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Integral closure of ideals revisited

Our next Theorem is a special case of one of the main theorems in the theory
of reductions of ideals due to Northcott and Rees. Their famous 1953 paper
titled Reductions of ideals in local rings is one of the most frequently cited
papers in commutative algebra.

For the theorem below, we will use the Noether Normalization Theorem, one
version of which is the following:

Let k be an infinite field and B a finitely generated, graded k algebra, which is
generated over k by homogenous elements of degree one.

If dim(B) = r , then there exist b1, . . . , br ∈ B1, such that b1, . . . , br are
algebraically independent over k and B is a finite module over
A := k[b1, . . . , br ].
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Integral closure of ideals revisited

Theorem F5. Let (R ,m) be a local ring with infinite residue field k. Then, for
any m-primary ideal I ⊆ R , there exists an ideal J, generated by a
system of parameters, such that J = I.

Proof. Let R denote the Rees ring of R with respect to I, so that
R := R [It] = R ⊕ It ⊕ I2t2 ⊕ · · · . The k-algebra B := R/mR is a finitely
generated, graded k-algebra generated by homogeneous elements of degree one
over k. Note, that as a graded k-algebra, B = k ⊕ I/mI ⊕ I2/mI2 ⊕ · · · .

By Noether’s Normalization Lemma, there exist b1, . . . , br ∈ B1, such that
b1, . . . , br are algebraically independent over k and B is a finite module over
A := k[b1, . . . , br ]. Note that each bi = ai , for some ai ∈ I\mI.

We are now in an Artin-Rees like situation. B is a finite, graded module over
the graded ring A, and as such we can take finitely many homogenous
elements c1, . . . , cs ∈ B that generate B as an A-module.

If n is the maximum degree of any cj , then it follows that for all t ≥ 0,
Bn+t = At · Bn.

In particular, Bn+1 = A1Bn.
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Integral closure of ideals revisited

Interpreting this in terms of R , we have In+1 ⊆ JIn +mIn+1, where
J = (a1, . . . , ar )R .

We note two things: (i) In+1 ⊆ JIn, by Nakayama’s lemma and

(ii) dim(B) = dim(R). This follows since (Atiyah-MacDonald, Chapter 11),

R/IR =
⊕
n≥0

In/In+1,

the associated graded ring of R with respect to I, has dimension equal to
dim(R).

Since mnR ⊆ IR ⊆ mR, it follows that R/IR and B have the same dimension.

Thus, r = d and J is generated by a system of parameters.

Since J ⊆ I and JIn ⊆ In+1, we have JIn = In+1.
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Integral closure of ideals revisited

We now show J = I. Let q ⊆ R be a minimal prime ideal. By Lemmma B3, it
is enough to show that the image of I in R/q and the image of J in R/q have
the same integral closure.

Since the identity In+1 = JIn also holds modulo q, we may replace R/q by R
and assume that R is an integral domain.

Let V be a DVR between R and its quotient field. Then, In+1V = JInV .

Since the ideals IV and JV are principal ideals, we may cancel In from both
sides of this equation to get IV = JV .

Since this holds for all DVRs V , we have I = J, by Theorem A5.
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Superficial elements

We now begin our discussion of multiplicities. As expected, we will prove a
standard result about the existence of Hilbert polynomials associated to graded
modules over a graded ring.

The following is a key technical lemma needed for the induction part of the
proof of the existence of Hilbert polynomials. For this lemma, we need the
following remark concerning primary decomposition in modules. Note, in this
case, for example, the zero submodule of M is an intersection of primary
submodules, each of which is a graded submodule of M.

Remark. Let A be a Noetherian ring and M a finitely generated A-module. A
submodule N ⊆ M is said to be P-primary, for the prime ideal P ⊆ A if
AssA(M/N) = P .

Note that if I ⊆ A is an ideal, then this is saying the same thing as I is
P-primary, since then AssA(R/I) is P-primary.

