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Theorem M5( Associativity formula). Let (R ,m, k) be a local ring, I ⊆ R an
m-primary ideal and M a finitely generated R-module. Then

e(I,M) =
∑

P

e(I,R/P)λ(MP),

where the sum is taken over all primes P ∈ Spec(R) such that
dim(R/P) = dim(R). In particular,

e(I) =
∑

P

e((IR + P)/P)λ(RP).

where the sum is taken over all primes P ∈ Spec(R) such that
dim(R/P) = dim(R).
Proof. Let (0) = M0 ⊆ M1 ⊆ Mr = M be a filtration of M with each
Mi/Mi−1 ∼= R/Qi , for each 1 ≤ i ≤ r , and Qi ∈ Spec(R).

Now, for each i , there is a short exact sequence

0 → Mi−1 → Mi → Mi/Mi−1 → 0,

from which it follows that e(I,Mi) = e(I,Mi−1) + e(I,Mi/Mi−1).
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Putting these equations all together shows that e(I,M) =
∑

i e(I,R/Qi).

By Corollary L5, e(I,R/Qi) 6= 0 if and only if dim(R/Qi) = dim(R).

Thus, the only terms in the sum e(I,M) =
∑

i e(I,R/Qi) that are non-zero, are
the terms for which dim(R/Qi) = dim(R).
Suppose Qi satisfies dim(R/Qi) = dim(R). Qi may appear more than once.
We note that the number of times R/Qi appears in the filtration of M is
λ(MQi ).

Localize R and M at Qi . Then MQi is a finite length RQi -module, and the
original filtration localizes to a new filtration whose factors are just k(Qi), and
none of the original factors corresponding to R/Qi are lost.

This new filtration is a composition series for MQi and the number of factors is
λ(MQi ), which gives what we want.
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Finally, if P ∈ Spec(R) satisfies dim(R/P) = dim(R) and P does not appear
in the filtration of M, then MP = 0. So it can harmlessly be included in the
sum

e(I,M) =
∑

i

e(I,R/Qi).

This shows e(I,M) =
∑

P e(I,R/P)λ(MP), where the sum is taken over all
primes P ∈ Spec(R) such that dim(R/P) = dim(R).
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How do we use the associativity formula in the proof of the Rees multiplicity
theorem?

One first reduces to the case R is complete.

From e(I) = e(J), by the associativity formula we have∑
P

e(I,R/P)λ(RP) =
∑

P

e(J,R/P)λ(RP),

where the sum is taken over all primes P ∈ Spec(R) such that
dim(R/P) = dim(R).

Since each term e(I,R/P) ≤ e(J,R/), each of these terms must be equal.

Thus the problem is reduced to a complete local domain.

Note that if I and J have the same integral closure modulo each minimal
prime, they have the same integral closure.

Since the original R was quasi-unmixed, the primes P ∈ Spec(R) such that
dim(R/P) = dim(R) are the minimal primes of R .
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Observation. Suppose R ⊆ S are integral domains with quotient fields K ⊆ L,
respectively. Assume S is finite over R , so that L is a finite extension of K .

Then there exists a free R-module F ⊆ S and a non-zero element r ∈ R such
that rS ⊆ F . To see this, let U ⊆ R be the set of non-zero elements. Then
SU is finite, and hence integral, over RU = K .

Thus, SU is a field. Since SU ⊆ LU = L, SU = L.

Thus, every element in the quotient field of S is a fraction of the form s
u , where

s ∈ S and u ∈ R .

Now suppose s1
u1
, . . . , st

ut
form a basis for L over K . Then the R-module

F := Rs1 + · · ·+ Rst is a free R-module of rank t contained in S.

On the other hand, if s ∈ S, we can write

s = α1
s1

u1
+ · · ·+ αt

st

ut
,

with each αi ∈ K . Clearly denominators shows that there exists 0 6= r0 ∈ R
such that r0s ∈ F .

Since S is a finite R-module, there exists 0 6= r ∈ R with rS ⊆ F .
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Proposition N5. Let (R ,m, k) be a local domain with quotient field K and S
an integral domain that is a finite R-module. Let L denote the quotient field of
S, n1, . . . , nr denote the maximal ideals of S, and set ki := S/ni . Then,

e(I) · [L : K ] =
r∑

i=1

e(ISni )[ki : k].

