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The Rees Multiplicity Theorem

In this section, we change direction entirely to focus on multiplicities in local
rings, with the goal of proving the celebrated theorem of Rees, which states the
following:

Let (R ,m) be a quasi-unmixed local ring and J ⊆ I two m-primary ideals
satisfying e(J) = e(I). Then J = I.

Here we are writing e(I) for the multiplicity if I.

Recall that if (R ,m) is a local ring with dim(R) = d, and I ⊆ R is an
m-primary ideal, one way to define e(I) is as follows:

e(I) = lim
n→∞

d!
nd · λ(R/In),

where we use λ(−) to denote the length of a finite length R-module.

We will develop the definition and basic properties of multiplicities in the next
lecture.
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Integral closure of ideals revisited

In order to prove the Rees theorem will will start with some preliminaries on
integral closure and then present the standard background material on the
multiplicity of an m-primary ideal in a local ring.

Definition and Comments. An integral domain V with quotient field K is a
valuation domain if for every x ∈ K , either x ∈ V or x−1 ∈ V . Note that a
DVR W is easily seen to be a valuation domain, since every element of W has
the form uπn, for u ∈ W a unit and π ∈ W the uniformizing parameter of W .

The following hold for a valuation domain V :

(i) Every finitely generated ideal of V is principal. To see this, it suffices to
show any two-generated ideal is principal, and to see this it suffices to see that
if a, b ∈ V are nonzero, then either a ∈ bV or b ∈ aV . But, by definition,
either a

b ∈ V or b
a ∈ V , which gives what we want.

NOTE: A valuation domain does not have be a Noetherian. In fact, any
Noetherian valuation domain is a DVR.
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Integral closure of ideals revisited

(ii) A valuation domain has a unique maximal ideal. To see this, let mV
denote the set of non-units of V . Clearly va ∈ mV for all v ∈ V and a ∈ mV .
If a, b ∈ mV then a ∈ bV or b ∈ aV , by the previous item.

Say, a ∈ bV , so a = bv , some v ∈ V . Then a + b = (v + 1)b ∈ mV , so mV is
closed under addition. Thus, mV is an ideal, and is therefore the unique
maximal ideal of V .

(iii) V is integrally closed. To see this, suppose x ∈ K is integral over V . We
have an equation of the form:

xn + v1xn−1 + · · ·+ vn = 0,

with each vj ∈ V . Since V is a valuation domain, either x or x−1 belongs to V .
Suppose x−1 ∈ V . Multiply the equation above by x−n to get

1 + v1x−1 + · · ·+ vnx−n = 0.

Solving for 1 in this equation, we can write 1 = vx−1, for some v ∈ V . This
shows x−1 is a unit in V , and hence its inverse x is in V .
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Integral closure of ideals revisited

(iv) Every ideal in a valuation domain is integrally closed. To see this, let
J ⊆ V be an ideal, and take b ∈ J. Then b in integral over a finitely
generated ideal J0 ⊆ J.

By (i) J0 is principal, and by (iii) V is integrally closed. Thus, J0 = J0, and
hence b ∈ J0 ⊆ J.

Our first goal is to characterize the integral closure of powers of an ideal in a
Noetherian ring in terms of discrete valuation rings.

Proposition A5. Let R be a Noetherian domain with quotient field K and
J ⊆ R an ideal. Then

J =
⋂
V

(JV ∩ R) = (
⋂
V

JV ) ∩ R ,

where the intersection runs through the DVRs between R and K .

Proof. Let b ∈ J. From (iv) above b ∈ JV , for all V .

Conversely, suppose b 6∈ J. We must find a DVR between R and K with
b 6∈ JV .
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Integral closure of ideals revisited

Suppose J = (a1, . . . , ad)R , and set S := R [ a1
b , . . . , ad

b ]. Set L := ( a1
b , . . . , ad

b )S.

We claim L 6= S. Suppose L = S. Then there exists a polynomial
f (x1, . . . , xd) with coefficients in R such that f ( a1

b , . . . , ad
b ) = 1.

Note that if x e1
1 · · · x ed

d is a monomial in f (x1, . . . , xd) of degree n, then
bN · ( a1

b )e1 · · · ( ad
b )ed ∈ bN−nJn, for all N ≥ n.

Thus, if N is the largest degree of a monomial in f (x1, . . . , xd) and we multiply
f ( a1

b , . . . , ad
b ) = 1 by bN and bring bN to the left hand side of the resulting

equation, we have an equation of integral dependence of b on J, contrary to
our choice of b. Thus, L is a proper ideal of S.

Now, take a prime ideal P ⊆ S containing L. Then by Corollary G2, there
exists a DVR V between S and its quotient field, which is K , such that
mV ∩ S = P .

