
HENSEL’S LEMMA AND SOME APPLICATIONS

D. Katz

The purpose of this note is to record Hensel’s Lemma and a few of its immediate appli-

cations for my algebra class. In the early part of the 20th century Hensel used the notion

of completion in a number theoretic context in order to bring to bear techniques of analysis

on some purely algebraic problems in number theory. One of his most crucial discoveries

(in modern terms) was that when a ring is complete in a suitable ideal-adic topology, solu-

tions to polynomial equations with appropriate nondegeneracy conditions exist in the ring

provided solutions already exist modulo the ideal. We will concern ourselves with the case

that the ring in question is a local ring.

Throughout A will denote a local ring with maximal ideal m. We will assume that A

is complete in the m-adic topology and we also write k := A/m for the residue field of

A. Thus, the paragraph above suggests that we will be able to lift solutions to polynomial

equations from k to A.

We begin with some preliminary remarks. Suppose that S is a commutative ring and

J ⊆ S is an ideal. Given a polynomial f(X) ∈ S[X], we can reduce its coefficients modulo

J and thereby obtain a polynomial f(X) in (S/J)[X] = S[X]/J [X]. A solution to the

equation f(X) = 0 means there exists α ∈ S/J such that f(α) = 0 in S/J . Of course,

α = a, for some a ∈ A, not necessarily unique. To say that we can lift the solution α of the

equation f(X) = 0 to a solution in S just means that f(a) = 0 in S for some a satisfying

a = α. We now record some elementary facts that will play a crucial role in the development

of Hensel’s Lemma.

(a) Suppose that g(X), h(X) are polynomials in S[X], with g(X) monic, whose images in

(S/J)[X] generate the unit ideal. If J is contained in the Jacobson radical of A, then g(X)

and h(X) generate the unit ideal in S[X]. To see this, suppose that M ⊆ S[X] is a maximal

ideal containing g(X). Since S[X]/(g(X))) is an integral extension of S, M contracts to a

maximal ideal in S, which means that M contains J and hence J [X]. By hypothesis, M
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cannot contain h(X). Thus, no maximal ideal in S[X] contains both g(X) and f(X), which

is what we needed to show.

(b) Suppose g(X) and h(X) generate the unit ideal in S[X]. Let f(X) ∈ S[X]. Then

there exist a(X), b(X) ∈ S[X] such that f(X) = a(X)g(X) + b(X)h(X) with deg(b(X))

less than deg(g(X)). To see this, since g(X) and h(X) generate the unit ideal, there exist

u(X), v(X) ∈ S[X] such that f(X) = u(X)g(X) + v(X)h(X). If deg(v(X)) < deg(g(X)),

this gives what we want. Otherwise, since g(X) is monic, we may divide v(X) by g(X) and

write v(X) = t(X)g(X) + b(X), with deg(b(X)) < deg(g(X)). Substituting for v(X), we

get f(X) = (u(X) + t(X))g(X) + g(X)h(X), as desired.

(c) Let g(X) and h(X) generate the unit ideal. Suppose that a(X)g(X)+b(X)h(X) = 0, for

a(X), b(X) ∈ S[X] with deg(b(X)) < deg(g(X)). Then a(X) = b(X) = 0. To see this, sup-

pose that 1 = u(X)g(X)+ v(X)h(X). Then from a(X)v(X)g(X)+ b(X)v(X)h(X) = 0, we

obtain a(X)v(X)g(X)+(1−u(X)g(X))b(X) = 0, so b(X) = (u(X)b(X)−a(X)v(X))g(X).

Since deg(b(X)) < deg(g(X)) and g(X) is monic, we get b(X) = 0. Thus, a(X)g(X) = 0,

from which it follows that a(X) = 0.

We are now ready to state and prove Hensel’s Lemma.

