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The purpose of this note is to provide for my algebra class a guide to the proof of Cohen’s

structure theorem for complete local rings as given by Cohen himself, in the original 1946

paper [C]. In spite of more modern and concise treatments by the likes of Nagata and

Grothendieck, the original proof is a model of clarity and the entire paper is a commutative

algebra masterpiece.

First, a few words on the original paper. The paper is divided into three parts. Part I

deals with the general theory of completions of local rings and what Cohen calls generalized

local rings. The former being Noetherian commutative rings with a unique maximal ideal,

the latter being quasi-local rings (R,m) with m finitely generated and satisfying Krull’s

intersection theorem, ∩n≥1m
n = 0. Generalized local rings are needed in Part II when (in

modern jargon) certain faithfully flat extensions of local rings are constructed in order to

pass to the case where the residue field of the new ring is perfect. Using the associated

graded ring, Cohen shows in Part I that the completion of a generalized local ring is a local

ring (see [C; Theorem 3]). Incidently, Cohen asks whether or not generalized local rings are

always local. The answer is no, but I believe that the generalized local rings he considers

are local rings. Part II of the paper presents the structure theorem for complete local rings.

It is interesting to note that some of the easier arguments that serve as ‘base cases’ for

his proof either appeared in or are based on earlier work in the 1930’s on valuations rings

by Hasse and Schmidt, Maclane, and Teichmuller. In Part III, Cohen proves fundamental

results on the stucture and ideal theory of regular local rings. Included in this section are

the facts that a complete regular local ring containing a field is a power series ring over a

field (a conjecture of Krull’s) and any associated prime of an ideal of the principal class (i.e.,

height equals number of generators) in a regular local ring has the same height (‘rank’) as
1
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the ideal. This latter property was shown by Macaulay to hold in polynomial rings over a

field. Of course, Noetherian rings with this property are now known as Cohen-Macaulay

rings.

We now turn to a sketch of the proof of the structure theorem. I’ll maintain notation

used in class, though this will be at odds with the notation in [C], which is somewhat

old fashioned. For the remainder of this note (R,m, k) will denote a complete local ring.

Since R is a local ring, either char(R) = 0, char(R) = p or char(R) = pn, p > 0 prime,

while char(k) can only be zero or prime. If char(R) = char(k) = 0, then R contains Q,

while if char(R) = char(k) = p > 0, R contains the field Zp. In these cases, R is said

to be equicharacteristic. Otherwise R is said to have mixed characteristic. Of course, if R

contains a field, R is equicharacteristic.

Definition : Suppose R contains a field, i.e., R is equicharacteristic. A subfield C ⊆ R

is called a coefficient field if C maps isomorphically onto k via the natural homomorphism

C −→ R/m, i.e, C+m = k in R/m. Suppose R has mixed characteristic and char(k) = p > 0.

A subring C ⊆ R is called a coefficient ring if : (i) C is a complete local ring, (ii) C maps

onto k via the natural homomorphism C −→ R/m, i.e., C/(m ∩ C) = k in R/m and (iii)

p · 1R generates m ∩ C.

Remarks. (i) If C ⊆ R is a coefficient ring, then C is a local principal ideal ring. Indeed,

let I ⊆ C be any ideal. Choose t ≥ 1 such that I ⊆ ptC and I ̸⊆ pt+1C. This is possible

since ∩t≥1p
tC = 0. Now take x ∈ I, not in pt+1C. Then x = cpt, for some c ∈ C. If c were

not a unit, then c = c′p, which would imply x = c′pt+1, a contradiction. Thus, c is a unit,

so pt ∈ I. Therefore, I = ptC. Of course, if char(R) = 0, C is a DVR.

(ii) Let C ⊆ R be either a coefficient field or a coefficient ring. Let x1, . . . , xt generate m.

Then every element of R can be expressed as a power series in the xi with coefficients in

C. To see this, first note that if x ∈ mn, then we can write x = un + vn+1, where un is a

homogeneous expression of degree n in x1, . . . , xt having coefficients in C and vn+1 ∈ mn+1.

Indeed, express x as a form of degree n in the xi with coefficients in R. Then, by hypothesis,

we may replace each coefficient by a sum of an element in C plus an element inm. Distribute

and collect terms. Now, take x ∈ R. Then x = u0 + v1 where, u0 ∈ C and v1 ∈ m.