If A is a graded ring and M,N are graded modules, then the associated primes
are homogeneous.
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Superficial elements

Lemma G5. Let A =
⊕

n≥0 An be a finitely generated R-algebra, where
A0 = (R ,m, k) is a local ring with infinite residue field. Write M for the
homogeneous maximal ideal (m,A+)A. We assume that A is a standard,
graded R-algebra, i.e., A = R [A1]. Let M =

⊕
n≥0 Mn be a finitely generated,

graded A-module.

If Ass(M) 6= M, then there exists f ∈ A1 and c > 0 such that (0 :M f )n = 0,
for all n ≥ c. In other words, elements in M annihilated by f are concentrated
in degrees less than c.

Proof. Let (0) = N1 ∩ · · · ∩ Nr ∩ Nr+1 ∩ · · · ∩ N2 be a primary decomposition,
where for 1 ≤ i ≤ r , AssA(M/Ni) = Qi does not contain A+ and for
r + 1 ≤ i ≤ s, A+ ⊆ Qi = Ass(M/Ni).

We claim there exists f ∈ A1 such that f 6∈ Q1 ∪ · · · ∪ Qr . Suppose the claim
holds. Take c > 0 such that for r + 1 ≤ i ≤ s, (M/Ni)n = 0, for n ≥ c. This is
possible since each M/Ni is annihilated by a power of A+.

Then for n ≥ c, if b ∈ Mn and fb = 0, on the one hand, fb ∈ Ni for all
1 ≤ i ≤ r , which, by the choice of f , implies b ∈ Ni , all i .
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Superficial elements

On the other hand, by the choice of c, b ∈ Nr+1 ∩ · · · ∩ Ns .

Thus b belongs to all of the primary components of (0), so b = 0.

For the claim, consider the k-vector space V := A1/mA1 and the subspaces
Li := ((Qi)1 +mA1)/mA1, 1 ≤ i ≤ r . These are proper subspaces of V , for if
say, Li = V , then A1 = (Qi)1 +mA1.

Since A is a standard graded algebra, this implies A+ ⊆ Qi +MA+, which by
Nakayama’s lemma (the graded version) implies A+ ⊆ Qi , a contradiction.

Thus, the subspaces Li are proper subspaces of V , and since k is infinite, there
exists f ∈ V\(L1 ∪ · · · ∪ Lr ).

Thus, f ∈ A1, but f is not in any Qi , as required.
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Comments

Definition and comments. One can draw a similar conclusion to Lemma 5G if k
is not infinite. One uses the homogeneous form of prime avoidance. This,
together with the definition of the Qj , imply that A+ 6⊆ Q1 ∪ · · · ∪ Qr , and
thus, there exists a homogeneous ring element f not in Q1 ∪ · · · ∪ Qr , and the
conclusion of the lemma still holds for this f .

However, f may not be homogeneous of degree one. Such elements are called
superficial elements, and if f ∈ Ad , then f is a superficial element of degree d.
Thus, superficial elements of some positive degree exist, but superficial
elements of degree one need not always exist.

Facts about numerical polynomials. A numerical polynomial is a polynomial
P(x) ∈ Q such that P(n) ∈ Z, for all n ∈ Z (or equivalently, all n ∈ N).

Note that the polynomial associated to the binomial coefficient,(x+d
d
)
:= 1

d! · (x + d)(x + d − 1) · · · (x + 1) is a numerical polynomial of degree
d.

A function f : Z → Z is said to agree with a numerical polynomial for n >> 0
if there exists n0 ∈ N and a numerical polynomial F (x) such that f (n) = F (n),
for all n ≥ n0.

We will use the following two facts.
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Comments

(i) Any numerical polynomial P(x) of degree d can be written uniquely as

P(x) = e0

(
x + d

d

)
+ e1

(
x + d − 1

d − 1

)
+ · · ·+ ed

(
x + 0

0

)
,

with the ej ∈ Z.

