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Introduction

In [ll] and [^JO) we have developed the concept of a simple point of

an algebraic variety over an arbitrary ground field of characteristic zero. Our

analysis of this concept has led us to the following characteristic property of

a simple point which was novel and of intrinsic character (from the stand-

point of regular birational transformations), since it referred to the quotient

ring of the point and did not involve the ambient space of the variety :

A. A point P of an r-dimensional irreducible algebraic variety V is a simple

point of V if and only if the ideal of nonunits in the quotient ring of P has a

basis of r elements.

This property of a simple point played an essential role in our study of

other questions, for instance in the problem of local uniformization, and for

this reason we found it convenient to use A as a definition of simple points(2).

On the other hand we have the following classical and time-honored defini-

tion of simple points:

B. If ((fi(xi, x2, ■ ■ ■ , xn),f2(xi, x2, • • • , x„), • • • ,f,(xi, x2, ■ ■ • ,x„)) is a

basis of the defining prime ideal of an r-dimensional irreducible algebraic variety

V in an S„, then a point P of V is simple for V if and only if the Jacobian matrix

d(fufi, • • ' ,fy)/d(xi, x2, • • ■ , x„) is of rank n — r at P.
If the ground field k is of characteristic zero or a perfect field of charac-

teristic pj^O, the two definitions A and B are equivalent (see §7.2, Theorem 7

and corollary), but in the case of nonperfect fields the two definitions may

very well cease to be equivalent. We illustrate this fact by some examples.

Example 1. If a is an element of k such that allp(¡:K, then the polynomial

f(x, y)=x"+y—a is irreducible over k (p = characteristic of k, pf^O). The

partial derivatives df/dx, df/dy vanish identically; therefore in the sense of

Definition B all the points of the irreducible curve f(x, y) = 0 are singular. On

the other hand it is easily seen that in the sense of Definition A all the points

of the curve are simple. To see this one either shows directly that in the quo-

tient ring of any point of the curve the nonunits form a principal ideal, or

one observes that we are dealing here with a normal curve, since the coordi-

nate ring k[£, r¡] (where £ and r¡ are the coordinates of the general point of the

(x) Numbers in brackets refer to the references cited at the end of the paper.

(2) See [12, p. 199]. This definition is restated in the present paper in terms of vector spaces

(Definition 1, §3.1).
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curve) is integrally closed (3).

Example 2. The field k(£, t/) of rational functions on the curve of the pre-

ceding example is not separably generated over k. Now, quite generally, let

7 be an irreducible algebraic variety over k and let J( V) denote the field of

rational functions on 7. It can be shown that if J( V) is not separably generated

over k then all the points of V are singular in the sense of Definition B (see §8.1).

On the other hand we prove (Theorem 3 and corollary, §4.2) that every irre-

ducible variety carries points which are simple in the sense of Definition A.

Example 3. Our attention has been called by Chevalley to the following ex-

ample :/(x, y) =y2+xv—a = 0,p9*2, a = a1/p(¡.K. We have ö//dx = 0, df/dy = 2y,

and hence the curve has one singular point (a, 0) in the sense of Definition B.

Again we are dealing here with a normal curve, and hence, according to

Definition A, all the points of the curve are simple. This example is significant

because not only is the field of functions on the given curve separably gen-

erated over k, but the curve is even absolutely irreducible (that is, the poly-

nomial y2+xp — a remains irreducible upon any extension of the ground field).

In §7.2 we shall prove (Theorem 7) that points which are simple in the

sense of Definition B are also simple in the sense of Definition A. There is

ample evidence in the present paper, as well as in previous papers of ours, in

support of the thesis that it is the more general concept of a simple point, as

defined in A, that constitutes the natural generalization of the classical con-

cept of simple point. The considerations expounded below will serve the two-

fold purpose of reviewing this evidence and of clarifying the underlying ideas

and the motivation of our present systematic treatment of the general concept

of a simple point in algebraic geometry.

(a) The case of algebraic curves is particularly illuminating and deserves

special consideration. A normal algebraic curve C is a true projective model

of the Riemann surface of the field J(C) (in the sense of Dedekind-Weber),

for in the first place the points of such a curve are in 1-1 correspondence with

the prime divisors of the field J(C), and in the second place the quotient ring

of any point P of C coincides with the set of functions in J(C) which have

non-negative order at the corresponding divisor p (in other words : that quo-

tient ring is a valuation ring). Now as long as we remain within the field

J(C) there is no good reason why certain prime divisors of this field be called

singular, and there is even less reason why all the prime divisors of J(C) be

regarded as singular whenever J(C) is not separably generated over k. From

this point of view it would appear that no point of a normal curve deserves

to be branded as singular.

(b) On the other hand it must be observed that the curves of Examples 1

and 3 do have at their "singular" points (in the sense of Definition B) a

singular behavior with respect to suitable extensions of the ground field k. Ii we

(') For the concept of a normal variety see [11], especially Theorem 11', and [13, p. 506].
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pass to the field «i = «(a), then the curve of Example 1 becomes a p-fold line :

xp+yp — a = (x+y—a)p = 0, and therefore all the points of the given curve

become p-fold points upon the ground field extension k—>/<i. A similar situa-

tion prevails at the point (a, 0) oí the curve of Example 3, and this time the

phenomenon is even more apparent because of the absolute irreducibility of

the curve: the curve y2+xp — a = 0 remains irreducible over ki, but since its

equation takes the form y2+(x— a)p = 0 it follows that the point (a, 0) is

singular, in the sense of Definition A, if viewed from the level of the new

ground field Ki. These examples show that points which are simple in the sense

of Definition A may become singular when the ground field is extended. We prove

in §10.2 (Theorem 13) that a point which is simple in the sense of Definition A

is also simple in the sense of Definition B if and only if it remains simple under

any extension of the ground field. For this reason we use the term "absolutely

simple" (proposed by André Weil) to designate points which are simple in

the sense of Definition B (see Definition 2, §10.2). From now on we shall use

the term "simple" in the sense of Definition A.

(c) We have proved in [13] that simple points behave under birational

transformations in the abstract case in much the same way as they do in the

classical case. In [14] we have extended to arbitrary ground fields the well

known theorem of Bertini on the variable singular points of a linear system

(whereas the old proofs of this theorem invariably make use of the usual

differential conditions for simple points). Thus we have two significant in-

stances of classical questions which involve the concept of a simple point and

in which it turns out that the final results have nothing to do with the

Jacobian criterion B. Our work on the problems of local uniformization and

the resolution of singularities contains a considerable amount of material

which remains valid for ground fields of characteristic p9á0, provided simple

points are intended in the sense of Definition A. The final results in these

problems are definitely false if by "simple" we mean "absolutely simple" (see

Example 2 above). That the difficulties still to be overcome in the case p^O

are merely of a technical nature and are not caused by any flaw in our formu-

lation of the general concept of a simple point is strongly indicated by the

fact that these difficulties already arise in the case of perfect ground fields

when the two definitions A and B are, as we know, still equivalent.

(d) The Jacobian criterion for absolutely simple points implies that the

points of an algebraic variety V which are not absolutely simple are those

which satisfy a certain system of algebraic equations. Hence these points

form an algebraic manifold, just as in the classical case the singular manifold

is always algebraic. The only difference is that in the case of nonperfect fields

the points which are not absolutely simple may fill up the entire variety V.

In this respect the concept of an absolutely simple point presents no new

problem.

We face an entirely different situation when we deal with the general con-
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cept of a simple point, since Definition A is strictly of a local character; it

does not give a global criterion which would characterize singular points by

means of algebraic equations. Therefore in the case of nonperfect fields two

questions can be formulated : (1) is the singular manifold of an algebraic variety

V algebraic? (2) is this manifold always a proper subset of 7? The present in-

vestigation originated in these two questions, and we answer both in the

affirmative. The second question can be settled already by local considerations.

That is done in §4 of Part I (see Theorem 3 and corollary in §4.2). In Part I

we study the concept of a simple point by local methods only and we go as

far as those methods permit.

Much more difficult is the proof that the singular manifold is algebraic.