Thus, the elements ai
b are non-units in V . If b were in JV , then for ai with

JV = aiV , we would have b ∈ aiV . But then b
ai

∈ V , a contradiction.
Therefore b 6∈ JV , and the proof is complete.
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Integral closure of ideals revisited

Remark. Let A be an integral domain, not necessarily Noetherian, with
quotient field K . Take a prime ideal P ⊆ A. Via Zorn’s lemma,there exists a
valuation domain V (more than likely not a DVR) such that mV ∩ A = P .

The proof above, together with the comments above, show that
J =

⋂
V (JV ∩ A), where the intersections runs through all valuation domains

between A and K .

Corollary B5. Let R be a Noetherian domain and I = (a1, . . . , ad)R and ideal.
Set Ti = R [ a1

ai
, . . . , ad

ai
]. Then, for all n ≥ 1, In =

⋂
1≤i≤d(InTi ∩ R).

Proof. Note: ITi = aiTi , all i . Clearly In ⊆
⋂

1≤i≤d(InTi ∩ R).

Conversely, suppose b ∈
⋂

1≤i≤d(InTi . ∩ R). Let V be a DVR between R and
its quotient field.

If IV = aiV , then aj ∈ aiV , for all j 6= i . Thus each fraction aj
ai

∈ V .

Therefore Ti ⊆ V . But now, b ∈ InTi ⊆ InV = InV .

Since this holds for all DVRs between R and its quotient field, b ∈ In, by
Proposition A4.
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Integral closure of ideals revisited

Theorem C5. Let R be a Noetherian domain with quotient field K and I ⊆ R
be an ideal. Then there exist finitely many DVRs V1, . . . ,Vr between R and K
such that for any n ≥ 1, In =

⋂r
i=1(I

nVi ∩ R).

Proof. Let I := (a1, . . . , ad)R and set Ti := R [ a1
ai
, · · · , , ad

ai
], for all 1 ≤ i ≤ d.

Take n ≥ 1, fix 1 ≤ i ≤ d and let T ′
i denote the integral closure of Ti . Then

T ′
i is a Krull domain and thus, from our work in Section 2 we have:
(i) There exist finitely many height one primes Q1, . . . ,Qs ⊆ T ′

i containing
an

i , which are exactly the height one primes containing ai .
(ii) an

i T ′
i = (an

i W1 ∩ T ′
i ) ∩ · · · ∩ (aiWs ∩ T ′

i ), where each Wj = (T ′
i )Qj .

(iii) Each Wj is a DVR.
Since an

i Ti = an
i T ′

i ∩ Ti , we have

InTi = an
i Ti = an

i T ′
i ∩ Ti = (an

i W1 ∩ · · · ∩ an
i Ws) ∩ Ti .

Therefore,

InTi ∩ R = (an
i W1 ∩ · · · ∩ an

i Ws) ∩ R = (InW1 ∩ R) ∩ · · · ∩ (InWs ∩ R).

If we do this for each i , and collect all of the resulting DVRs associated to each
aiT ′

i , and call them V1, . . . ,Vr , then the theorem follows from Corollary B5.
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Integral closure of ideals revisited

Remark. The DVRs V1, . . .Vr constructed in the proof of Theorem C5 are
called the Rees valuation rings of I, and are uniquely determined as the
smallest collects of DVRs between R and K for which the conclusion of
Theorem C5 holds.

We next want to improve the conclusion of Theorem C5 in the case that R is a
local domain satisfying the dimension formula and the generators of I form a
system of parameters. The next proposition is a special case of a result to E.D.
Davis.

Proposition D5. Let (R ,m, k) be a local domain and a1. . . . , ad a system of
parameters. Fix 1 ≤ i ≤ d and set Ti := R [ a1

ai
, · · · , , ad

ai
]. Then mTi is a

height one prime and the residue classes of a1
ai
, . . . , î , . . . , ad

ai
are algebraically

independent over k, i.e., Ti/mTi is isomorphic to a polynomial ring in d − 1
variables over k.

Proof. It suffices to prove the case i = 1. Set T := T1 and S := R [x2, . . . , xd ],
the polynomial ring in d − 1 variables over R . Let P denote the kernel of the
natural ring homomorphism from S to T that takes each xi to ai

a1
, so P ∩R = 0.
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Integral closure of ideals revisited

Let L denote the ideal of S generated by a1x2 − a2, . . . , a1xx − ad , so that
L ⊆ P .

We note: If we invert a1, then Sa1 is the polynomial ring in d − 1 variables over
Ra1 and Ta1 = Ra1 . The induced ring homomorphism from Sa1 → Ta1 is now
just obtained by evaluating any g(x2, . . . , xd) ∈ Sa1 at a2

a1
, . . . , ad

a1
∈ Ra1 .

The kernel of an evaluation map is alway just the expected kernel, in this case,
L0 = (x2 − a2

a1
, . . . , xd − ad

a1
)Sa1 .

