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Hilbert Polynomials

Therem H5. Let A =
⊕

n≥0 An be a finitely generated R-algebra, where
A0 = (R ,m, k) is a local Artinian ring. We assume that A is a standard, graded
R-algebra, i.e., A = R [A1]. Let M =

⊕
n≥0 Mn be a finitely generated, graded

A-module. Then HM(n) := λR(Mn) < ∞, for all n and HM(n) agrees with a
numerical polynomial PM(x) of degree dim(M)− 1, for n >> 0.

Definition. The function HM(n) above is called the Hilbert function of M, while
the polynomial PM(x) is called the Hilbert polynomial of M.

April 24: Integral closure of ideals, multiplicity, and the Rees multiplicity theorem, part 3



Hilbert Polynomials

We now want to apply the theorem above to the associated graded ring of an
m-primary ideal. Recall that the associated graded ring of a Noetherian ring R
with respect to an ideal I ⊆ R is the ring,

G :=
⊕
n≥0

In/In+1 = R/IR,

where R is the Rees ring of R with respect to I.

Note that as an R/I-algebra, G = R/I[I/I2], so that G is a standard graded,
finitely generated R/I-algebra. If I is m-primary, then R/I = G0 is an Artinian
ring, so Theorem H5 applies.

We give two versions of the Hilbert polynomial associated to m-primary ideal I.

Corollary I5. Let (R ,m, k) be a local ring of dimension d and I ⊆ R an
m-primary ideal.
(i) The function H̃I(n) := λR(In/In+1) agrees with a numerical polynomial

P̃I(x) of degree d − 1, for n >> 0.
(ii) The function HI(n) := λ(R/In+1) agrees with a numerical polynomial

PI(x) of degree d, for n >> 0.
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Multiplicities

Definition. Maintaining the notation from Corollary I5, it follows from the
discussion above on numerical polynomials, that we can write

PI(x) = e0

(
x + d

d

)
+ e1

(
x + d − 1

d − 1

)
+ · · ·+ ed−1,

where each ej ∈ Z and e0 > 0. The integer e0 is called the multiplicity of I and
is denoted e(I).

Note that if we write PI(x) in the form q0xd + q1xd−1 + · · ·+ qd , with each
qj ∈ Q, then q0 = e(I)

d! . Thus,

e(I) = lim
n→∞

d!
nd · λ(R/In+1).

Note that e(I) is also the normalized leading coefficient of P̃I(x), since
PI(x)− PI(x − 1) = P̃I(x).
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Superficial elements

In the proof of Theorem F5 and Theorem H5 we used the fact that the
associated graded ring of an ideal has the same dimension as the ring. For
some of our results below, we will need to refine the superficial element
argument from above.

Definition. Let I ⊆ R be a ideal in the Noetherian ring R . a ∈ I is said to be a
superficial element for I if there exists c > 0 such that (In : a) ∩ Ic = In−1, for
n ≥ c.

Proposition J5. Let (R ,m, k) be a local ring with infinite residue field and
suppose I ⊆ R is an ideal having height greater than zero. Then:
(i) There exists a ∈ I, a superficial element for I, that is also a minimal

generator for I.
(ii) If grade(I) > 0, then there exists a superficial element for I that is both a

minimal generator for I and a non-zerodivisor.
(iii) If a ∈ I is superficial for I, and a non-zerodivisor, then (In : a) = In−1, for

n >> 0.
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Superficial elements

Proof. We will prove parts (i) and (ii) at the same time. Let G denote the
associated graded ring of R .By the proof of Lemma G5, if a ∈ I/I2 has the
property that its image a in G1 does not belong to any associated prime of (0)
in G that contains G+, then, in the ring G, a is superficial in the sense
described there.

Suppose a is such an element (which exists, by Lemma G5). Let c be as in
Lemma G5. Then suppose b ∈ (In : a) ∩ Ic , with n ≥ c.

If b 6∈ In−1, choose e maximal such that e ≥ c, yet e < n − 1 with b ∈ Ie .
Then b ∈ Ge .

Now, on the one hand, a ∈ G1, so a · b ∈ Ge+1. But ab ∈ In and n > e + 1, so
a · b = 0 in G. Since e ≥ c, this means b = 0, i.e., b ∈ Ie+1, contrary to the
choice of e.

Thus, in fact, b ∈ In−1, so a is a superficial element for I.
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Superficial elements

Now let us write G = R/IR, where R is the Rees ring of R with respect to I.
Then a primary decomposition of (0) in G corresponds to a primary
decomposition of IR.

Let Q1, . . . ,Qr be the associated primes in a primary decomposition of IR that
do not contain R+. Let Ji = {a ∈ R | at 6∈ Qi}.

Note that by definition, I 6⊆ Ji , therefore Ji ∩ I is properly contained in I.

Write d := dimk(I/mI) and take J = (a2, . . . , ad)R , where the images of the ai
in I/mI are linearly independent.

Then the subspaces (J1 +mI)/mI, . . . , (Jr +mI)/mI, (J +mI)/mI are proper
subspaces of the k-vector space I/mI.