Write v1 = u1 + v2, where u1 is a C linear combination of the xi and v2 ∈ m2. Thus



A GUIDE TO COHEN’S STRUCTURE THEOREM FOR COMPLETE LOCAL RINGS 3

x = (u0 + u1) + v2. Inductively, we may write x = (u0 + u1 + · · ·+ un) + vn+1, where each

uj is a C linear combination of monomials of degree j in the xi and vn+1 ∈ mn+1. Set

an := (u0+u1+ · · ·+un). Then limn(x−an) = 0 on the one hand and equals x− limn(an)

on the other hand. Since R is complete, limn(an) exits and may be regarded as a power

series in the xi with coefficients in C.

(iii) Let C ⊆ R be a coefficient field or ring. Then it follows from (ii) that there is a surjective

ring homomorphism from the formal power series ring C[[X1, . . . , Xt]] onto R. Thus, if C

is a field, R is a homomorphic image of a regular local ring. In fact, the structure theorem

states that C always exits and is either a field, a DVR, or the homomorphic image of a

DVR. Since a formal power series ring over a DVR is also a regular local ring, we obtain the

fact that every complete local ring is a homomorphic image of a regular local ring. Thus,

in particular, complete local rings are universally catenary.

Here is the Cohen Structure Theorem :

Theorem. If R is equicharacteristic, R contains a coefficient field. Otherwise, R contains

a coefficient ring which is a homomorphic image of a DVR.

Sketch of proof. Cohen first considers the equicharacteristic case (see [C; Theorem 9]), so

suppose that R contains a field. Intuitively, one might think that a maximal subfield of

R would do the trick, since any subfield of R maps isomorphically into k via the natural

homomorphism from R to k. When char(R) = char(k) = 0, this is indeed correct. Let

C ⊆ R be a maximal subfield. One easily obtains C via Zorn’s Lemma. Write ‘bar’ for

images in k. If C is properly contained in k, take α ∈ R, α not in C. If α is transcendental

over C, then α remains transcendental over C. In fact, we must have C[α] ∩m = 0, so the

rational function field C(α) ⊆ R (localize), a contradiction. If α is algebraic over C = C,

then the minimal polynomial for α over C factors over k as a linear polynomial times a

second polynomial relatively prime to the linear one - since α is separable over C. Because

R is Henselian, this factorization holds over R. Thus, α is a root of the same irreducible

polynomial over C, so C[α] is a subfield of R, a contradiction. It follows that if R is an

equicharacteristic zero complete local ring, then any maximal subfield is a coefficient field.

Before moving on to the case where R contains a field of characteristic p > 0, for now we
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simply assume that char(k) = p > 0 - which holds in all remaining cases of the theorem.

If α ∈ k, an element a ∈ R satsifying a = α is called a multiplicative representative of α

if a ∈ Rpe

, for all e ≥ 0. Here are some facts about multiplicative representatives (see [C;

Lemma 7]).

FACTS : α ∈ k has a multiplicative representative if and only if α is a peth power in k for

all e. The multiplicative representative of α is unique. If a subfield k0 of k is perfect, every

element of k0 has a multiplicative representative. If k0 is a perfect subfield of R, then every

element of k0 is the multiplicative representative of its residue modulo m.

Proof of FACTS : We use the following property. If a, b ∈ R and a − b ∈ mh, then

ap
e − bp

e ∈ mh+e, for all e. This follows from standard properties of binomial coefficients.

For a proof, see [N; Lemma 31.3]. Now, suppose suppose a is a multiplicative representative

of α ∈ k. Then clearly, α is a peth power for all e. Conversely, suppose, for all e, there exists

re ∈ R satisfying rp
e

e = α in k. Consider the sequence {r0, rp1 , r
p2

2 , . . . }. This is a Cauchy

sequence, for if e ≥ 0, re − rpe+1 ∈ m, so rp
e

e − rp
e+1

e+1 ∈ me. (Note, if char(R) = p, then

of course this difference lies in mpe

.) Since each term in the sequence reduces modulo m

to α, its limit a reduces to α. Now, similarly, the sequence {r1, rp2 , r
p2

3 , . . . } is Cauchy, and

thus converges to a1 ∈ R. By design, ap1 = a. Similarly, {r2, rp3 , . . . } converges to a2 ∈ R

satisfying ap
2

2 = a. Thus, a is a multiplicative representative of α, with ae ∈ R satisfying

ap
e

e = a. If b is also a multiplicative representative of α, then for each e, there exists be ∈ R

such that b = bp
e

e and bp
e

e = α in k. It follows that ae = be in k, so ae − be ∈ m. Thus,

a − b = ap
e

e − bp
e

e ∈ me. Thus, a − b ∈ ∩e≥0m
e = 0, so a = b. The other statements in

FACTS follow from the definitions.

Two further properties of multiplicative representatives are readliy seen. If a and b are

multiplicative representatives of α, β ∈ k, then ab is a multiplicative representative of αβ.