The proof is achieved by deriving an algebraic criterion for simple points in

which there occur certain mixed Jacobian matrices (see Theorem 11 and

corollary, §9.6). In these matrices there appear derivatives of two types:

(1) ordinary derivatives with respect to the variable coordinates xi, x2, • • •, xn ;

(2) derivatives which arise from abstract differentiations in k over np. Our gen-

eral Jacobian criterion reduces of course to the classical criterion B if k is a

perfect field.

Although so far we spoke only of points, actually this paper deals with

subvarieties of any dimension of a given variety 7. In principle, by a well

known reduction to the zero-dimensional case (§2.2), the case of higher sub-

varieties should not present new features, but in point of fact it does lead to

specific results which are of interest. For an indication of the nature of these

results, as well as of other results not mentioned in this introduction, we refer

the reader to the table of contents.

It is with pleasure that the author takes this opportunity of gratefully

acknowledging the stimulating discussions and the lively correspondence

which he has had with André Weil and in the course of which the ideas em-

bodied in the present work gradually took shape in his mind.

Part I. The local theory

1. Notation and terminology. We fix an arbitrary abstract field k and we

refer to it as ground field (or field of coefficients). The algebraically closed field

determined by k shall be denoted by k and shall be referred to as the field of

constants.

A point P is an ordered «-tuple (cti, «2, • • • , «») of constants a< (that is,

a¿£/c). However, we stipulate that two «-tuples (a) and (ß) represent one and

the same point (over k) if (and only if) they are conjugate over k, that is,

if there exists a «-isomorphism of the field «(ai, «2, • ■ • , a„) onto the field

n(ßi, ßi, • • • , ßn) in which to at there corresponds ß( (i = l,2, • • • , n). Hence

a point (over k), if viewed from the level of the field ii, is actually a complete

set of conjugate points with respect to k. The totality of all points is called the

linear n-dimensional space over k and is denoted by 5£. The superscript indi-
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eating the field will be used only if a field other than k is used temporarily as

ground field. Consequently, in the case of the given ground field k we shall

write Sn instead of S£.

If xi, x2, ■ • ■ , x„ are indeterminates, an ideal 21 in the polynomial ring

k[xi, x2, ■ ■ • , x„] defines an algebraic variety F= V/k in S„ over k, the zero

manifold oí 21. We shall denote this variety by 1^(21). Conversely, every alge-

braic variety V defines uniquely an ideal, namely the ideal consisting of those

polynomials/(x) which vanish at every point of F. We shall denote this ideal

by I(V). If F=TJ(2I), then I(V) = Radical of 2Í (Hubert's Nullstellensatz)
[15] and V(I(V))- V.

For an irreducible variety V the ideal Z( V) is prime and shall be denoted

by p(V). If p=p(V) and if £< denotes the p-residue of x¿, then the ordered

«-tuple (£i, £2, • • • , £n) is a general point of V. We mean by the coordinate

ring of V the ring k[£i, £2, • ■ • , £n], and we denote this ring by 1\[F]. Simi-

larly we denote by J( V) the field k(£i, £2, • • • , £n) of rational functions on

V (the quotient field of ^[F]).

Let V be irreducible and let IF be an irreducible algebraic subvariety of V.

Then p(V)Cp(W) and p(W)/p(V) is a prime ideal in the ring K[V]. We

denote this ideal by p(W/V). If (171, v2, ■ ■ • , r¡„) is the general point of IF

then we have %{V]/p(W/V) = a[rii, r¡2, ■ ■ ■ , vn].

We denote by Q(W/V) the quotient ring of W on V, that is, the quotient

ring of the prime ideal p(IF/F) with respect to the ring Î\[F]. The ring

Q(W/V) is a local ring in the sense of Krull [7]. Its maximal ideal shall be

denoted by m(W/V); this ideal consists of all nonunits of Q(W/V). The resi-

due field Q(W/V)/m(W/V) of this local ring coincides with the field J(W).
2. The local vector space M(W/ V).

2.1. The mapping rrt-»m/m2. We set o = Q(W/V), m = m(W/V), A = o/m
= 7(W) and we consider the ring m/m2. This ring, as an additive group, can

be regarded as a vector space over A ii, for ü in m/m2 and 0 in A, we define

the product bu as follows:

oü = tn2-residue of 5m,

where ô is any element of 0 whose m-residue is 0 and u is any element of m

whose m2-residue is ü. It is immediately seen that the product oü is uniquely

determined by ô and ü. We call this vector space the local vector space of V

at W and we denote this space by 7ït(W/V). We denote by t the mapping

«->« of m onto M(W/V):

(1) t:   u^>ü,       m G m,       ü = m2-residue of u.

Let v, vi, v2, • • • , v0 be elements of m and let v =tv, v, =td¿. If 5i, o2, ■ • •, 5„

are elements of 0 and if ô< is the m-residue of Si then the following ref-

lations are equivalent: v=2l°i=i0iVi, z>=^?=i<o;i>¿ (mod m2). Hence v is

linearly dependent on vi, v2, ■ ■ ■ , va if and only if v belongs to the ideal
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0-(vu Vi, ■ • • , Vg)+m2. In particular, if the elements vi, vit ■ ■ ■ , v0 form a

basis for the ideal m, then the vectors vi, Vi, • • ■ , va span the entire vector space

"M(W/V). Consequently the dimension o'f this vector space is finite.

Conversely, let us assume that the g vectors Vi span the entire vector

space ÜÍÍCW/V). We show then that the g elements Viform a basis for the ideal m.

For if we denote by 21 the ideal o • (vi, Vt, • • • , v0), then it follows, by assump-

tion, that m = 2i+m2. Hence m2 = 2lm+m3c;2l+m3 and therefore m = 2I+m3.

This implies rrt2 = 2lm + rrt4ç:2I + rn4 and therefore m = 2l+m4. In like fashion

we find m = 2I + nti for any integer i. Since o is a local ring, we have

Dí-iíSÍ + m*) =21 ([7, Theorem 2]). Hence 2I = m, and this proves our asser-

tion.

We say that a basis (ui, u2, • • • , u,) of m is minimal if no proper subset

of this basis is a basis of tn. From the preceding results it follows that

(«i, «2, • • • , ui) is a minimal basis of m if and only if the corresponding

vectors fii, «s, ■ • • , ü.form a (independent) basis of the vector space Üíl(W/V).

All minimal bases of m have therefore the same number of elements, this

number being equal to the dimension of 5W(T7/7).

Let («i, Ui, ■ • ■ , uB) he a minimal basis of m, so that 5 = dimension

of MiW/V). We have «<-/<(*)/«*(*). where/<(|), g,(¿)G£R.[7] and gi(x)y±0
on W (that is, gi(£)Q.p(W/V)). Since g<(£) is a unit in o, also /i(£),

fid), • " " >/»(£) form a minimal basis of m. Therefore we may assume without

loss of generality that Wt£3^[7], ¿ = 1, 2, • • • , s. Let r = dimension of 7 and

p = dimension of W. The finite integral domain 7? = £r\[7] has degree of tran-

scendency r over k. It is then well known (Krull [5, p. 43]) that every isolated

prime ideal of the ideal 7? • (ui, u2, • • • , ui) is of dimension not less than

r — s. Among the isolated prime ideals there is the ideal p=piW/V), since

o- («i, u2, • ■ ■ , ui) =m = o- p, and this prime ideal p is of dimension p. Hence

p^r — s or s^r — p, that is, we have the following result: the dimension of the

local vector space 9ïC(W/V) satisfies the inequality

(2) dim M(W/V) è dim 7 - dim W.

In particular, if 17 is a point P of 7, then we have:

(2') dim ?it(P/V) è dim 7.

Two procedures will be used frequently in the sequel for the actual de-

termination of a basis of the vector space M(W/V) : (1) ground field extensions;

(2) insertion of varieties between W and V. The lemmas given below are in-

tended to introduce these procedures.

2.2. Reduction to dimension zero. Let (771, 772, • • • , tj„) be the general

point of T7. If for a given integer v, lápá«, the «-homomorphism

A%\, &, - " * , £».]~k[»7i, r\2, • • ■ , 7?n] which carries & into 77¿, î = 1, 2, • • • , «,

induces an isomorphism between <c[£i, £2, • • • , ¿>] and k[t>i, 772, ■ • • , 77,],

then it is permissible to identify £1, &,•*»,{> with 771, 772,   • • • , 77, respec-
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tively. We shall express this assumption and the fact that the identification

has actually been performed by writing: i;i = r¡i, i=l, 2, ■ • ■ , v.