Proof. Let F ⊆ S be as in the observation above and take 0 6= r ∈ R such that
rS ⊆ F . Then r annihilates S/F , and thus dim(S/F ) < dim(R).

Therefore, e(I,F/S) = 0. Additivity of the multiplicity symbol applied to the
exact sequence

0 → F → S → S/F → 0,

gives e(I, S) = e(I,F ). Here we are thinking of S and F as R-modules.

Since F is free of rank [L : K ] over R , we have

e(IF ) = e(I)[L : K ].

We must now show that e(I, S) =
∑r

i=1 e(ISni )[ki : k].
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On the one hand,

e(I, S) = lim
n→∞

nd

d!λR(S/InS).

On the other hand, since λR(ki) = λk(ki) = [ki : k], if H is an Sni -module with
finite length, additivity of the length function shows that

λR(H) = [ki : k]λSni
(H).

Thus,
λR(Sni /InSni ) = [ki : k]λSni

(Sni /ISni ).

Since InS = (InSn1 ∩ S) ∩ · · · ∩ (InSnr ∩ S), and the ideals InSni ∩ S are
co-maximal, we have an isomorphism of R-modules

S/InS ∼= S/(InSn1 ∩ S)⊕ · · · ⊕ S/(InSnr ∩ S),

for all n ≥ 1. Thus,

λR(S/InS) = λR(S/(InSn1 ∩ S)) + · · ·+ λR(S/(InSnr ∩ S)).

However, ni is the only maximal ideal of S containing InSni ∩ S, so that the
ring S/(InSni ∩ S) is local, i.e., S/(InSni ∩ S) = Sni /InSni , for all i . Therefore,

λR(S/InS) = λR(Sn1/InSn1) + · · ·+ λR(Snr /InSnr ).
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From the first sentence of this paragraph we have

λR(S/InS) = [k1 : k]λSn1
(Sn1/InSn1) + · · ·+ [kr : k]λSnr (Snr /InSnr ).

multiplying this last equation by nd

d! and taking the limit as n → ∞ gives

e(IS) =
r∑

i=1

e(ISni )[ki : k]

which is what we want.
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The following theorem due to DK provides a natural way to connect the
multiplicity of an I-primary ideal to its Rees valuations rings.

Theorem O5. Let (R ,m, k) be a local domain of dimension at least two, and
I = (a1, . . . , ad)R an ideal generated by a system of parameters. Set
T := R [ a1

ad
, · · · , ad−1

ad
]
mR[

a1
ad

,··· ,
ad−1

ad
]
. Then e(I) = e(IT ).

Proof. Without loss of generality, we may assume that k is infinite. We induct
on dim(R). Suppose dim(R) = 2.

It follows from Proposition J5, that there exists a′
1 ∈ I such that a′

1 is a minimal
generator and a superficial element for I. Moreover, a′

1 can be chosen to have
the form a1 + ra2, for some r ∈ R . Note that I = (a′

1, a2) and R [
a′1
a2
] = R [ a1

a2
],

so we may begin again assuming that a1 is a superficial element for I.

We consider the natural homomorphism φ from the polynomial ring
R [x ] → R [ a1

a2
] taking x to a1

a2
. As in the proof of Proposition D5, we let K be

the kernel of this homomorphism, and L := g(x)R [x ], where g = a2x − a1.
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We still have that ac
2 · K ⊆ gR [x ], for some c. Note that KS is the kernel of

φS , the map obtained by inverting the elements S in R [x ], not in mR [x ]. We
will write R(x) for R [x ]S and note that φS maps R(x) onto T .

We claim that g is superficial for IR [x ] = (g , a2)R [x ]. To see this, suppose
c ≥ 1 satisfies (In : a1) = In−1, for n ≥ c. (Note that x1 is a non-zerodivisor.)
Suppose f · g ∈ InR [x ], where f =

∑s
i=0 rix i .

fg = −a1r0 + (a2r0 − a1r1)x + · · ·+ (a2rs−1 − a1rs)x s + a2r2x s+1.

It follows that r0 ∈ (In : a1), so r0 ∈ In−1. Therefore, a2r0 ∈ In, which implies,
r1 ∈ (In : a1). Thus, r1 ∈ In−1.

Inductively, we see that ri ∈ In−1 for all i , so f ∈ In−1R [x ].

