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Teissier’s Theorem

The purpose of this section is to consider the following theorem of Teissier,
which was given in a geometric setting.

Theorem A6. Let (R ,m, k) be a reduced local ring of dimension d ≥ 2 such k
has characteristic zero, R is Cohen-Macaulay and also the localization of a
finitely generated k-algebra at a maximal ideal. Let I, J ⊆ R be two m-primary
ideals. Then:

e(IJ)
1
d ≤ e(I)

1
d + e(J)

1
d .

This is similar in spirit to the Minkowski inequality from analysis which states
that for f , g ∈ Lp(R) (say),

(

∫
|f + g |p dx)

1
p ≤ (

∫
|f |p dx)

1
p + (

∫
|g |p dx)

1
p .

A few years after Teissier’s result was published, Rees and Sharp wrote a paper
extending the result to arbitrary local rings. We will present this result below.
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Mixed Multiplicities
A key feature of Teissier’s proof was the use of the so-called mixed
multiplicities of I and J. These multiplicities are the normalized leading
coefficients of the terms of total degree d in the Hilbert-Samuel polynomial
that tracks the lengths of R/InJm, for n,m >> 0.

General Discussion. We begin with a general discussion of some of the things
we will need for the Teissier-Rees-Sharp theorem.

(i) Just as in the one variable case, a numerical polynomial in two variables is a
polynomial P(x , y) ∈ Q[x , y ] such that P(n,m) ∈ Z, for all n,m ∈ Z (or N).

Given m-primary ideals I, J ⊆ R , there exists a numerical polynomial of degree
d, PI,J(x , y) ∈ Q[x , y ], such that PI,J(n,m) = λ(R/InJm), for n,m >> 0.

We will prove this below, but the proof of this fact is not much different from
the proof of the one variable case, though in our discussion we will not consider
the general bi-graded case.

Henceforth, we will think of this polynomial as a polynomial in n and m.
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Mixed Multiplicities

(ii) Because PI,J(n,m) is a numerical polynomial, there exist integer
coefficients, eij such that

PI,J(n,m) =
∑

i+j≤d

ei,j

(
n + i

i

)(
m + j

j

)
.

The proof of this is almost exactly the same as in the one variable case because
one can induct on the degree of the second variable, and mimic the previous
proof.

Moreover, using the identities
(n+i

i
)
=
(n+i+1

i+1
)
−
(n+i−1

i
)
, the same proof from

the previous section shows that if H(n,m) is a numerical function, and
H(n,m)− H(n − 1,m) agrees with a numerical polynomial of degree d − 1 for
n,m >> 0, then H(n,m) agrees with a numerical polynomial of degree d, for
n,m >> 0.

The integers eij displayed above such that i + j = d are called the mixed
multiplicities of I and J.

We will see below that the mixed multiplicities are positive integers.
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Mixed Multiplicities

(iii) It is easy to see that if we write out the terms of total degree d in
PI,J(n,m), this expression can be written as

1
d!{e0(I|J)nd+

(
d
1

)
e1(I|J)nd−1m+· · ·+

(
d

d − 1

)
ed−1(I|J)nmd−1+ed(I|J)md},

where ei(I|J) = ed−i,i , for 0 ≤ i ≤ d.

(iv) Now suppose we fix r , s ≥ 1. Then e(Ir Js) is determined by the lengths
λ(R/IrnJsn) for n >> 0, which equal PI,J(rn, sn). If we substitute (rn, sn) into
the equation in (iii), we get that the degree d term of PIr Js (n) is

1
d!{e0(I|J)r r +

(
d
1

)
e1(I|J)rd−1s+ · · ·+

(
d

d − 1

)
ed−1(I|J)rsd−1+ed(I|J)sd}nd .