Lemma 1. Let £, = »?<, i = l, 2, • • • , v, and let k* denote the field

K(£i. &> ■ - • i £»)• If V* and W* are the varieties (over k*) in 5¿_, having re-

spectively (¿,+i, ¿>+2> ••'.&») and (n,+i, r)v+2, ■ ■ ■ , nn) as general points, then

the quotient ring o = Q(W/V) coincides with the quotient ring o* = Q(W*/V*)

(and hence also the vector spaces Jïl(W/ V), Uït(W*/ V*) coincide).

Proof. The fact that the identification £<*-ty<, *"»1, 2, • ■ • , v, is permissi-

ble, signifies that 0 is the only element common to k[£i, &,•*•,!>] and p

( =p(W/ V)). Hence the quotient ring o contains the entire field k*. It is clear that

oGo*. On the other hand we have: R* = ^[V*] = k*R, p*=p(W*/V*) = n*p,

and every element of k*R which is not in n*p is evidently a unit in Rv ( = o).

Hence o*=A*.Çrj, and therefore o* = o, as was asserted.

The above lemma includes as a special case the well known reduction to

dimension zero. Namely, the dimension of IF being p, we may assume that

Vi, Vi, " " • . Vp are algebraically independent over k. In that case necessarily

also £1, £2. • • • , £p are algebraically independent over k, and the identifica-

tion i-i = r)i, i = l, 2, ■ ■ ■ , p, is permissible. The variety V* of the lemma is

now a variety of dimension n — p (over k* = k(£i, £2, ■ ■ • , £p)), immersed in

a linear space S„-p, while W*/k* is now a point of V*, because n„+i, 57^+2,

• • • , ■>)„ are algebraic quantities over the new ground field k*.

2.3. The linear transformation M(W/V)->Vrt(W/V). In the "insertion"

procedure we insert an irreducible variety V between IF and V: PFCF'CF,

and we consider the two vector spaces M = M(W/V), Üft' = M(W/V). These

two spaces have the same field of scalars, namely J(W) (=A). Let

o' = Q(W/V), m' = m(W/V). We have a mapping r' of m' onto M' similar

to the mapping r of m onto Til (see (1)) :

t':    u' —* «',       u' G m',        ü' = m'2-residue of u'.

If (£1' 1 &' >*••»{«) is the general point of V'/k, there is a definite K-homo-

morphism \p of A = Î\[F] onto A'=Î\[F'] which carries £< into £< (since

F'CF), and p=p(IF/F) is the full inverse image of p'=p(W/V) under i¡rl.

It follows that \p can be extended (in a unique fashion) to a homomorphism

of 0 = Rp onto 0' =Rp'. We denote this extended homomorphism by the same

letter \p. It is clear that xpm = m'.

We consider in 1\[F] the ideal pi=p(V'/V). This ideal is the nucleus of

the homomorphism \p oí R onto A". Since WCZ V, pi is contained in p, and

therefore the extended ideal ^3i = 0 • pi is a prime ideal contained in m. The

ideal tyi is the nucleus of the homomorphism \p of 0 onto 0'. If 21 is any o-ideal

contained in m, then t2I is a linear subspace of Jit. We consider in particular

the subspace t$i of Tit. This subspace is spanned by the vectors belonging to

the subset rpi of M.
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Lemma 2. The transformation p=r~1pr' is single-valued and is a linear

transformation of?ii = M(W/V) onto Vit' = Vit ( W/ V). The subspace. of Vit which

is annihilated by p is the space spanned by the vectors belonging to rpi (where pi

is the ideal p(V'/V) of V in1{[V]), or also the space rtyi (where ^5i = opi).

Proof. Since r and r' are respectively transformations of m onto Vit and

of m' onto Vît', and since pm = m', p is a transformation of Vit onto Vit'. If ü

is any element of Vit, then t_1m is a residue class u + m2 in m modulo m2;

p(u+m2) =pu+p(m2) =u'+m'2, since p is a homomorphism and since

pm = m'; and finally T'(u' + m'2) =t'u' = u'. Hence p is single-valued. Since t,

^andT' are homomorphisms of additive groups, it follows that p is a homo-

morphism of the additive group Vît onto the additive group Vît'. If ô£A ( = JiW))

and ïiÇzVit, let u be some element in t_1m and let 5 be some element in o

whose m-residue is ô. We have, by the definition of Vit and t: (Tp)bu=p(bu).

On the other hand, ô is also the m'-residue of ^(5), and therefore ipr')bu

=t'(P(S)P(u)) = §■ (Pt')u. Since rp =pr' we conclude that p(bû) = ô pü which

shows that pis linear. Finally, we have irp)u=piú) and ÍTp)u = ipr')u. Hence

piu) =0 if and only if (^t')m = 0, that is, if and only if ^ii£m'!. Since the

nucleus of the homomorphism p of o onto o' is the ideal $i defined above, we

conclude that <£(«) =0 if and only if w£m2 + $i, and this shows that the sub-

space of Vit annihilated by p is the space t%sl This completes the proof of the

lemma.

Corollary. 7/Mi, M2, • • • , uv are elements of m such that pui, pUi, ■ ■ ■ ,pu,

form a basis of m', and if uv+\, ur+2, • ■ ■ , uv+liform a basis of $i, then the v+p.

elements Ui form a basis of in.

3. Simple points.

3.1. Definition of simple loci. The inequality (2') assigns a lower limit to

the dimension of the local vector space at any point P of a given variety 7.

This lower limit is the dimension r of 7. More generally, by (2), the difference

r — p is a lower limit for the dimension of the local vector space at any p-di-

mentional irreducible subvariety W of 7. We speak of simple points and of

simple subvarieties of 7 when these lower limits are reached, that is, we give

the following definition:

Definition 1. A point P of V is simple if dim Vit(P/V) =r = dim 7 More

generally, a p-dimensional irreducible subvariety W of Vis simple if dim Vit( W'/ V)

= r-p.

According to this definition, a p-dimensional irreducible subvariety W of

7 is simple if the maximal ideal zn(W/V) of the quotient ring Q(W/V) has

a basis of r — p elements (such a basis is then necessarily minimal). If W is

simple, the r — p elements of any minimal basis of xn(W/V) shall be called

uniformizing parameters of W.

W is singular for 7 if it is not simple.

We observe that our definition of simple loci has an intrinsic character,
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since the ambient linear space Sn does not intervene at all in the definition.

Whether a given irreducible subvariety IF of F is or is not simple for F de-

pends entirely on the structure of the quotient ring Q(W/V). This puts in

evidence the invariantive character of the concept of simple loci with respect

to regular transformations : ii W is simple for V and if V is transformed into

another variety V* by a birational transformation which is regular at W (see

[13, p. 513]), then to IF there corresponds on V* a (unique) subvariety IF*

which is also simple for V* (and has the same quotient ring as IF).

3.2. Geometric aspects of the definition. In this section we shall discuss some

geometric aspects of our definition of a simple point. For that purpose we shall

examine the variety V, together with a given point P on it, in relation to the

ambient linear space Sn in which V is immersed.

We have shown elsewhere that every point P of S„ is simple (see [13],

Lemma 9, p. 541 and first footnote on that page). It is easy to detect in

our proof of this result a specialization of the general set-up dealt with in

Lemma 2. Namely, we apply that lemma to the following case: V = Sn, W = P

= P(ai, a2, • ■ ■ , a„) and F' = the variety having (cti, x2, x3, • • • , xn) as gen-

eral point. The ideal p(V'/V) is in this case the principal ideal (f(xi)) in

k[xi, X2, • • • , x„], where/(xi) is an irreducible polynomial in k[xi] such that

/(ai)=0. Hence the space annihilated by the linear transformation <f> is at

most of dimension 1, and therefore dim 7ti(P/Sn) = l+dim M(P/V). If we

now replace in Lemma 1 the varieties V and IF by V and P respectively, the

lemma is applicable if we set v -» 1, since in the present case we have £i = 771 = ai.