Take a ∈ I such that its image in I/mI does not belong to any of these
subspaces.
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Superficial elements

Then, one the one hand, a 6∈ Ji all i , so at 6∈ Qi all i . Thus, by our discussion
above, a is a superficial element for I.

On the other hand, since the image of a in I/mI does not belong to
(J +mI)/mI, the images of a, a2, . . . , ad in I/mI are linearly independent over
k, and thus form a minimal set of generators of I.

In particular, a is a minimal generator of I. This gives (i).

If in addition grade(I) > 0, let P1, . . . ,Ps denote the associated primes of R
and set Wi := Pi ∩ I, for each i . Then since I 6⊆ Pi , Wi is properly contained
in I.

Thus the subspaces (Wi +mI)/mI are proper subspaces of I/mI and if a is
chosen so that its image in I/mI also avoids these subspaces, then a 6∈ Pi , for
all i , and thus, we have that a is also a non-zerodivisor.
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Superficial elements

Finally, take a ∈ I as in the statement of (iii). By the Artin-Rees lemma, there
exists k > 0 such that

In ∩ (a) ⊆ In−ka,

for all n ≥ k.

Let c be as in (i). For any n ≥ c + k, suppose ra ∈ In.

Then ra ∈ In ∩ (a) ⊆ In−ka. We can write ra = ia, with i ∈ In−k .

Then (r − i)a = 0, and thus, r = i , since a is a non-zerodivisor.

Therefore, r ∈ In−k ⊆ Ic , since n ≥ k + c.

Therefore r ∈ (In : a) ∩ Ic = In−1, which is what we want.
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Superficial elements

Applications of Superficial Elements. We assume that (R ,m, k) is a local ring
of dimension d > 0, and I ⊆ R is an m-primary ideal.

(i) Suppose a ∈ I is a superficial element and a non-zero divisor. Set
R∗ = R/(a).

Then e(I) = e(IR∗). To see this, note that by (iii) in the proposition above,
(In : a) = In−1, for n sufficiently large. Thus, the sequence

0 → R/In−1 ·a→ R/In → R/(In, a)R → 0,

is exact for large n. Since R/(In, a)R = R∗/InR∗, we have

PI(n)− PI(n − 1) = PIR∗(n).

for n >> 0. Thus, PIR∗(x) = PI(x)− PI(x − 1).

If f (x) is a polynomial of degree d, then f (x)− f (x − 1) is a polynomial of
degree d − 1 whose leading coefficient is d times the leading coefficient of
f (x). Thus, the normalized leading coefficient of PIR∗(n) is e(I), which gives
e(IR∗) = e(I).
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Superficial elements

(ii) This item shows that one can often assume that the ideal I has a superficial
element that is a non-zerodivisor.

Suppose depth(R) = 0, so that I does not contain a non-zerodivisor. Let L be
the stable value of the increasing chain of ideals (0 : I) ⊆ (0 : I2) ⊆ · · · . Let’s
first note that In ∩ L = 0, for n >> 0.

Suppose L = (0 : Ic). By the Artin-Rees lemma, there exists k such that
In ∩ L ⊆ In−kL. When n − k ≥ c, In−1L = 0, which gives what we want.

Now, for all n, we have an exact sequence

0 → (In + L)/In → R/In → R̃/InR̃ → 0.

Thus λ(R/In) = λ(R̃/InR̃) + λ((In + L)/In). However

(In + L)/In) ∼= L/(In ∩ L) = L.

for n >> 0.

Thus, PI(x) = PIR̃(x) + λ(L).
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Superficial elements

Since dim(R) > 0, PI(x) has degree greater than zero. Thus, the normalized
leading coefficients of PI(x) and PIR̃(x) are the same, so that e(I) = e(IR̃).

But now, IR̃ has grade at least one. To see this, suppose grade(IR̃) = 0.

Then there exists 0 6= r̃ ∈ R̃ such that r̃ · IR̃ = 0. Interpreting this in R , we
have rI ⊆ L. Thus, rI · Ic = 0.

Therefore, r ∈ (0 : Ic+1) = (0 : Ic) = L, a contradiction. Therefore,
grade(IR̃) > 0.

This shows that we can always pass to a ring in which the multiplicity of I stays
the same, but the image of I has a superficial element that is a non-zerodivisor
(when the residue field is infinite).
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Superficial elements

(iii) Assume I is generated by a system of parameters. Then e(I) ≤ λ(R/I).
To see this, we may assume k is infinite.

Now induct on d. Suppose d = 1, so I = aR . Let L be as in (ii). Then
e(aR) = e(aR̃). Now in R̃ , the image of a is a non-zerodivisor, so we we have
that

R̃/(ã) ∼= an−1R̃/anR̃ ,

for all n.

Applying this to the filtration

(0) ⊆ anR̃ ⊆ an−1R̃ ⊆ · · · ⊆ R̃ ,

shows that λ(R̃/anR̃) = λ(R̃/aR̃) · n, for all n.