Hensel’s Lemma. Let (A,m, k) be a local ring that is complete and Hausdorff in its m-adic

topology. Let f(X) ∈ A[X] be a monic polynomial of degree d. Suppose that g(X), h(X) are

monic polynomials in A[X] of degrees r and d−r such that f(X) = g(X)h(X) in k[X], with

g(X) and h(X) relatively prime. Then there exist monic polynomials ĝ(X), ĥ(X) ∈ A[X]

of degrees r and d− r such that f(X) = ĝ(X)ĥ(X) and ĝ(X), ĥ(X) reduce to g(X), h(X)

modulo m.

Proof. We begin with an observation about the m[X]-adic topology on A[X]. It is not the

case that A[X] is complete in this topology. However, if {gn(X)} is a Cauchy sequence

of polynomials of bounded degree, then this sequence converges. Indeed, suppose d bounds

the degrees of the gn(X) and write each gn(X) := an,dX
d + · · · + an,0. Then for each

0 ≤ j ≤ d, the sequence {an,j} is a Cauchy sequence in A, and thus converges to an

element aj ∈ A. It follows immediately from this that the sequence {gn(X)} converges to

g(X) := adX
d + · · ·+ a0.

We now start with the factorization f(X) ≡ g(X)h(X) modulo m[X]. By induction on

n ≥ 1, we will find polynomials an(X), bn(X) ∈ A[X] such that : an(X), bn(X) ∈ mn[x],
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deg(an(X)) < d− r, deg(bn(X)) < r, and such that for

gn+1(X) := g(X) + b1(X) + · · ·+ bn(X) and hn+1(X) := h(X) + a1(X) + · · ·+ an(X),

f(X) − gn+1(X)hn+1(X) ∈ mn+1[X]. Suppose that this can be accomplished. Then by

the remarks in the preceding paragraph, the Cauchy sequence {gn+1(X)} must converge to

some ĝ(X) having degree r and the Cauchy sequence {hn+1(X)} converges to ĥ(X) having

degree d− r. On the one hand, by definition, 0 = limn(f(X)− gn+1(X)hn+1(X)). On the

other hand

limn(f(X)− gn+1(X)hn+1(X)) = f(X)− limn(gn+1(X)) · limn(hn+1(X)) = f − ĝ(X)ĥ(X).

Thus, f(X) = ĝ(X)ĥ(X), as desired.

It remains to construct the an(X) and bn(X). We do so by induction on n. Since

the construction for the base case n = 1 is essentially the same as the case for general

n, we assume a1(x), b1(x), . . . , an(x), bn(x) with the required properties have already been

constructed, and find the required an+1(x) and bn+1(x).

Thus, gn+1(X) and hn+1(X) reduce modulo m[x] to g(X) and h(X) respectively. Since

g(X) and h(X) are relatively prime in k[X], they generate the unit ideal in k[X] = A/m[X].

Now set S := A/mn+2 and J := m/mn+2, its unique maximal ideal. Then the images of

gn+1(X) and hn+1(X) in S[X] generate the unit ideal, by observation (a) above. Thus there

exist an+1(X), bn+1(X) ∈ A[X], with deg(bn+1(X)) < deg(g(X)) and

f − gn+1(X)hn+1(X) ≡ an+1(X)gn+1(X) + bn+1(X)hn+1(X) modulo mn+2[X],

by observations (b) and (a). Since deg(gn+1(X)) = deg(g(X)) and deg(hn+1(X)) = deg(h(X)),

it follows that deg(an+1(X)) < deg(hn+1(X)). By hypothesis f(X)− gn+1(X)hn+1(X) be-

longs to mn+1[X], so

an+1(X)gn+1(X) + bn+1(X)hn+1(X) ≡ 0 modulo mn+1[X].

Since gn+1(X) and hn+1(X) also generate the unit ideal modulo mn+1[X], observation (c)

gives that both an+1(X) and bn+1(X) are congruent to 0 modulo mn+1[X], i.e., an+1(X),

bn+1(X) are inmn+1[X], which is what we want. Finally, for gn+2(X) := gn+1(X)+bn+1(X)

and hn+2(X) := hn+1(X) + an+1(X), we have that f(X)− gn+2(X)hn+2(X) =

f(X)− gn+1(X)hn+1(X)− an+1(X)gn+1(X)− bn+1(X)hn+1(X)− an+1(X)bn+1(X).
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By construction, f(X)− gn+1(X)hn+1(X)− an+1(X)gn+1(X)− bn+1(X)hn+1(X) belongs

to mn+2[X], as does the product an+1(X)bn+1(X). Thus, f(X)−gn+2(X)hn+2(X) belongs

to mn+2[X], as required. This completes the proof of Hensel’s Lemma.