To see this, first note that since each
(x+d

d
)

has degree d, these polynomials
form a basis for Q[x ] as a vector space over Q.

Thus any polynomial in Q[x ] can be written uniquely as a Q-linear combination
of the

(x+j
j
)
.

However, if P(x) is a numerical polynomial, then one can show by induction on
the degree of P(x) that the coefficients ej above must be integers.

Note also, that if P(n) ∈ N, for n ∈ N, then e0 ∈ N.
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Comments

(ii) Suppose f : N → N has the property that f (n + 1)− f (n) agrees with a
numerical polynomial of degree d for n >> 0. Then f (n) agrees with a
numerical polynomial of degree d + 1 for n >> 0.

To see this, suppose suppose f (n + 1)− f (n) = P(n), for n >> 0, where

P(x) =
d∑

j=0

ej

(
x + d − j

d − j

)
.

Set

F (x) :=
d∑

j=0

ej

(
x + d − j
d − j + 1

)
.

Then, for n >> 0,

F (n + 1)− F (n) =
d∑

j=0

ej{

(
n + 1 + d − j

d − j + 1

)
−

(
n + d − j
d − j + 1

)
}

=
d∑

j=0

ej

(
n + d − j

d − j

)
= f (n + 1)− f (n).
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Comments

It follows that (F − f )(n + 1)− (F − f )(n) = 0, for n >> 0. Thus,
(F − f )(n) = c, a constant for n >> 0.

Therefore, f (n) = F (n)− c, for n >> 0, which shows that f (n) agrees with a
numerical polynomial of degree d + 1 for n >> 0.

Comments on extending the residue field. (i) Let (R ,m, k) be local ring with
finite residue field k. Take an indeterminate y and consider the ring the ring
R [y ]mR[y ]. This ring is denoted R(y).

Then R(y) is a faithfully flat local extension of R whose maximal ideal is
mR(y) and whose residue field k(y) is infinite. Let U ⊆ V be two R-modules
such that λ(V/U) = 1. Then there is an exact sequence

0 → U → V → k → 0.

If we tensor this exact sequence with R(y), we have

0 → U ⊗ R(y) → V ⊗ R(y) → k(y) → 0,

where k(y) is the residue field of R(y).
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Comments

Thus, λR(y)(V ⊗ R(y)/U ⊗ R(y)) = 1. It follows that if C is a finite length
R-module having length c, then C ⊗ R(y) is a finite length R(y)-module with
length c.

In particular, if J ⊆ R is an m-primary ideal, then, since JR(y) = J ⊗ R(y),
λ(R/J) = λ(R(y)/JR(y)).

(ii) Now suppose A is a standard graded ring, finitely generated as an algebra
over A0 = (R ,m, k). Then Ã := A ⊗R R(y) is a standard graded ring, finitely
generated as an algebra over R(y) and if M is a finite, graded A-module, then
M̃ := M ⊗R R(y) is a finite, graded Ã-module.

It is straightforward to show that since R(y) is faithfully flat over R , then Ã is
faithfully flat over A. In fact, if U = R [y ]\mR [y ], then Ã can be identified
with A[y ]U .

Now suppose dim(M) = d. Then dim(A/J) = d, where J is the annihilator of
M. If we take a set of generators x1, . . . , xr of M,
then we have an exact sequence

0 → J → A φ→ M ⊕ · · · ⊕ M,

where φ(a) = (ax1, . . . , axd), for all a ∈ A.
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Comments

If we tensor this exact sequence with Ã, we have an exact sequence

0 → J ⊗A Ã → Ã φ⊗1→ M̃ ⊕ · · · ⊕ M̃,

where φ⊗ 1 takes ã ∈ Ã to ã(xi ⊗ 1) in each component. Since the x0 ⊗ 1
generate M̃, we have J ⊗A Ã = JÃ is the annihilator of M̃.