This shows that

e(Ir Js) = e0(I|J)rd+

(
d
1

)
e1(I|J)rd−1s+· · ·+

(
d

d − 1

)
ed−1(I|J)rsd−1+ed(I|J)sd .
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Mixed Multiplicities

Moreover, we also infer ei(Ir |Js) = rd−is iei(I|J), for all i . If we take r = s = 1
in the equation above, we have

e(IJ) = e0(I|J) +
(

d
1

)
e1(I|J) + · · ·+

(
d

d − 1

)
ed−1(I|J) + ed(I|J). (?)

(v) Let’s see how the last formula in (iv) might lead to the Minkowski-type
inequality for multiplicities discovered by Teissier. Consider three positive
integers a, b, c.

If a 1
d ≤ b 1

d + c 1
d , then raising this relation to the dth power, we get

a ≤
d∑

i=0

(
d
i

)
b

d−i
d c

i
d .

It is clear that this last expression is equivalent to a 1
d ≤ b 1

d + c 1
d .

If we take a = e(IJ) and b = e0(I|J) and c = ed(I|J), then using (?), the
Minkowski inequality for multiplicities holds if each

ei(I|J) ≤ e0(I|J)
d−i

d · ed(I|J)
i
d ,

for 1 ≤ i ≤ d − 1.
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Mixed Multiplicities

(vi) Set ei := ei(I|J), for 0 ≤ i ≤ d. Thus, Teissier’s inequality holds if each
ed

i ≤ ed−i
0 e i

d .

Now suppose one could show e1
e0

≤ e2
e1

≤ · · · ≤ ed
ed−1

. Then a relatively easy
induction argument shows that ed

i ≤ ed−i
0 e i

d , for 1 ≤ i ≤ d − 1.

For example, suppose the inequalities hold and d = 3, i.e., e1
e0

≤ e2
e1

≤ e3
e2

. The
first inequality gives e2

1 ≤ e0e2. Multiplying this by e1, we get e3
1 ≤ e0e1e2.

But we have e1
e0

≤ e3
e2

, so e1e2 ≤ e0e3. Substituting this into the inequality
e3

1 ≤ e0e1e2 gives e3
1 ≤ e2

0e2, as required.

Similarly, if we start with the inequality e2
e3

≤ e3
e2

, we have e2
2 ≤ e1e3.

Multiplying by e2 gives e3
2 ≤ e1e2e3. Since, by assumption, e1e2 ≤ e0e3,

substituting as before gives e2
3 ≤ e0e2

3 , which is what we want.

Thus, Tessier’s theorem holds if one can show e1
e0

≤ e2
e1

≤ · · · ≤ ed
ed−1

.

However, these inequalities hold, if e2
i ≤ ei−1ei+1, for all 1 ≤ i ≤ d − 1.

May 1: Mixed Multiplicities and Teissier’s Theorem



Mixed Multiplicities

(vii) Suppose P(n,m) is a numerical polynomial in two variables of degree d
and we write it in the form

P(n,m) =
∑

i+j≤d

(
n + i

i

)(
m + j

j

)
.

Then

P(n,m)− P(n − 1,m) =
∑

i+j≤d−1

ei,j

(
n + i − 1

i − 1

)(
m + j

j

)
.

Now suppose R∗ is a local ring of dimension d − 1 having the property that

PI,J(n,m)− PI,J(n − 1,m) = PIR∗,JR∗(n,m).

It follows that ei(I∗|J∗) = ei(I|J), for 0 ≤ i ≤ d − 1.

Similarly, if R ′ is a local ring of dimension d − 1 having the property that

PI,J(n,m)− PI,J(n,m − 1) = PIR′,JR′(n,m),

the same argument shows that ei(I′|J ′) = ei(I|J), for 1 ≤ i ≤ d.

Thus, if one can find rings R∗ and R ′ satisfying these properties, one can
prove the inequalities in (vii) by induction on the dimension of R .
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Mixed Multiplicities

(viii) An element a ∈ I is said to be superficial for I, J if there exists c ≥ 1
such that

(InJm : a) ∩ IcJm = (In−1Jm : a),

for all n > c and m ≥ 1. We will see below that superficial elements exist, and
that for R∗ := R/aR ,

PI,J(n,m)− PI,J(n − 1,m) = PI∗,JR∗(n,m).