Therefore we conclude that 9tt(P/V')=Vtt(P*/S£_i), where k* = k(ch) and

P* is the point (a2, a3, ■ ■ ■ , an) over n*. We have therefore: dim 7it(P/S„)

= l+dim 5SÍ(P*/5ó"_i). Applying the same argument to the point P*, and

repeating this procedure n times, we shall get ultimately the inequality:

dim Jït(P/Sn) =«. Hence necessarily dim CM(P/Sn) =n, and therefore F is a

simple point of 5„.

We shall now proceed by analogy with the classical case, where « is the

field of complex numbers, or, more generally, an algebraically closed field. In

that case the coordinates an, a2, ■ • ■ , a„ of any point P in S„ are in k, and the

n differences x<—a, form a minimal base of m(P/Sn), that is, they are uni-

formizing parameters of P. The field of scalars A of the vector space ?tl(P/Sn)

is the field k itself, since A = n(ai, a2, • • ■ , a„). Hence, this vector space can be

identified with the space of all linear forms in Xi—«i, x2—a2, • • • , xn—an

with coefficients in k. If u =J^2=iCj(xj — aj) + terms of degree greater than 1

in the Xi — ai is any polynomial in k[xi, x2, • • • , xn] which vanishes at P, then

under the mapping t of m(P/Sn) onto 9it(P/Sn) we get tm=]F"=1cí(x¿ — <*<)•

The classroom definition of a simple point of a hypersurface H, given by an

equation u = 0, takes therefore the following form: a point P of the hypersur-

face H is simple if and only if the vector tu in <M(P/Sn) is different from zero :
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At a simple point P the vector tu fixes the position of the tangent hyper-

plane at P of the hypersurface H.

The above italicized statement can be of course easily proved in the ab-

stract case on the basis of our definition of simple points. However, since we

have defined simple points only for irreducible varieties, we must suppose

that we are dealing with an irreducible hypersurface. We apply Lemma 2 to

the case V = S„, V =77, W = P. Since the ideal piV'/V) is now the principal

ideal (m), the subspace of VitiP/Sn) which is annihilated by p is spanned by the

single vector tu. Consequently the dimension of the vector space VitiP/H)

is n or « —1, according as tu=0 or tu9*0. Since II is of dimension r — n — l,

the statement follows.

In the case of a reducible hypersurface H we shall define simple points

just by the above criterion TU9*0. Let m=JTj=1m? De the decomposition of u

into irreducible factors, and let Hi denote the hypersurface m¡ = 0. The con-

dition TU9*0 signifies that w£m, «£m2, where m = m(P/5„). That is equiva-

lent to the following set of conditions: (1) one, and only one, of the polyno-

mials «i, Ui, ■ • ■ , ua is in rrt; (2) if, say, Mj£m, then Mi(£jn2 and i>i = 1. Or in

geometric language : P is a simple point of H if and only if the following con-

ditions are satisfied: (1) only one of the irreducible components Hi of the hy-

persurface H goes through P; (2) if, say, 77i contains P, then P is a simple

point of 7?i and 77i is a simple component of 77.

If P is a simple point of our hypersurface H, we define as tangent hyper-

plane of H at P the one-dimensional subspace of VitiP/Sn) spanned by the

vector tu. A true picture of the set of all hyperplanes through P is the bundle

of hyperplanes in an affine «-dimensional space over A ( = J(P)

= «(«!, «2, • • • , «„)) with center at the origin.

Given v hypersurfaces 77;: m¡ = 0, i = l, 2, • • - , v, passing simply through

P, we say that their tangent hyperplanes are linearly independent if the vec-

tors tmi, tm2, • • • , TUV in Vit(P/Sri) are linearly independent. The following

result is well known [3, corollary on p. 87]:

Lemma 3. If P is a simple point of an irreducible r-dimensional algebraic

variety V and if ui, »*,•••,«, are elements of miP/V) such that the corre-

sponding vectors tui, tUí, ■ ■ ■ , tm„ of VitiP/V) are linearly independent, then

the ideal p = («lf m2, • • • , ui) in Q(P/V) is prime and (r — v)-dimensional.

Corollary. The assumptions being as in Lemma 3, the irreducible (r — v)-

dimensional subvariety W of V passing through P which is defined by the ideal p

is simple for V.

For if  o = Q(P/V), then Q(W/V) = o, and m(W/V) = or p = v (uu u%,
■ • ■ , ui). Hence dim VitiW/V) ^v = r-dim W, and therefore, by (2), dim

VitiW/V)=v.

For V = S„ it follows from this lemma that if v hypersurfaces IL pass
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simply through a point P and have at P linearly independent tangent hyper-

planes, then locally, at P, the complete intersection IF of the hypersurfaces

Hi is irreducible and of dimension n — v. We shall say then that IF is locally,

at P, regular intersection of the hypersurfaces Z7< (the "regularity" assumption

signifies not only that IF is complete intersection of Hi locally at P, but also

that the tangent hyperplanes of the hypersurfaces Hi at P are linearly inde-

pendent).

After these preliminaries, we can express the geometric content of our

definition of simple points by means of the following result:

Theorem 1. A point P of an r-dimensional algebraic irreducible variety V

in 5„ is simple for V, if and only if V is locally at P a regular intersection ofn — r

hypersurfaces.

Proof. If in Lemma 2 we identify IF, V and F with P, V and S„ respec-

tively and if we take into account the inequality (2') (§2.1), we conclude

(independently of the assumption that P is simple for F) that the ideal p(V)

in k[xi, x2, • • • , x„] cannot contain more than n — r polynomials Ui such that

the corresponding vectors ra¡ in 7ti(P/Sn) are linearly independent. The point

P is simple for V if and only if the maximum n — r is reached. Hence P is

simple for V ii and only if there exist n — r hypersurfaces H¡ containing V and

having at P linearly independent tangent hyperplanes. The complete inter-

section of the Hi, locally at P, being of dimension r and containing V, it must

coincide with F, q.e.d.

3.3. Local ideal bases at a simple point. In the preceding discussion the

linear space 5„ played the privileged role of a universal ambient space. We

now replace the 5„ by a fixed »-dimensional irreducible variety S (immersed

in some linear space of a higher dimension). We consider a fixed simple point

P oí S and we proceed to develop some aspects of the local ideal theory of S

at P similar to those developed above for the Sn-

We denote by R the coordinate ring IxfS] and by o the quotient ring

Q(P/S). Given any ideal 21 in R, we say that a set of elements coi, w2, • • • , w,

in A is a local P-basis of 21 if this set is a basis for the ideal o • 21; and that it is

a minimal local P-basis if no proper subset of the set (o>i, u2, • • • , <*>«) is a local

P-basis.

We observe that if 93 is any ideal in o and if m is the maximal ideal of o,

then the residue class ring 93/m93, as an additive group, can be regarded as a

vector space J<( over the field A = o/m = residue field of P. This is true in any

local ring o, and the definition of that vector space is the same as the one given

in §2.1 for the special case 93 = m.

By exactly the same reasoning which was employed in that special case

it can be proved that (m, u2, • • • , ui) is a basis of 93 if and only if the cor-

responding vectors «i, üi, • • ■ , ü„ span the entire space 7v¡[, and that

(«i, u2, • ■ •, ui) is a minimal basis of 93 if and only if the vectors üi, «2, • • •, ü.
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form an independent basis of ?{. Hence all minimal bases of 93 have the same

number of elements.

In particular, we conclude that all minimal local P-bases of a given ideal 21

in 7? have the same number of elements.

We now extend and further elaborate Theorem 1 as follows :

Theorem 2.7/7 is an irreducible algebraic subvariety of S passing through

P, then P is simple for V if and only if either one of the following two conditions

is satisfied :

(1) The dimension of V being r, the ideal p(V/S) contains n — r elements

Mi, Ui, • • • , un-r such that the corresponding vectors tui, tu?, • • ■ , TUn-T in

Vit(P/S) are linearly independent.

(2) The ideal p(V/S) possesses a local P-basis ui, u2, ■ ■ ■ , u, such that

the vectors tu\, ru2, • • • , tm, are linearly independent.