Now, the fibers over the faithfully flat extension A/J ⊆ Ã/JÃ are just the
fibers over P ⊆ A for the inclusion A ⊆ Ã, for those primes P with J ⊆ P .
Since the fibers of the inclusion A ⊆ Ã are zero dimensional1, it follows that
dim(A/J) = dim(Ã/JÃ). Hence dim(M) = dim(M̃).

Finally, the discussion in (i) above shows that

λR(y)(M̃n) = λR(y)(R(y)⊗R Mn) = λR(Mn),

for all n ≥ 0.

This shows that in finding the Hilbert polynomial of a graded module, we may
assume that the degree zero component of the underlying ring has an infinite
residue field.

1If p ⊆ A is a prime ideal, then the fiber over P in Ã is just k(p)(y).
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Hilbert Polynomials

Therem H5. Let A =
⊕

n≥0 An be a finitely generated R-algebra, where
A0 = (R ,m, k) is a local Artinian ring. We assume that A is a standard, graded
R-algebra, i.e., A = R [A1]. Let M =

⊕
n≥0 Mn be a finitely generated, graded

A-module. Then HM(n) := λR(Mn) < ∞, for all n and HM(n) agrees with a
numerical polynomial PM(x) of degree dim(M)− 1, for n >> 0.

Proof. To see that λ(Mn) < ∞ for all n, note that

M0 ⊕ M1 ⊕ · · · ⊕ Mn = M/M≥n+1

is a finite A-module annihilated by An+1
+ . Thus, it is a finite A/An+1

+ -module.
This latter ring is finite over R , which implies that M0 ⊕ M1 ⊕ · · · ⊕ Mn is a
finite R-module.

Thus, each Mj is a finite R-module, and therefore has finite length.

To show the existence of PM(n), by the comments above, if need be, we may
replace A by R(y)⊗R A and M by R(y)⊗R M. This preserves the lengths and
dimensions in question, so we may pass to R(y) and upon changing notation
assume that residue field of R is infinite.
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Hilbert Polynomials

We induct on dim(M). If dim(M) = 0, then any prime ideal Q minimal over
the annihilator of M is a maximal ideal.

On the other hand, since M is a graded A-module, its associated primes are
graded. Since A0 = R is local, M is the only graded maximal ideal.

Thus some power of A+ is contained in the annihilator of M, which implies
Mn = 0, for n >> 0.

Thus, we may take PM(x) to be the zero polynomial, which by standard
convention has degree -1.
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Hilbert Polynomials

Now suppose dim(M) > 0. Then Ass(M) 6= M, so by Lemma G5, there exists
f ∈ A1 a superficial element on M.

We will assume f has been chosen as in the proof of Lemma G5. Suppose
c > 0 satisfies (0 :M f )n = 0, for all n ≥ c.

We have an exact sequence of graded A-modules

M ·f→ M → M/fM → 0,

which induces an exact sequence of R-modules

Mn−1
·f→ Mn → (M/fM)n → 0,

for all n.

Our choice of n implies that the sequence

0 → Mn−1
·f→ Mn → (M/fM)n → 0,

is exact for all n ≥ c + 1. It follows that HM(n)− HM(n − 1) = HM/fM(n), for
all n ≥ c + 1.
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Hilbert Polynomials

Our choice of f , and dim(M) > 0, imply that f is not in any prime minimal
over the annihilator of M, so that dim(M/fM) = dim(M)− 1.

By induction, HM/fM(n) agrees with a numerical polynomial PM/fM(x) of
degree dim(M/fM)− 1 for n >> 0.

On the other hand, since HM(n)− HM(n − 1) = HM/fM(n), for all n ≥ c + 1,
by the second remark above concerning numerical polynomials, HM(n) agrees
with a numerical polynomial, say PM(x), for n >> 0 whose degree equals
1 + degree(PM/fM(x)).

But 1 + degree(PM/fM(x)) = dim(M)− 1, which is what we want.

Definition. The function HM(n) above is called the Hilbert function of M, while
the polynomial PM(x) is called the Hilbert polynomial of M.
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