This ultimately reduces the proof of Minkowski inequality for multiplicities to
the two-dimensional case.
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Mixed Multiplicities

(ix) Let L denote the stable value of (0 : m) ⊆ (0 : m2) ⊆ · · · . Then, we have
seen that the image of m in S := R/L has positive grade.

Since I, J are m-primary, it follows that IS and JS also have positive grade.

Now, exactly the same proof as in item (ii) of the Applications of Superficial
Elements from the previous section shows that PI,J(n,m) and PIS,JS(n,m)
differ by a constant.

Since dim(R) = dim(S) > 0, this shows that ei(I|J) = ei(IS, JS), for all i .

Thus, we are free to assume I and J have positive grade when working with
mixed multiplicities.

(x) The discussion in the previous section concerning extending the residue
field, in case k is finite, applies equally well in the current situation, so that the
mixed multiplicities remain the same when we extend I and J to R(x).

Thus, one may harmlessly assume that k is infinite.
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Mixed Multiplicities

(xi) Let K ⊆ I be a reduction of I, i.e., there exists n0 such that KIn0 = In0+1. It
follows that for all n ≥ n0, Kn−n0 In0 = In. Since InJm ⊆ Kn−n0 Jm ⊆ In−n0 Jm,
for n ≥ n0, it follows that

PI,J(n,m) ≤ PK,J(n − n0,m) ≤ PI,J(n − n0,m),

for n ≥ n0, and from this it follows that ei(I|J) = ei(K |J), for all i (since the
mixed multiplicities are positive).

The proof of Theorem F5 shows that when k is infinite, there exists an ideal
K ⊆ I, generated by a system of parameters such that K is a reduction of I.

Thus, when k is infinite, we may replace I (or J) by a system of parameters
and not change the mixed multiplicities.
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Mixed Multiplicities

(xii) e0(I|J) = e(I) and ed(I|J) = e(J). To see this, take n,m sufficiently
large, so that the lengths λ(R/InJm) = PI,J(n,m). Now, fix m = m0. Then
λ(R/InJm0) =

1
d!{e0(I|J)nd+

(
d
1

)
e1(I|J)nd−1m0+· · ·+

(
d

d − 1

)
ed−1(I|J)nmd−1

0 +ed(I|J)md
0}+· · ·

This shows that the lengths λ(R/InJm0) are given by a polynomial of degree d
whose normalized leading coefficient is e0(I|J).

On the other hand, λ(R/InJm0) = λ(R/Jm0) + λ(Jm0/InJm0), for all n.

Therefore, the degree d polynomial giving the lengths of Jm0/InJm0 , for n large,
also has e0(I|J) as its normalized leading coefficient. In other words,
e0(I|J) = e(I, Jm0), when we regard Jm0 as an R-module.

Since dim(R/Jm0) = 0, additivity of the multiplicity symbol e(I,−) applied to
the exact sequence

0 → Jm0 → R → R/Jm0 → 0,

shows that e(I, Jm0) = e(I,R) = e(I). Thus, e0(I|J) = e(I).The proof that
ed(I|J) = e(J) is similar.
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Two-variable Hilbert-Samuel Polynomials

Our first goal is to show the existence of PI,J(n,m) while at the same time
showing that for all 0 ≤ i ≤ d, ei(I|J) > 0. For this, we need superficial
elements relative to a pair of ideals. We also need a bigraded version of the
Artin-Rees Lemma. We just indicate the proof, because it is essentially the
same as in the usual case:

Two variable version of Artin-Rees. Suppose I, J,K ⊆ R are ideals. Then there
exists u, v ≥ 1 such that for all n ≥ u and m ≥ v , InJm ∩ K ⊆ In−uJm−v K . To
see this, One uses the bigraded Rees algebra R := R [It, Js] and considers the
ideal K =

⊕
(K ∩ InJm)tnsm ⊆ R.