Moreover, if char(R) = p, so up+vp = (u+v)p, for all u, v ∈ R, then a+b is a multiplicative

representative of α+ β.

We now return to the proof of the case R contains a field and assume char(R) =

char(R) = p > 0. Suppose that k is a perfect field, i.e., k = kp, where kp denotes the

set of pth powers of elements of k. (An example : any finite field.) It follows that for all

e, every element of k is a peth power. Therefore, by what have just shown, every element
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in k has a multiplicative representative. If we map k to R by sending each element to its

multiplicative representative, then we obtain a subfield C of R, isomorphic to k, which maps

isomorphically onto k under the natural homomorphism R −→ k. Thus, if R contains a field

of characteristic p AND k is perfect, then R has a unique coefficient field. We have now

completed the proof of the structure theorem in the cases that char(R) = char(k) = 0 and

char(R) = char(k) = p > 0 with k perfect. At this point, Cohen continues with the proof of

the case where char(R) = char(k) = p > 0. He constructs (see [C; Lemma 12]) a complete

local ring (R̃, m̃, k̃) satisfying : (i) m̃ = mR̃, (ii) m̃n∩R = mn for all n and (iii) k̃ is perfect.

In fact, R̃ is a faithfully flat extension of R and k̃ = ∪e≥0k
1/pe

, the perfect closure of k.

Moreover, if B ⊆ R is such that B ⊆ k is a p-basis, then each b ∈ B is the multiplicative

representative in R̃ of b ∈ k̃. We will discuss this construction below. For the time being,

assume that R̃ described above exists. Then the set of multiplicative representatives in R̃

of the elements of k̃ is the coefficient field C̃. Let C denote the subfield of C̃ representing

the elements of k ⊆ k̃. Thus, each c ∈ C is a multiplicative representative of an element of

k, so for each n ≥ 1, there exists cn ∈ R̃ such that cp
n

n = c. It remains to see that C ⊆ R

(for then C will surely be a coefficient field). Now, for each n ≥ 1, c ∈ k = kp
p

(B), so

(c)1/p
e

= cn ∈ k(B
1/pe

) ⊆ k̃. Thus, there exists dn ∈ R[B1/pn

] such that dn ≡ cn mod m̃.

Therefore, cp
n

n − dp
n

n ∈ m̃n, i.e., c − dp
n

n ∈ m̃n, and thus, the sequence dp
n

n converges to c

in R̃. On the one hand, each dp
n

n is in R. On the other hand, R is a complete in the m̃

topology, by condition (ii) associated with R̃. Thus, R is closed in R̃, so c ∈ R, as required.

Following Cohen, we now turn to the case where R has mixed characteristic p > 0. The

point of departure for this case is the following result originally due to Hasse and Schmidt,

and refined by Maclane. Let k be any field of characterisic p. Then there exists a complete

DVR V such that : (i) char(V ) = 0, (ii) p · 1V generates the maximal ideal of V and (iii)

V/pV is isomorphic to k. For a proof consult the original papers or see [M; Theorem 29.1]. A

DVR satisfying conditions (i) and (ii) is sometimes called a p-ring (or v-ring). Fix (V, pV, k)

a p-ring with residue field isomorphic to k. We seek a ring homomorphism ϕ : V −→ R

which induces an isomorphism on residue fields, for then C := im(ϕ) will be the required

coefficient ring.

To begin, note that we may regard Z as sitting inside of V and we therefore have a
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canonical map from Z to R. Moreover, upon localizing, we may regard the DVR Z(p) as

sitting inside of V and thus the canonical map extends to a ring homomorphism

ϕ′ : Z(p) −→ R, which induces an inclusion of residue fields. Roughly speaking, the idea

now is to use Zorn’s Lemma to extend this homomorphism to all of V . First, we extend ϕ′

to the completions of Z(p) and C ′ := im(ϕ′). To do this, note that since Z(p) and C ′ are

principal ideal rings, the subspace topology on Z(p) inherited from V agrees with the pZ(p)-

adic topology, and the subpace topology on C ′ inherited from R agrees with the pC ′-adic

topology. Thus the completions of these rings are just their closures in V and R respectively.

Since ϕ′ is continuos, it can be extended to a ring homorphism ϕ0 : V0 −→ C0 ⊆ R, where

V0 denotes the completion of Z(p) and C0 := im(ϕ0) is the completion of C ′. Note that V0

is a p-ring and C0 is a complete local ring whose maximal ideal is generated by p.