Moreover, if condition (1) is satisfied, then the n — r elements Uiform neces-

sarily a minimal local P-basis of piV/S), and any minimal local P-basis of

piV/S) necessarily consists of elements vi, v2, • • • , vn~T of R such that the vec-

tors tvi,tv2, ■ • • , TV„-r are independent. If condition (2) holds then dim V = n — s

and (mi, M2, • • • , ui) is necessarily a minimal local P-basis of p(V/S).

Proof. We have PC VQS and dim Vit(P/S) =». Therefore, by Lemma 2,

dim Vit(P/V) =dim 7 if and only if p(V/S) contains n — r elements m< such

as specified in condition (1) (no more than n — r such elements can belong to

p(V/S) because dim Vit(P/V) is always greater than or equal to dim 7).

Hence condition (1) is both necessary and sufficient.

By Lemma 3, the n — r elements of condition (1) generate in o a prime

ideal of dimension r, and this ideal is contained in the ideal o-31, where

21 =p(7/S). Since also o-21 is prime and of dimension r, it follows that

(mi, M2, • • • , M„_r) is a local P-basis of p(V/S). This shows that condition (2)

is necessary. On the other hand, if this condition is satisfied, then again, by

Lemma 3, we have necessarily dim V=n — s, and by Lemma 2 we find

dim Vit(P/V) =n — s. Therefore condition (2) is also sufficient.

No subset of set («i, m2, • • • , M„_r) of condition (1) can be a local P-basis

of p(V/S) for otherwise 7 would be of dimension greater than r.

To complete the proof of the theorem we proceed as follows. Assuming

that condition (1) is satisfied, let 93 = o-p(7/S). We have 93mç:m2r\93. On
the other hand, if « is any element of m2n93, then o> = 5iUi + 52m2+ • • •

+ 5„_rM„_r, where 5¿ Go. Since to G rrt2 we have Ô1M1 + Ô2M2+ ■ • • +ô„_rM„_, = 0,

where <5¿ = m-residue of 5,- and m,=tm,-. Since the vectors tuí are linearly inde-

pendent, it follows that 5,=0, that is, 5,£m, i = l, 2, ■ • • , n — r. Hence

wGSra. We have thus proved that 93m = m2Pi93. But this implies that the vector

space 93/33m can be regarded as a subspace of the vector space m/m2 = (5W(P/S)).

Since we know that the elements of a minimal basis of 93 give rise to independ-

ent vectors of 93/93m, we conclude that the elements of such a basis must
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also give rise to independent vectors of M(P/S). This completes the proof of

the theorem.

3.4. Simple zeros of ideals. The criterion for simple points given by con-

dition (2) of Theorem 2 expresses a property of the ideal p(V/S) which con-

tinues to have a meaning if instead of p( V/S) we are dealing with an arbitrary

ideal 21 in A ( =^[5]). This leads to a definition of a simple zero of an ideal

21, and in particular of a simple point of a reducible algebraic variety:

Definition 2. Given an arbitrary ideal 2Í in 'Rjs] andgiven a simple point

P(a) of S, we say that (a) is a simple zero of 21 if (a) is a zero of 21 and if 21 pos-

sesses a local P-basis (ui, u2, ■ ■ • , ui) such that the vectors tui, tu2, ■ • ■ , ru,

in 7ft(P/S) are independent. In particular, given an arbitrary subvariety V of

S (not necessarily irreducible), we say that P is simple for V if (a) is a simple

zero of I(V/S).
Concerning this definition the following observations should be made. By

Lemma 3, the elements «i, u2, • ■ ■ , ue generate in o a prime ideal ty of dimen-

sion n — s. If p = "!PP\1\[S] then we have o- SI = ^3 = o - p. Moreover, since

(«i, «î, ••-,««) is also a local basis of p, it follows from Theorem 2 that P

is a simple point of the (n — s)-dimensional irreducible variety 1J(p). We thus

see that the condition that (a) be a simple zero of 2Í signifies that locally,

at P, the ideal 21 does not differ essentially from a prime ideal p (that is, we have

o - 21 = o • p) and that the variety V(p) of this prime ideal has a simple point at P.

We also point out that, in terms of a normal decomposition of 2Í into primary

components, the relation o ■ 21 = o • p expresses the fact that p itself is one of the

primary (necessarily isolated) components of 21 and that p is the only prime

ideal of 21 which is contained in the prime ideal p(P) of the point P.

We must point out explicitly that in the second part of our definition we

speak of an algebraic variety F in a strictly set-theoretic sense. There is no ques-

tion of multiple components or of embedded components; F is simply a set

of points. This is clearly indicated by the fact that our definition is in terms of

the ideal I(V), this ideal being its own radical and therefore a finite intersec-

tion of prime ideals. The observations just made on the simple zeros of an.

arbitrary ideal show that, according to our definition, a point P of an alge-

braic variety V is simple if and only if V has only one irreducible component

through P and this component has a simple point at P.

For simple zeros of an ideal 21 one could formulate results similar to those

stated in Theorem 2. For later applications we shall state explicitly the fol-

lowing theorem :

Theorem 2'. If (a) is a zero of an r-dimensional isolated prime ideal p of 21

(that is, if the point P(a) belongs to an r-dimensional irreducible component of

the variety TJ(2I)) and if («j, u2, • ■ ■ , ui) is a local P-basis of 21, then (a) is a sim-

ple zero of 21 if and only if exactly n — r of the vectors rcoi, tco2, ■ • • , to» in

9rt(P/S) are linearly independent.
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Proof. From the preceding considerations we know that in order that (a)

be a simple zero of the ideal 21 it is necessary and sufficient that two conditions

be satisfied :

(a) We must have o-2I = o-p. This condition is equivalent to the follow-

ing: (a>i, <o2, • • • , «„) is a local P-basis of p.

(b) P must be a simple point of the variety V(p).

If (a) is a simple zero of 21, then by (a) the set (coi, w2, • ■ • , ui) contains

a minimal local P-basis of p. Let (a>i, &>2, • • • , w„) be such a basis. By (b)

and by the second part of Theorem 2, we must have a = n — r, and the vectors

twi, ro3i, • • • , Tco„_r must be linearly independent. By Lemma 3 no more than

n — r oí the v vectors run can be independent, since dim p = r.

Conversely, if « — r of the vectors rw,-, say rwi, tuí, • • • , rco„_r, are inde-

pendent, then by condition (1) of Theorem 2, P is a simple point of 'U(p).

By Lemma 3, the n — r elements «i, w2, • • • , co„_r form then a local P-basis

of p. Hence, a fortiori the v elements «i, co2, • • • , u, form a local P-basis of p.

Therefore conditions (a) and (b) are satisfied, and (a) is a simple zero of 21.

4. Simple subvarieties.

4.1. Generalization of the preceding results. If W is a p-dimensional irre-

ducible variety in S», the reduction to the zero-dimensional case (§2.2) has

the effect of replacing Sn by an 5£lp and W by a point P* ( = IT*) in this S£*_p.

Every irreducible r-dimensional variety 7 in Sn containing Wis then replaced

by an (r — p)-dimensional irreducible variety V*/k* in S^ß containing P*.

Since this reduction has no effect on the quotient ring Q(W/V) (Lemma 1),

the results of the preceding section are either valid or can be properly inter-

preted if we deal with W instead of with a point P in 5„. We shall briefly

state the corresponding results using W instead of P.

Every variety Win Sn is a simple subvariety of S», that is, dim Vit(W/Sn)

= n — p. A set of uniformizing parameters of W in Sn consists of n — p ele-

ments. If W is a simple subvariety of an «-dimensional irreducible variety

S and if Mi, m2, • • • , m„ are elements of m(W/S) such that the corresponding

vectors t«i, tm2, • • • , tm„ in Vit(W/S) are independent, then the ideal

(mi, m2, • • • , ui) in Q(W/S) is prime and of dimension n—v (see Lemma 3).

