’s Theorem

Final Remarks. What about equality in the Minkowski inequality for
multiplicities? It turns out that this is closely related to the integral closure of
powers of ideals.

Two ideals I, J ⊆ R are said to be projectively equivalent if there exist positive
integers a, b ≥ 1 such that Ia = Jb .

We first note that if this condition holds, then equality in the Minkowski
inequality for multiplicities is more or less a formal consequence of the rules for
manipulating the mixed multiplicities. To see this, we need to observe that if
L,K ⊆ R have the same integral closure, then ei(L|K) = e(L) = e(K), for all i .

To see this, for one, we know from the previous section that e(L) = e(K). We
may also assume L = K , by item (xii) in the General Discussion. So suppose
L = K . Then when we calculate PL,K (n,m) = PL,L(n,m) we are calculating the
lengths of R/LnKm, with n,m independent. But this is the same as considering
the lengths of R/Ln+m as a function of two variables. Thus, if expand
PL(n + m) out as function of n,m and compare the leading coefficients with
those of PL,L(n,m), we see that ei(L, L) = e(L), for all i .
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Teissier’s Theorem

Now, if we trace through the sequence of steps that led from the Minkowski
inequality to the set of inequalities e2

i ≤ ei−1ei+1, we see two things: (i) The
Minkowski inequality holds if and only if the set of inequalities e2

i ≤ ei−1ei+1
hold and (ii) Equality in the Minkowski inequality holds if and only if
e2

i = ei−1ei+1, for all i .

Now, suppose I, J ⊆ R are projectively equivalent, i.e., there exist a, b ≥ 1 such
that Ia = Jb . Then, all of the mixed multiplicities ei(Ia|Jb) are equal, and
consequently, all of the mixed multiplicities e(Ia|Jb) are equal.

Thus ei(Ia|Jb)2 = ei−1(Ia|Jb)ei+1(Ia|Jb), for all i . However, from item (iv) in
the General Discussion we have,

ei(Ia|Jb)2 = (ad−ib i)2ei(I|J)2

and

ei−1(Ia|Jb)ei+1(Ia|Jb) = (dd−i+1b i−1ei−1(I|J)) · (ad−(i+1)b i+1ei+1(I|J)),

from which it follows that ei(I|J)2 = ei−1(I|J)ei+1(I|J), for all i , and thus,
equality holds in the Minkowski inequality.
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Teissier’s Theorem

In the geometric setting, Teissier proved the converse, which turns out to be a
generalization of the Rees multiplicity theorem.

In other works, the converse states that equality in the Minkowski inequality
implies that the ideals are projectively equivalent.

Using geometric techniques, Teissier reduced the question to surfaces, and used
resolutions of singularities to finish off the proof.

Rees and Sharp proved an algebraic version of this for two-dimensional
quasi-unmixed local rings and DK showed how to reduced the general algebraic
case to the two-dimensional case.

A consequence of this theorem is that one gets a version of the Rees
multiplicity theorem, without assuming a containment relation between I and J.
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Teissier’s Theorem

The statement in this case would be:

Rees Multiplicity Theorem Generalized. Let (R ,m, k) be a quasi-unmixed local
ring of dimension d and I, J ⊆ R , m-primary ideals. If

e0(I|J) = e1(I|J) = · · · = ed(I|J),

then I = J.

The point is that if all of the mixed multiplicities are equal, it is not hard to see
that equality must hold in the Minkowski inequality. Thus, Ia = Jb , for some
a, b.

But then ade(I) = bde(J), and since e(I) = e(J), a = b, so I = J.

The Rees Multiplicity Theorem has subsequently been generalized in a number
of ways.
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