To proceed, we now assume that the field k is a perfect field. Let k0 denote the residue

field of V0 (and C0). Let X ⊆ k be a transcendence basis for k over k0. Because k is perfect,

for each each x ∈ X there is an x ∈ V such that x is a multiplicative representative for x.

The collection X ⊆ V of these multiplicative representatives is algebraically independent

over V0. After all, if we had an equation of dependence of X on V0, we could factor

out a sufficiently high power of p from among the coefficients to assume that at least one

coefficient was a unit. But then the resulting equation of dependence would persist over k0,

a contradiction. Therefore we extend ϕ0 to a homomorphism from V0[X] to R by sending

each x to the multiplicative representative y of x in R. Now, since pV ∩ V0[X] = pV0[X],

we may invert the elements outside of pV0[X] to get a local ring contained in V which maps

canonically to a subring of R (since pR∩ im(ϕ0) = p · im(ϕ0)). As before, we may complete

these rings inside of V and R respectively and extend the homomorphisms. Thus, we have

a p-ring (V1, pV1, k1), where V1 ⊆ V , k1 = k0(X) and a ring homomorphism ϕ1 : V1 −→ R.

Now, because each x ∈ X is a multiplicative representative in V of x ∈ k, for each e ≥ 1

it has a peth root in V which maps to the peth root of x in k. Call this element x1/p
e

and denote the set of these elements by X1/pe

. Then X1/pe is a transcendence basis for

k over k0 and we may repeat the construction of the previous paragraph to obtain p-rings

(V (e), pV (e), k(e)), contained in V , such that k(e) = k0(X1/pe) and ring homomorphisms

ϕ(e) : V (e) −→ R. By construction, V1 := V (0) ⊆ V (1) ⊆ · · · and the maps ϕ(e) have the
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property that for i < j, ϕ(j) restricted to V (i) equals ϕ(i). Its not difficult to show that

the union of these rings is a local ring V̂ contained in V with maximal ideal pV̂ and residue

field ∪e≥0k0(X1/pe). The homomorphisms ϕ(e) give rise to a homomorphism ϕ̂ : V̂ −→ R.

Again, we may complete inside V (and R) to obtain a p-ring (V2, pV2, k2) contained in V

with k2 = ∪e≥0k0(X1/pe) ⊆ k and a ring homomorphism ϕ2 : V2 −→ R. But k2 is a perfect

field. Indeed, this follows from the construction and the fact that k0 = Zp is also a perfect

field. Because k is algebraic over k2, it has to be separable over k2.

To finish the proof of the case where k is perfect, let C denote the collection of p-rings

(W,pW, l) such that V2 ⊆ W ⊆ V and there exists a ring homomorphism ψ : W −→ R

extending ϕ2. Partially order C in the usual way. By Zorn’s Lemma, maximal elements

of C are easily seen to exit, so let (W,pW, l) be a maximal element and ψ : W −→ R

the accompanying ring homomorphism. Then l = W/pW ⊆ V/pV = k, must equal k.

Otherwise, an extra element in k, if transcendental, can be pulled back to a transcendental

element in V \W or if algebraic, can be pulled back via Hensel’s Lemma to an element in V

integral over W . In the first case we adjoin the element to W and localize at the extension

of p and complete (as before), thereby getting a larger p-ring and the map ψ extends as

before. In the second case, the minimal polynomial for the extra element v pulls back to

a monic irreducible f(X) ∈ W [X], with f(v) = 0. Thus W [v] a p-ring : It is complete

and local (since W is Henselian) and l[v] =W [X]/(p, f(X)) =W [v]/pW [v], so pW [v] must

be its maximal ideal. Since R is also Henselian, v pulls back to an element y ∈ R which

satisfies ψ(f(X)), so ψ may be extended to a homomorphism from W [v] to R by sending v

to y, contradicting the maximality of W . Thus, l = k. But in fact, W = V since V/pV is

generated by 1 as a W/pW vector space, and therefore 1 generates V as a W -module, by

the version of Nakayama’s lemma for complete rings given in class. This now completes the

proof in the case where k is a perfect field.

To finish the entire proof, Cohen reduces to the case where k is perfect as before (though

with a little more work). Let R̃ have the properties described above (so k̃ is the perfect

closure of k) and let Ṽ be the ring so derived from V , a complete p-ring with residue field

k. Then by what has just been shown, there exists a ring homomorphism ϕ̃ : Ṽ −→ R̃

inducing an isomorphism of residue fields. Therefore, C̃ := im(ϕ̃) is a coefficient ring for
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R̃. It remains to show C := ϕ̃(V ) ⊆ R and that ϕ̃ restricted to V induces an isomorphism

of residue fields. This is done by working with the p-basis for k as in the earlier reduction.