Here the dimension is intended with respect to the given ground field k. After

the reduction to the zero-dimensional case the dimension n — v oí Lemma 3 be-

comes (» — p) — v, but this is the dimension of the ideal (ui, m2, ■ • • , ui) in

QiW/S) with respect to afield k* which is of degree of transcendency p over k

(see §2.2, Lemma 1). If o = QiW/S) and if 21 is any ideal in <RjS], then any set

of elements of T\[S] which is a basis of o -21 is called a local W-basis of 21. All

minimal local 77bases of a given ideal 21 in î\[S] have the same number of

elements. Theorem 2 remains valid if P is replaced by W and VitiP/S) by

MiW/S). Thus W is simple for V iV irreducible) if and only if either one of

the following conditions is satisfied: (1) dim V — r and the ideal piV/S) con-

tains n — r elements m,- such that the vectors tmi, tm2, • • • , TUn-T in VitiW/S)
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are independent; (2) the idealp( V/S) possesses a local IF-basis (ui,u2, • • • ,ua)

such that the 5 vectors tw; are independent. (Note that by the reduction

to the zero-dimensional case the difference n — r remains invariant: n — r

= (n — p) — (r — p); moreover we have dim V*/K* = (n,— p)—s = (n — s)—p,

whence dim V/K = n — s.) If (17) is the general point of IF, then Definition 2

reads as follows: (r¡) is a simple zero of an ideal 21 in R = T\[S] if 21 possesses a

local IF-basis («i, u2, ■ • • , w,) such that rui, ru2, • • • , tu, are independ-

ent vectors (the reduction to dimension zero leads to elements u*, u*, ••-,«*

in k*R, but since k* QQ(W/S) these u* can be replaced by elements in R). In

particular, if F is any algebraic variety (not necessarily irreducible) and if

IFÇFthen W is simple for V if and only if W belongs to only one irreducible

component of V and W is simple for that component.

4.2. Singular subvarieties and singular points. The customary geometric

way of looking at singular subvarieties of dimension greater than 0 is given by

the following statement, which we shall formulate as a theorem :

Theorem 3. An irreducible subvariety W of a variety V is singular for V if

and only if all the points of W are singular for V.

This theorem follows as an immediate consequence from an algebraic cri-

terion for simple loci which will be proved later on (see §9.6) and which

makes use of derivatives and of certain mixed Jacobian matrices. However,

it is of interest from a methodological point of view to prove Theorem 3

without making use of differentiation arguments. Such a proof, based directly

on our definition of simple loci, must be essentially a local argument and as

such is likely to contain elements of interest for the general theory of local

or semi-local rings.

Before we proceed with the proof of Theorem 3, we point out the following

corollary of this theorem:

Corollary. Every irreducible variety V carries simple points.

In fact, if we regard F as a subvariety of itself then we find that the vector

space 9ft(V/V) is of dimension zero (for Q(V/V) is the entire field J(V) and

m(V/V) is the zero ideal). Hence by Definition 1 (where we have now:

W= V, p = r = dim V), F itself is simple for V.

Thus Theorem 3 implies that the singular manifold of an irreducible V

is a proper subset of V. In the course of the proof of Theorem 3 we shall ac-

tually establish the following stronger result: if Wis any proper algebraic sub-

variety of V, then V—W carries at least one simple point of V (see Lemma 4

below). That is as far as we were able to go by local arguments. For the

proof that the singular manifold of V is algebraic we have to fall back on the

global algebraic criterion for simple loci (§9.6).

We proceed to prove Theorem 3 under the assumption that F is irreduci-

ble. The generalization to arbitrary varieties F will then be straightforward.
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4.3. Proof of Theorem 3. We first show that the condition stated in Theo-

rem 3 is necessary. We assume therefore that IF contains a simple point of V,

and we must prove that then IF itself is simple for V. Let P be a point of IF

which is simple for V and let p be the dimension of IF. Suppose that our asser-

tion that Wis simple for V has already been proved in the case when W is a curve

(p = l). We then show that the assertion follows by induction with respect

to p. We fix on IF an irreducible subvariety IFi passing through P and of

dimension p — 1. By our induction we have then that IFi is a simple subvariety

of F. By a reduction to dimension zero we replace IFi by a point W* over a

suitable extension k* of the ground field k. By this reduction the varieties IF

and F are replaced respectively by a curve W* and by a variety V* of dimen-

sion r-p+1 over k*. We have Wi*CW*QV* and Q(Wi*/V*)=Q(Wi/V).
Hence, since IFi is simple for V, the point IFi* is simple for V*. Since the

point IF* belongs to the curve IF* and since we have assumed that the case

p = 1 has already been settled, it follows that IF* is a simple curve on F*. But

then also IF is simple for F, since Q( IF/ V) = Q(W*/V*).
Suppose now that IF is a curve. We shall first consider the case in which

the point P is simple not only for F but also for IF. We apply Lemma 2 of

§2.3 taking for V and IF respectively the curve IF and the point P. In the

present case we have dim 7ú(P/ W) = 1 (since P is simple for IF) and dim

7(i(P/V) =r = dimension of F. Hence the dimension of the space annihilated

by the linear transformation <p of TYC(P/V) onto M(P/W) must be r — 1.

This means that the ideal p(IF/F) must contain r—1 elements «,- such that

the vectors rw,- in Ttt(P/V) are independent. By Lemma 3, the r—1 elements

Mi, u2, • • ■ , ur-i generate a prime one-dimensional ideal in Q(P/V), and the

corresponding curve through P must therefore coincide with IF. Hence by

the corollary to Lemma 3, IF is simple for F.

There remains the case in which P is a singular point of the curve IF. In

this case we apply to F successive quadratic transformations the effect of

which is to resolve the singularity P of the curve W. Let V and IF' be respec-

tively the transforms of F and IF under the product of the successive quad-

ratic transformations. Since the center of each quadratic transformations is a

point, the quotient ring Q(W/ V) is not affected by these transformations, that

is, we have Q(W/V) =Q(W'/V). On the other hand IF' carries at least one

point P' of V which is simple for both V and IF', namely any of the points of

IF' into which the singular points P of IF has been resolved. Consequently, by

the preceding case, IF' is simple for V. Since Q(W/V)=Q(W'/V), it follows

that also IF is simple for V.

4.4. Continuation of the proof. The sufficiency of the condition stated in

Theorem 3 is included in the following lemma:

Lemma 4. If W is an irreducible simple subvariety of V, of dimension p,

0 á P íí r = dim F, and if S is a proper algebraic subvariety of W,'then W—S con-

tains at least one simple point of V.
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Proof of the lemma. We shall prove this lemma by induction with respect

to r. If r = l, 7 is a curve, and there exists then at most a finite number of

points P on 7 such that Q(P/V) is not integrally closed. For all other points

P of 7 the ring Q(P/V) is a discrete, valuation ring, m(P/V) is a principal

ideal, and therefore P is a simple point of 7. What we have shown is that a

curve 7 has at most a finite number of singular points, and this establishes

the lemma for r = 1 (the permissible values of p being 0 and 1).

We now assume that the lemma is true for varieties 7 of dimension less

than r and we proceed to prove the lemma for a given variety 7 of dimen-

sion r.

We first consider the case p<r. We select in 7? = i\[7] a set of r — p

uniformizing parameters %\, h, • • ■ , ¿r-P of W, and we consider the ideal

R- ik, h, ■ • • , tr-i) and a normal decomposition of this ideal in primary com-

ponents. By the definition of uniformizing parameters and by known relations

between ideals in R and in the quotient ring Q(W/V), the prime ideal

p=p(W/V) must be itself one of the primary (necessarily isolated) compo-

nents of the ideal R- (ti, k, • ■ • , tr-i)- Let qi, q2, • • • , qh be the other primary

components, and let pi, p2, • • • , p* be their associated prime ideals. Let Wi

be the irreducible subvariety of 7 defined by p,-. Since p¿ÍP, we have WiQ W,

and therefore if we denote by Si the intersection of W with the variety

U?=1T7<, then Si is a proper algebraic subvariety of W. Therefore also SVJSi

is a proper algebraic subvariety of W. Since p<r, it follows by our induction

that there exists at least one point on W which is simple for W and does not

belong to S^JSu We shall now prove that any simple point of W which does

not belong to Si is necessarily a simple point of V. This will establish the lemma

for varieties 7 of dimension r, provided p<r.