We now record a number of applications of Hensel’s Lemma. The first provides the

promised result about lifting roots from k to A.

Corollary A. Let A be a complete local ring and f(X) ∈ A[X] a monic polynomial. Sup-

pose that f(X) admits a simple root α ∈ k. Then there exists a ∈ A such that f(a) = 0 and

a = α.

Proof. In k[X] we can write f(X) = (X − α)t(X), for some t(X) ∈ k[X] not divisible by

X−α. By Hensel’s Lemma, there exist monic g(X), h(X) ∈ A[X] such that deg(g(X)) = 1,

f(X) = g(X)h(X) and g(X), h(X) reduce modulo m to X−α, t(X). It follows immediately

that g(X) = X − a, for some a ∈ A and that a = α. Of course, f(a) = 0.

Example B. Let A denote the 7-adic integers, i.e., the completion of the ring Z at the ideal

7Z. As mentioned in class, A is also the completion of the ring obtained by localizing Z at

the maximal ideal 7Z first, so A is a complete local ring and its maximal ideal is 7A. It is

also the case that k = Z7, the field with 7 elements. We first observe that by Corollary A,

2 has two square roots in A. For this, consider f(X) = X2 − 2 ∈ A[X]. Then f(X) has

two distinct roots in Z7, so it also has two distinct roots in A. From class we know that the

elements of A can be written as infinite series whose terms come from increasing powers of

m = 7A. In fact, 7-adic integers can always be written uniquely in the form
∑∞

n=0 an7
n,

such that 0 ≤ an ≤ 6. We now show how to use the proof of Hensel’s Lemma to find an

expression for one of the square roots of 2 – or at least the first few terms in its 7-adic

expansion.

Start with f = X2−2 which factors as (X−3)(X+3) modulo 7A. Note that A/7A = Z/7Z.

So we take g(X) = (X−3) and h(X) = (X+3), i.e., the factors of f(X) modulo 7. Now, by

the proof of Hensel’s Lemma we must find a1(X), b1(X) such that f(X)− ((X − 3)(X +3))

is congruent to a1(X)(X − 3) + b1(X)(X + 3) modulo 72A i.e, in the ring A/72A = Z/72Z.

In other words, we must solve the congruence 7 ≡ a1(X)(X − 3) + b1(X)(X + 3) modulo

49. A quick check shows that we can take a1(X) = 7 and b1(X) = −7. Thus we write

g2(X) = (X−3)−7 and h2(X) = (X+3)+7, as in the proof of Hensel’s Lemma. Dropping

X from the notation in polynomials, we must now solve the congruence f−g2h2 ≡ a2g2+b2h2
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modulo 73Z. Multiplying out the polynomials in question shows that we must solve 98 ≡
−20a modulo 343, for some integer a. The solution to this is a = 98, which means we take

a2 = 98 = 2·72 and b2 = −98−2·72. Thus, g3 = (X−3)−7−2·72 and h3 = (X+3)+7+2·72.
Repeating once more gives the start of the 7-adic expansion of

√
2 as 3+1·7+2·73+6·73+· · · .

Example C. In a similar vein, we could take A = R[[T ]], the formal power series ring in

one variable over R. Then m = TA and k = R. The polynomial T + 1 ∈ A certainly does

not admit a polynomial square root. But it does admit a power series square root, since the

polynomial f(X) = X2 − (T + 1) has distinct roots in R, i.e., when reduced modulo TA.

If one invokes the method of Hensel’s Lemma to find
√
T + 1, one ultimately observes that

the resulting power series is just the Taylor series about 0 for
√
T + 1.