This is a homogenous ideal with respect to the bigrading on R, so it has a set
of homogeneous generators. Take u greater than any exponent of t among
these generators and v greater than the exponent of s among these
generators.Then for any element b ∈ InJm ∩ K with n ≥ u and m ≥ v ,
btnsm ∈ K.

Express this element in terms of the generators of K, and read off the
homogeneous coefficients of the generators, to get the desired conclusion.
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Two-variable Hilbert-Samuel Polynomials

Proposition B6. Let (R ,m, k) be a local ring with infinite residue field and
positive depth. Let I, J ⊆ R be m-primary ideals.

Then there exist c > 0 and a non-zerodivisor a ∈ I, that is also a minimal
generator of I, such that (InJm : a) = In−1Jm, for all n > c and all m ≥ 1.

Proof. We use the Rees ring R := R [It, Js] =
⊕

n,m≥0 InJmtnsm, where t, s are
indeterminates over R . This is a bi-graded algebra, generated in degrees (1,0)
and (0,1) over R .

Let Q1, . . . ,Qr be the associated primes of IR not containing It and
Qr+1 . . . ,Qh be the remaining associated primes of IR.

Choose c0 > 0 such that (It)c0 is contained in the Qi -primary component of
IR, for r + 1 ≤ i ≤ h.

We set Ji := {r ∈ R |rt ∈ Qi}, for r + 1 ≤ i ≤ h. Then as before, I 6⊆ Ji , so
that I ∩ Ji is properly contained in I.
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Two-variable Hilbert-Samuel Polynomials

Let P1, . . . ,Pb be the associated primes of R , and note that Wi := I ∩ Pi is
properly contained in I.

Finally, take J ⊆ I so that (J +mI)/mI ⊆ I/mI has dimension one less that the
dimension of the vector space I/mI.

Then the subspaces

(Ji +mI)/mI, (Wi +mI)/mI, (J +mI)/mI

are all proper subspaces of I/mI, so there exists a ∈ I whose image in I/mI
avoids these subspaces.

Thus a is a minimal generator of I and also a non-zerodivisor.
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Two-variable Hilbert-Samuel Polynomials

Now suppose n > c0 and r ∈ (InJm : a) ∩ Ic0 Jm. If n = c0 + 1, then
c0 = n − 1, so r ∈ In−1Jm, which is what we want.

Suppose n > c0 + 1. Then rtc0 sm ∈ R and rtc0 sm · at ∈ InJmtc0+1sm ∈ IR. By
definition of c0, rtc0 sm belongs to every Qi -primary component of IR, with
r + 1 ≤ i ≤ h.

On the other hand, the choice of a forces rtc0 sm to be in the Qj -primary
components of IR, for 1 ≤ i ≤ r .

Thus, rtc0 sm ∈ IR. This implies r ∈ Ic0+1Jm.

We may repeat the argument until we arrive at r ∈ In−1Jm.
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Two-variable Hilbert-Samuel Polynomials

Finally, let u, v be chosen so that (a) ∩ InJm ⊆ aIn−uJm−v , for n ≥ u and
m ≥ v .

Take p such that Ip ⊆ J, so that Ipv ⊆ Jv .

Now suppose n > pv + u + c0 and take r ∈ (InJm : a). Then

ra ∈ InJm ⊆ Iu+c0 Jm+v ,

so ra ∈ (a) ∩ Iu+c0 Jm+v and we can write ra = ax , for x ∈ Ic0 Jm.

Thus, r = x ∈ Ic0 Jm, since a is a non-zerodivisor.

Therefore, by the previous paragraph, r ∈ (InJm : a) ∩ Ic0 Jm = In−1Jm.

Taking c := pv + u + c0 shows that (InJm : a) = In−1Jm, for all n > c, and all
m ≥ 1.
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