Now, clearly LSa1 = L0Sa1 , while on the other hand, the kernel of the induced
map is Pa1 .

Thus Pa1 = La1 , and hence P = La1 ∩ S.

In other words, f (x2, . . . , xd) ∈ P if and only if ac
1 · f (x2, . . . , xd) ∈ L, for some

c ≥ 1.
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Integral closure of ideals revisited

So: take f (x2, . . . , xd) ∈ P and let Q ⊆ S be a prime minimal over L. Then
ac

1 · f (x2, . . . , xd) ∈ L ⊆ Q. Suppose ac
1 ∈ Q. Then a1 ∈ Q and hence

a1, . . . , ad ∈ Q. But this is a contradiction, since on the one hand
height(Q) ≤ d − 1, while on the other hand a1, . . . , ad generate an ideal of
height d in R , and hence also in S.

Thus, a1 6∈ Q, so f (x2, . . . , xd) ∈ Q. Therefore, P ⊆ Q, which shows that P
is the unique minimal prime of L.

Now, since mS contains L, we have P ⊆ mS Thus mT = mS/P is a prime
ideal. In addition, for some n ≥ 1,

mn ⊆ (a1, . . . , ad)S = (a1, L)S ⊆ (a1,P)S,

which shows mn ⊆ a1T .

Thus height(mT ) = 1, and in fact, mT is the unique height one prime in T
containing a1.

Finally,
T/mT = (S/P)/(mS/P) ∼= S/mS ∼= k[x2, . . . , xd ],

the polynomial ring in d − 1 variables over k.
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Integral closure of ideals revisited

The following proposition due to DK plays a key role in a theorem below
concerning multiplicities.

Proposition E5. Let (R ,m, k) be a local domain and I = (a1, . . . , ad)R an ideal
generated by a system of parameters. Assume R satisfies the dimension
formula. Set S := R [ a2

a1
, · · · , , ad

a1
]mR[

a2
a1

,··· ,, ad
a1

] and let Q1, . . . ,Qs be the height
one primes in S′.

Then for all n ≥ 1, In = (InV1 ∩ R) ∩ · · · ∩ (InVs ∩ R), where Vi := (S′)Qi , for
each i .

Proof. By Theorem C5, we just have to show that V1, . . . ,Vs is the complete
set of Rees valuation rings of I. For each 1 ≤ i ≤ d, set Ti := R [ a1

ai
, · · · , , ad

ai
],

so that S = (T1)mT1 .

By Proposition D5, mTi is a height one prime. Let Ui ⊆ Ti be the
multiplicatively closed subset generated by a1

ai
, . . . , ad

ai
.

Then

(Ti)Ui = Ti [(
a1

ai
)−1, . . . , (

ad

ai
)−1] = R [

a1

ai
, . . . ,

ad

ai
,

ai

a1
, . . . ,

ai

ad
].
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Integral closure of ideals revisited

Let 2 ≤ j ≤ d and i 6= 1. If j = i , then a1
aj
,

aj
a1

∈ (Ti)Ui . If j 6= i ,
aj
a1

=
aj
ai
· ai

a1
∈ (Ti)Ui and a1

aj
= a1

ai
· ai

aj
∈ (Ti)Ui ,

which shows that (T1)U1 ⊆ (Ti)Ui .

The same argument shows (Ti)Ui ⊆ (T1)U1 , and thus (Ti)Ui = (T1)U1 , for all i .

By Proposition D5, Ui ∩mTi = ∅, for all i , since the images of the elements aj
ai

in Ti/mTi are algebraically independent over k.

Thus (Ti)mTi = ((Ti)Ui )m(Ti )Ui
for all i , from which we infer (Ti)mTi = S, for

all i .
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Integral closure of ideals revisited

Now let V be a Rees valuation ring of I. Then for some 1 ≤ i ≤ d, V is
obtained by localizing T ′

i at a height one prime Q containing ai , so that
mV = QQ .

Thus, by Proposition D3, Q ∩ Ti ∈ A∗(aiTi). Since R satisfies the dimension
formula, Ti also satisfies the dimension formula, by Observation 1 following
Corollary Q3. Thus, by Proposition L3, height(Q) = 1.

Since mTi is the only height one prime in Ti containing ai , mTi = Q ∩ Ti .

Thus S := (T1)mT1 = (Ti)mTi ⊆ (T ′
i )Q = V . Since V is integrally closed

S′ ⊆ V .

Since mV ∩ S = mS, mV ∩ S′ must contract to mS, therefore mV ∩ S′ = Qj ,
for some 1 ≤ j ≤ s.

It follows that Vj ⊆ V . However, there are no rings strictly between a DVR and
its quotient field, so we must have Vj = V , which is what we want.
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