Let then P be a point of Wsuch that PÇ£Sl Since P.Ç£ Wi, i = 1,2, ■ ■ ■ , h,

we can find an element «,• in q,- such that w,Gm(P/7). If w=XI?=1w< thenw

is a unit in Q(P/V) and we have moreover wpÇ7?-(/i, t2, • • ■ , tr-i). Since

<»Gp this shows that (k, h, • • • , k-i) is a local P-basis of p. We now use

Lemma 2 (where 17, V, and 7 are now respectively P, T7, and 7). The sub-

space of Vit(P/V) which is spanned by the vectors belonging to rp is in this

case spanned by the r — p vectors tí,-. Hence dim Vit(P/V) —r — p

+dim Vit(P/W). Since P is simple for W, we have dim Vit(P/W) =p, and

hence dim Vit(P/V) ^r. Hence necessarily dim Vit(P/ 7) = r, and P is a simple

point of 7, as was asserted.

There remains to be considered the case p=r, that is, W=V. The consid-

eration of the conductor of the coordinate ring 7c = f\[7] with respect to the

integral closure of R in its quotient field J(V) shows that there exists at most

a finite number of (r — l)-dimensional irreducible subvarieties 77 of 7 such

that the quotient ring Q(H/V) is not integrally closed. There exist therefore

irreducible subvarieties H of 7, of dimension r— 1, such that Q(H/V) is in-

tegrally closed and 77325. Let 770 be such a subvariety of 7. Since QiH0/V)
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is integrally closed, this quotient ring is a discrete valuation ring and there-

fore ZZo is simple for V. Since HoQS, H0r\S is a proper algebraic subvariety

of ZZo- By the preceding case p<r (namely p = r— 1) we can find at least one

point P on ZZo which is simple for F and does not belong to H0i^S. We have

thus shown that there exist simple points of F which are not in 5. This com-

pletes the proof of Theorem 3 for an irreducible V.

4.5. The case of a reducible variety. The case of a reducible F can now be

readily taken care of. Let Fi, V2, ■ • • , V0 be the irreducible components of F.

We assume first that IF contains a simple point P of V. Then P belongs to only

one of the irreducible components F,-, say to Fi, and P is necessarily a simple

point of Fi (Definition 2, §3.4). From P<$ F¿, i = 2,3, ■ ■ • , g, follows IF£ F¿

whence PFÇFi. Since IF carries the simple point P of Fi, it follows, by the

irreducible case of Theorem 3, that IF is simple for Fi. Thus IF belongs to

only one irreducible component of F and is simple for that component. Hence

IF is simple for F.

Assume now that Wis simple for V. For a suitable labeling of the irreduci-

ble components F,- of Fwe may assume that IFCZ Fi, IFÇT. F,-, i = 2, 3, • • ■ , g,

and that IF is simple for Fi. Let 5 be the intersection of IF with U?=2F<.

Then S is a proper algebraic subvariety of IF, and therefore by Lemma 4

there exists a point P on W—S which is simple for Fi. This point P does not

belong to any other component F<, *p*l. Hence P is simple for F. This com-

pletes the proof of Theorem 3.

5. Simple loci and regular rings.

5.1. The identity of the two concepts. A special class of local rings, called

regular, has been first introduced and studied by Krull [7], and the theory

of these rings has been further developed by Chevalley [2] and I. S. Cohen

[3 ](4). Let o be a local ring, m the maximal ideal in o, and let (h, t2, • ■ -,t,)

be a minimal basis of m. The local ring o is called regular if the following con-

dition is satisfied: in any homogeneous relation f(h, t2, ■ • • , ta)=0 between

íii h, • • • , ts, with coefficients in o, the coefficients necessarily all belong to nt. An

equivalent condition is the following: if <p(ti, t2, • ■ ■ , te)(E.m"+1, <p=aform of

degree v with coefficients in o, then all the coefficients of <p must belong to m.

That the second of these two conditions implies the first is trivial. That the

first condition implies the second follows immediately from the fact that every

element of mv+1 can be expressed as a form of degree v + l in tx, t2, • • ■ , t,

with coefficients in o, and hence also as a form of degree v in t¡, t2, • • • , t„

with coefficients in m.

If o is an arbitrary local ring, then the ring m/m2, as an additive group,

can be regarded as a vector space over the residue field A = o/rrt as field of

scalars. We denote this vector space by Titi. The dimension of iMi is equal to

the number 5 of elements «1( u2, ■ ■ ■ , u, in any minimal basis of m. More

(4) The term "regular" is due to Chevalley. The original term used by Krull was "£-Rei-

henringen."
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generally, m"/m"+1 can be regarded as a vector space over A. We shall denote

this space by Vit,. The C,+,-i,, power products u^u^ • • • u,' of degree v, re-

duced modulo m"+1, form a basis of Vit,, but not necessarily an independent

one. The ring o is regular if and only if the above basis is independent, that is,

if and only if dim Vît, = Cê+,-i,,for all positive integers v.

Theorem 4. Given an irreducible algebraic variety V, an irreducible algebraic

subvariety W of V is simple for V if and only if the quotient ring Q(W/V) is

regular.

Proof. By the reduction to dimension zero (§2.2) it is sufficient to prove

the theorem for points of 7. We assume then that J7=P = a point of 7. Let

0 = 00777), m = m(P/V), s = dim Vit(P/V), and r = dim 7. We know that
s 2ï r. We have to show that s = rif and only if ois a regular ring.

(1) Assume s>r. Let (k, k, • • ■ , ti) be a minimal basis of m. It is always

possible to choose r elements in that basis in such a fashion that the o-ideal

generated by these elements is of dimension 0. We may assume that

k, k, • • • , tr are such elements. Then the o-ideal q = o • (k, k, ■ • • , ti) is pri-

mary, and its associated prime ideal is m. Since i,Çm, some power of /„ say /*,

belongs to q. There exists an integer v ^ 0 such that t"a G qm\ t"a G qm"+1 (such an

integer exists since f")i=im ' = (0) and /, 9* 0 ; by q • m° we mean q). Every element

of m" is expressible as a form of degree v in k, k, • ■ ■ , ts with coefficients in 0,

while every element in q is expressible as a linear form in k, k, ■ ■ ■ , tr with

coefficients in 0. Since kÇzqm", we therefore have a relation of the form:

Fit) = *.* - Piik, k, ■ ■ ■ , ti)P,(h, k, ■ ■ ■ , t.) = 0,

where pi and p, are forms with coefficients in 0, of degrees 1 and v respectively.

If h<v+l then the relation #Gqm" implies ^Gm'+1ç;mA+1, and therefore 0

is not regular. Assume now that h ^ v + l. Since ¿*Gqm"+1 the coefficients of pi

as well as the coefficients of p, are not all in m. If h>v + l then we have

pi(t)p,(t) =Î6m'Çm'+!, where, as we have just seen, pip, is a form of de-

gree v + l in k, k, • • • , t, whose coefficients are not all in m. Hence again

0 is not regular. If finally h = v + l then Fit) is a form of degree h in

k, k, • • • , k, and since the product pip, does not contain a term depending

on ts only ipi is linear homogeneous in k, k, • ■ • , ti), it follows that the co-

efficient of ts in Fit) is 1. The relation Fit) = 0 shows then that 0 is not regular.

We have therefore shown that if s>r then the ring 0 is not regular.

(2) Assume s = r. To prove that in this case 0 is a regular ring we first

consider the case in which the residue field A ( = o/m) is infinite.

If f(zi, z2, ■ ■ ■ , zr) is a form in indeterminates 2,- with coefficients in 0 we

shall denote by/(zi, z2, • • • , zr) the form with coefficients in A which is ob-

tained when the coefficients of / are replaced by their m-residues in A. To

showjfiat 0 is regular we have to show the following: if f(k, k, • • • , tT)=0

then/(zi, 22, • • • , zr) =0. We consider an arbitrary linear nonsingular homo-
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geneous transformation

r

(3) zi = X) -*<*/i ¿ = Ii 2, • • • , r; <j,-;- G A.
i=i

With any such transformation we can associate (in more than one way) a

transformation

r

(4) ti  = X) aijtj, i = 1, 2, • • •, r; oij G o,
j=i

of the given minimal basis (h, t2, • • • , tT) of m into another minimal basis

(¿i*, tí, • • • , ti ) of m. We have only to take for the an elements of o whose

m-residues are the an (that the t"s also form a basis of m follows from the

assumption | a<;| 9*0, which implies |a,-/| $tn, that is, |a,-;-| is a unit in o).