However, a bit more care must be taken this time, since expressions of the form (u− v)pe

in

R or R̃ can now only be written in the form up
e − vp

e

+ p · t, for t in the appropriate ring.

For details, see [C; page 81].

To complete our sketch of Cohen’s proof, let’s see the construction of R̃. Take a set

B ⊆ R such that B ⊆ k is a p-basis. For each b ∈ B, introduce an indeterminate Xb and

let S1 denote the quotient of polynomial ring R[{Xb | b ∈ B}] by the ideal generated by

{Xp
b − b | b ∈ B}. Then S1 is a generalized local ring containing R with maximal ideal mS1

and residue field k(B
1/p

). This is fairly easy to see if done ‘one b at at time’ : Since b ∈ k is

part of a p-basis, Xp
b −b is irreducible over k. Therefore, k[Xb]/(X

p
b −b) = R[Xb]/(m,X

p
b −b)

is a field. But this then implies that for S := R[Xb]/(X
p
b − b), mS is a maximal ideal. Note

that R ⊆ S is an integral extension, and since any maximal ideal of S must contain m, S is

a local ring whose residue field is clearly isomorphic to k(b1/pe). Arranging finite subsets of

B into a direct system and taking a direct limit yields the ring S1 with the stated properties.

Note that since B is a p-basis for k, k = kp(B), so k1/p = k(B
1/p

). Let (R1,m1, k1) denote

the completion of S1. Then R1 is a complete local ring, m1 = mR1 and k1 = k1/p. If we

denote the images of the Xb in R1 by b1/p, then for B1/p, the collection of these elements,

B1/p is a p-basis for k1. We may then repeat the construction on R1, to obtain a complete

local ring (R2,m2, k2) such that m2 = mR2 and k2 = k1/p
2

. The ring R̃ is then obtained

by taking the union of the Ri and completing.

Here are a few standard consequences of the Cohen Structure Theorem

Corollary. Let (R,m, k) be a complete regular local ring of dimension d. If R is equichar-

acteristic, then there exists a field C ⊆ R such that R is isomorphic to C[[X1, . . . , Xd]]. If

R has mixed characteristic p > 0 and R is unramified (i.e., p ̸∈ m2), then there exists a

complete DVR C ⊆ R such that R is isomorphic to C[[X2, . . . Xd]].

Proof. If R is equicharacteristic, then R has a coefficient field C. Let x1, . . . , xd be a minimal

generating set for m. By the Remarks above, there exists a surjective ring homomorphism

from C[[X1, . . . , Xd]] onto R. Since both rings have dimension d, the homomorphism is an
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isomorphism. If R has mixed characteristic and is unramified, then p can be extended to a

minimal generating set p, x2, . . . , xd of m. The coefficient ring C in this case is a complete

DVR with maximal ideal pC. We can then map C[[X2, . . . , Xd]] surjectively onto R by

sending C to itself and sending each Xi to xi. As before, this map must be an isomorphism.

If (R,m) is a complete regular local ring having mixed characteristic p > 0, with p ∈ m2,

then one can show that R is an Eisenstein extension of a complete, unramified regular

local ring. That is, there exists a complete unramified regular local ring (S n) contained

in R and x ∈ R, such that R = S[x], and x satifies an irreducible polynomial f(X) =

Xt + a1X
t−1 + · · ·+ at, with each ai ∈ n and at ̸∈ n2. For a proof, see [C], [N] or [M].

It follows from our final corollary that a complete local domain is a finite module over a

complete regular local ring.

Corollary. Let (R,m, k) be a complete local ring of dimension d. Assume that one of the

following conditions hold : (i) R contains a field or (ii) R has mixed characteristic p > 0

and height(pR) = 1. Then there exists a complete regular local ring (S, n) such that S ⊆ R

and R is a finite S-module.

Proof. If R contains a field, then R has a coefficient field C ⊆ R. Let x1, . . . , xd be a system

of parameters for R. Set S := C[[x1, . . . , xd]] ⊆ R. Then S is a complete local ring with

maximal ideal n := (x1, . . . , xd)S and residue field k. Since R/nR has finite length, it is

finitely generated as an S/n vector space. Since ∩t≥1n
tR = 0, R is a finite S-module. Thus

dim(S) = dim(R) = d. It now follows that S is a complete regular local ring.

In case (ii), R has a coefficient ring (C, pC, k) which is a DVR, since p is not nilpotent.

Because height(pR) > 0, we may extend p to a system of parameters p, x2, . . . , xd of R.

If we now set S := C[[x2, . . . , xd]], then as in case (i), R is a finite S-module and S is a

complete regular local ring.
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