Therefore, g superficial for IR(x).

Thus e(I) = e(IR(x)) = e(IR(x)/gR(x)).
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Set A := R(x)/gR(x)), so e(I) = e(IA). Over A we have an exact sequence of
A-modules

0 → KA → A → T → 0.

Note that a power of a2 annihilates KA, and since a2 is part of a
system of parameters for A (in this case, an entire system of parameters),this
means dim(KA) < dim(A).

Therefore, e(IA,KA) = 0. By the additivity of the multiplicity symbol,
e(IA,A) = e(I,T ), which gives what we want.

Now suppose the result holds for local domains of dimension d − 1. As before,
we may assume a1 is superficial for I. Set T1 := R [ a1

ad
]mR[

a1
ad

].

Exactly the same proof as above shows that e(I) = e(IT1). The ring T1 is a
(d − 1)-dimensional local ring with system of parameters a2, . . . , ad . Thus, by
induction, e(IT1) = e(IT ∗), where T ∗ = T1[

a2
ad
, . . . ,

ad−1
ad

].
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However, it is readily seen (as in the proof of Proposition E5) that

T ∗ = R [
a1

ad
, · · · , ad−1

ad
]
mR[

a1
ad

,··· ,
ad−1

ad
]
= T ,

which completes the proof.

The next two theorems are due to D. Rees. The proofs are due to DK. The
proofs use the following standard fact, namely, that if I is an m-primary ideal
in a local ring with infinite residue field, there exists an ideal J ⊆ R , generated
by a system of parameters, such that e(J) = e(I).

This is essentially equivalent to the conclusion of Proposition F5, and is the
form of Proposition F5 first given by Northcott and Rees.

To see this, note that the proof of Proposition F5 shows that there exists an
ideal J ⊆ I generated by a system of parameters such that JIn = In+1 for all n
large, say n ≥ n0. Therefore, Jn−n0 In0 = In, for all n > n0. It follows that for
all n > n0, In ⊆ Jn−n0 ⊆ In−n0 . Thus, for n >> 0,

PI(n − n0) ≤ PJ(n) ≤ PI(n),

which shows e(J) = e(I).
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In a similar vein, suppose J is an m-primary ideal and a ∈ R is integral over J.
Then there exists an equation

an + j1an−1 + · · ·+ jn = 0,

with each js ∈ Js . This implies an ∈ J(x , J)n−1, which gives
(a, J)n = J(a, J)n−1.

Thus, the same argument as above shows e(a, J) = e(J). Since J is finitely
generated, this shows e(J) = e(J).

Therefore, if I = J, for m-primary ideals I, J ⊆ R , then e(I) = e(J).
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Remark. Suppose V is a DVR with uniformizing parameter π and quotient field
K . Then any non-zero element a ∈ K can be written uniquely as uπn, for
some n ∈ Z.

This enables one to define a function v : K → Z ∪∞ by v(a) = n, if a ∈ K is
non-zero and a = uπn, and v(0) = ∞.

The function v is called the valuation associated to V. If J ⊆ V is an ideal, we
write v(J) for v(a), where J = aV . This is the minimum value v(j), with
j ∈ J.

Note that if v(J) = e, then λV (V/Jn) = en for all n, so that e(J) = e, i.e.,
e(J) = v(J), for all ideals J ⊆ V .
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Theorem Q5. Let (R ,m, k) be an analytically unramified local domain with
infinite residue field and I ⊆ R an m-primary ideal. Then there exist finitely
many DVRs V1, . . . ,Vr between R and its quotient field, and finitely may
positive integers d1, . . . , dr such that

e(I) =
r∑

i=1

divi(I),

where vi is the valuation associated to Vi .
Proof. If we take J ⊆ R such that J is generated by a system of parameters
with e(J) = e(I), we may replace J by I and begin again, assuming that
I = (a1, . . . , ad)R is generated by a system of parameters.
Taking T as in Theorem O5, we have e(I) = e(IT ).
By Rees’s theorem on analytically unramified local domains, T ′ is a finite
T -module. Since T and T ′ have the same quotient field, applying
Proposition N5 gives

e(IT ) =
r∑

i=1

die(IVi),

where di = [Vi/mVi : k]. By the preceding remark, e(IVi) = vi(I), which
completes the proof.
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