Thus,
λ(R̃/aR̃) = e(aR̃) = e(aR).

Since λ(R̃/aR̃) ≤ λ(R/aR), we have e(aR) ≤ λ(R/aR).
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Superficial elements

The inductive step is similar. Let L be as in (ii) and R̃ = R/L. Then
e(I) = e(IR̃) and λ(R̃/IR̃) ≤ λ(R/I).

Thus, if we can prove the inequality we seek over R̃ , it will hold in R .

Note, that L is a nilpotent ideal, so that dim(R̃) = dim(R), and hence IR̃ is
generated by a system of parameters.

Changing notation, we now assume that grade(I) > 0. Now, by Proposition
J5, we may assume that the first generator, say a, of I is a superficial element
and a non-zerodivisor.

Setting R∗ := R/aR , by (ii), we have e(IR∗) = e(I). IR∗ is generated by a
system of parameters, so by induction

e(IR∗) ≤ λ(R∗/IR∗).

But R/I ∼= R∗/IR∗, so λ(R/I) = λ(R∗/IR∗), which completes the proof.
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Multiplicities

Remark. Since our main goal is the Rees multiplicity theorem, we are
interested in the relevant results concerning the multiplicity of ideals in local
rings. However, certain technical results needed along the way are made easier
by extending the notion of multiplicity to modules.
To that end, let (R ,m) be a local ring of dimension d, I ⊆ R an m-primary
ideal, and M a finitely generated R-module. Then the module

M :=
⊕
n≥0

InM/In+1M

is a finitely generated G-module.
Thus, by Theorem H5, the lengths λR(In/In+1M) agree with a numerical
polynomial of degree dim(M)− 1, for n >> 0.
In particular, this polynomial has degree less than or equal to d − 1. It follows
that the polynomial PI,M(x) that agrees with λ(M/InM) for n >> 0 has degree
less than or equal to d.
This enables us to define a multiplicity symbol e(I,−) as follows:

e(I,M) = lim
n→∞

d!
nd · λ(M/InM).

Of course, e(I,R) = e(I).
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Multiplicities

The next proposition plays a key role in the proof of the associativity formula
for multiplicities.

The associativity formula often allows one to reduce a question about the
multiplicity of an ideal in a local ring to the same question when the ring is a
domain.

This will be especially important when we relate the multiplicity of an ideal to
the Rees valuation rings associated to the ideal.
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Multiplicities

Proposition K5. Let (R ,m, k) be a local ring, I ⊆ R an m-primary ideal, and
0 → A → B → C → 0 be an exact sequence of R-modules. Then
e(I,B) = e(I,A) + e(I,C).

Proof. For all n ≥ 1, we have an exact sequence

0 → A/(InB ∩ A) → B/InB → C/InC → 0,

and thus
λ(B/InB) = λ(A/(InB ∩ A)) + λ(C/InC), (∗)

for all n. Now, by the Artin-Rees lemma there exists c > 0 such that
InB ∩ A ⊆ In−cA, for all n > c. Thus,

λ(A/In−cA) ≤ λ(A/InB ∩ A)) ≤ λ(A/InA), (∗∗)

for all n > c. Applying limn→∞
d!
nd · λ(−) to (**) shows that

limn→∞
d!
nd · λ(A/(InB ∩ A)) exists and equals e(I,A).

Therefore, applying limn→∞
d!
nd · λ(−) to equation (*) gives what we want.
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Multiplicities

Corollary L5. Let (R ,m, k) be a local ring of dimension d, I ⊆ R an m-primary
ideal and M a finitely generated R-module. Then, degree PI,M(x) = dim(M).
Thus, e(I,M) = 0 if and only if dim(M) < d.

Proof. The second statement follows immediately from the first. For the first
statement, we may mod out the annihilator of M and assume that the
annihilator of M is zero.

We now have dim(M) = dim(R) and an inclusion

R ↪→ M ⊕ · · · ⊕ M

.Set C := M ⊕ · · · ⊕ M, so that C is a finite R-module. It follows from the
proposition above that e(I,R) ≤ e(I,C).

Thus, the degree of PI,C(x) is greater than or equal to the degree of PI(x),
which is dim(R).

On the other hand, we always have that degree PI,C(x) ≤ dim(R), so equality
holds. Since PI,C(x) and PI,M(x) have the same degree, the proof is
complete.
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Multiplicities

Remark. For the proof of the associativity formula, we need the following
standard fact. If M is a finite module over the Noetherian ring R , then there
exists a filtration

(0) = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M

such that each quotient Mi/Mi−1 ∼= R/Pi , for some Pi ∈ Spec(R).

To see this, let M′ be maximal among all submodules of M admitting a
filtration of the required type. The set of such modules in non-empty, since if
P ∈ Ass(M), R/P is isomorphic to a submodule of M.

If M′ 6= M, then we can extend the filtration one step beyond M′ by
considering a submodule of M/M′ corresponding to R/P , for P ∈ Ass(M/M′).
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