Corollary D. (Implicit function theorem) Let k be a field and let A := k[[X1, . . . , Xd]] be

the formal power series ring in d variables over k. Let P (Y ) := Y n + an−1Y
n−1 + · · ·+ a0

belong to A[Y ]. Suppose that the polynomial Y n + an−1(0)Y
n−1 + · · ·+ a0(0) in k[Y ] has a

simple root α ∈ k. Then there exists a power series g ∈ A such that g(0) = α and P (g) = 0.

In particular, if n is a positive integer relativley prime to char(k) and f ∈ A is a power

series whose constant term is an nth power in A, then f is an nth power in A, i.e., there

exists a power series h ∈ A such that f = hn.

Proof. The statements follow from Corollary A, since A is a complete local ring with respect

to the m-adic topology, for m := (X1, . . . , Xd), and its residue field is k. Note also that if

g ∈ A is a power series, then g(0) is both the constant term of g and the image of g in the

residue field. With these comments, the first statement is clear and the second follows since

a polynomial of the type Xn−f with coefficients in a field has a simple root if its derivative

is relatively prime to it, and this follows if n is relatively prime to the characteristic of the

field.

Our next results concern the notion of ‘coefficient field’ for a local ring. Suppose that

A is a local ring with maximal ideal m and residue field k. Let F ⊆ A be a field. Note

that since any non-zero element in F is a unit in A, it follows that m ∩ F = (0). Thus

F = F/(0) = F/(m∩F ) maps isomorphically onto its image F in A/m = k. If the image of F

in k equals k, we say that F is a coefficient field for A. For example, if A := k[[X1, . . . , Xd]],

then k is a coefficient field for A. The Cohen structure theorem states that any complete

local ring containing a field has a coefficient field. Hensel’s Lemma will enable us to do this
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in two crucial cases : (a) A contains a field and its residue field is finite and (b) A contains

a field of characteristic zero.

Corollary E. Let (A,m,k) be a complete local ring containing a field K. If either k is finite

or K has characteristic zero, then A contains a coefficient field.

Proof. Suppose first that k is finite. Then k = pn, for some prime p and n ≥ 1. Since

K maps into k via the canonical homomorphism from A to k, K also has characteristic p.

Moreover, since any subfield of A containing K maps isomorphically into a subfield of k

containing the image of K, we may find a finite subfield K0 ⊆ A maximal with respect to

the property of containing K. We claim K0 is the required coefficient field. If not, writing

K0 for the image of K0 in k, we can find α ∈ k not in K0.

Now, every non-zero element of k satisfies f(X) := Xpn−1 − 1. Since there are pn − 1 such

elements, every non-zero element of k is a simple root of f(X). In particular, α is a simple

root of f(X). Thus, by Corollary A, we may lift α to a ∈ A such that f(a) = 0 in A. Since

α ̸∈ K0, a ̸∈ K0. Thus, K0[a] strictly contains K0. Since a is algebraic over K0, K0[a] is a

field, and this contradicts the maximality of K0. Thus, K0 is a coefficient field.

When K has characteristic zero, the proof is similar. Let C denote the set of subfields

of A containing K. An easy application of Zorn’s Lemma yields a maximal element F ∈ C,
i.e., F is a maximal subfield of A. We now argue that F is a coefficient field. Suppose not.

Then the image F of F in k is properly contained in k. Take α ∈ k not in F . Suppose

first that α is not algebraic over F . Let a ∈ A be such that a = α on k. Note that a is

not algebraic over F (in A). Then for all f(X) ∈ F [X], f(α) ̸= 0, which means that in

A, f(a) ̸∈ m. Thus each such expression is a unit it A. It follows that F (a), the rational

function field in the indeterminate a, is contained in A, contradicting the maximality of F .

Now assume that α is algebraic over F . Let f(X) ∈ F [X] be such that f(X) is the minimal

polynomial for α over F . Since char(F ) = 0, α is a simple root. By Corollary A, there

exists a ∈ A such that a = α and f(a) = 0. Note also that f(X) is irreducible over F . Thus

F [a] is a field in A properly containing F , a contradiction. Thus we must have F = k, so

that F is a coefficient field for k
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