It is clear that ii f(h, t2, • • • , tr) is a form in the t's with coefficients in o,

and if <p(tí, t» , • • • , tí) is the transform of f(t) under the transformation (4),

then <j>(zi, z2 , • • • , zf ) is the transform off(zi, z2, • • • , zT) under the trans-

formation (3). Given/(/i, t2, • ■ ■ , tr), homogeneous of degree v, and assuming

that f(zi, z2, ■ ■ • , zi)9¿0, we can find a linear transformation (3) such that

in $(zi, z2, • • • , zi) the coefficient of z'r " is not equal to 0 (since A is an infi-

nite field). We then can match this transformation by a corresponding trans-

formation (4) in such a fashion that the coefficient of tí" in <p(tí, t2, ■ • ■ , tí)

is not in m, hence is a unit in o. The upshot of the preceding argument is

then this: if we have a homogeneous relation f(h, t2, ■ • • , tr) = 0 of degree v be-

tween the t's, with coefficients in o, and if we assume that/(zi, Zi, • • • ,z,)f*Q

we can assume (by first changing, if necessary, the minimal basis of m) that

the coefficient of /" in/ is a unit e in o. But then the relation/(i) =0 implies

that ¡|Go-(ii, k, ■ ■ ■ , tr-i), m'Ço-(ii, t2, ■ ■ • , tr-i), whence the ideal

0-(<i, t2, ■ • • , tr-i) is zero-dimensional (having m as associated prime ideal).

This is impossible, since all minimal primes of the ideal o-(ii, t2, • ■ • , ir_i)

are of dimension not less than r — (r — 1) = 1. This contradiction has been ob-

tained because we have assumed that/(2i, z2, • • • , zJ^O. Hence we must

have/(zi, z2, • ■ • , zr)=0 whenever f(h, t2, ■ ■ • , tT) =0, and this shows that

0 is a regular ring.

If A is a finite field, we adjoin to the field J(V) an indeterminate w and we

take as new ground field the field k* = k(u). We denote by V* and P* respec-

tively the variety over k* having the same general point as F and the point

over k* having the same coordinates as P. We have dim F*//c* = dim V/n = r,

R* = <RjV*] = k*R (where R = <E{[ V]) and p(P*/ V*) = R* -p(P/ V). From these

facts it follows immediately that if o* = Q(P*/F*) and m* = m(P*/F*), then

(5) m* = o*m,

(50 m = m* H¡ o.
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From (5) it follows that our minimal basis (k, k, ■ ■ • , ti) of m is also a basis

of m*—necessarily minimal, since dim 7* = r. The residue field A* = o*/m* con-

tains the infinite new ground field k*. Hence, by the preceding proof, o* is a

regular ring. Therefore if f(k, k, • • • , /,)=0 is a homogeneous relation with

coefficients in o, these coefficients are all in m*. But then, in view of (5'), these

coefficients must all belong to m. This completes the proof of the theorem.

5.2. Unique local factorization at simple loci. The regular rings which occur

in algebraic geometry as quotient rings of simple subvarieties are "unrami-

fied" in the sense of I. S. Cohen [3, p. 88], for they contain a field (namely the

ground field k). The theorems proved by Cohen for unramified regular rings

are therefore valid for quotient rings of simple subvarieties. Thus if W is an

irreducible p-dimensional simple subvariety of an irreducible r-dimensional

variety 7and if o = Q(W/V), then the completion o* of o (with respect to the

powers of the maximal ideal m in o) is isomorphic to the ring of formal power

series in r — p indeterminates over the residue field A = o/m [3, Theorem 15,

p. 88], and therefore [3, Theorem 18, p. 94], o* is a unique factorization do-

main. The following result is a consequence of a general theorem on local

rings due to Chevalley: if W is an arbitrary (not necessarily simple) irreducible

subvariety of V, then any prime ideal p in the quotient ring o = Q(W/V) is un-

ramified in the completion o* of o, that is, o* p is a finite intersection of prime

ideals in o* (see C. Chevalley, Intersections of algebraic and algebroid varieties,

Trans. Amer. Math. Soc. vol. 57 (1945) p. 9, last sentence of Lemma 9, and

p. 11, Theorem 1). Using this result and the fact that o* is a unique factori-

zation domain, we can now prove the following theorem:

Theorem 5. The quotient ring o of a simple subvariety is a unique factoriza-

tion domain.

Proof. Let p be a minimal prime ideal in o. To prove the theorem we have

only to show that p is a principal ideal. Let

h

(6) o*-p = DP*,
¿=i

where we may assume of course that no p* is superfluous. It has been shown

by Chevalley [2, Propositions 5 and 6, p. 699] for the completion o* of an

arbitrary local ring o that if p is a prime ideal in o then every prime ideal of

o*p contracts to p. Using this result, we have therefore: pj*f>\o = p,

i = l, 2, • • • , h.
We now show that each prime ideal pi* is minimal in o. Consider for in-

stance the ideal p*. Let « be a fixed element of p, coj^O. Since wGpi*, some iso-

lated prime ideal of o*w must be contained in p*. Let p* be such an isolated

prime ideal of o*w, p*Çp*. We have p*f^oÇpi*P\o = p and p*i^09*(0) since

wGp*- Hence p*f^o = p since p is minimal in o. Therefore o*pCp* and conse-
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quently p* must contain one of the prime ideals p<*, i=l, 2, • • ■ , h. However,

since we know already that p* in its turn is contained in p* and since p* is

not superfluous in (6), we conclude that p* = p*. Hence p* is an isolated prime

ideal of the principal ideal o*w, and therefore it is necessarily minimal in o*,

as was asserted.

So far we have made no use of the assumption that o is the quotient ring

of a simple subvariety. Using this assumption we know then that o* is a

unique factorization domain. Therefore the ideal o* • p must be a principal

ideal, since we have just proved that o* • p is the intersection of minimal prime

ideals. Hence p must contain an element u such that o* • p = o* • u. It is known

that every ¡deal 21 in o satisfies the relation o*-2ino = 2I (Krull [7, Theorem

15]). Hence p = o* - pi\o = o*■ u(~\o = o■ u. This completes the proof.

5.3. The abstract analogue of Theorem 3 and an example of F. K. Schmidt.

We shall conclude this section with a discussion of the first part of the proof

of Theorem 3 (§4.3) from the standpoint of the general theory of regular local

rings. The necessity of the condition stated in Theorem 3 is a strictly local

fact. For let P be a point of W, let o = Q(P/V) and let p be the prime ideal in

o defined by T7(p = op(î7/7)). Then in view of Theorem 4 of §5.1, the

"only if" part of Theorem 3 can be stated as follows : "if o is a regular ring,

then also the ring Op (that is, Q(W/ V)) is regular." The question arises whether

this statement is true for an arbitrary regular local ring o and for awy prime

ideal p in o (the statement is trivial for minimal prime ideals p in view of the

fact that any regular local ring is an integrally closed domain; see [7, Theo-

rem 6]). At present it is only known that the statement is true if the regular

ring o is complete (Cohen [3, Theorem 20, p. 97]). In addition to calling atten-

tion to this unsolved question, we wish to analyze the proof of the "only if"

part of Theorem 3 in order to point out why that proof fails in the general

case where we have an arbitrary regular local ring o. The first part of that

proof consists in a reduction to the case dim J7 = p = l, and that reduction

can be carried out just as it stands also in the general case. In the second part

of the proof we have first considered the case in which P is a simple point of

W. The corresponding assumption in the general case can be expressed by say-

ing that the residue class ring o/p is a regular ring (hence a discrete valuation

ring, since p is of dimension 1). Also in this case our proof of the regularity of

Op remains valid in the general case.

The critical phase in our proof is that in which the local ring o/p (of di-

mension 1) is not regular; in other words: o/p is a primary integral domain

which is not integrally closed. In this case we have applied to the neighborhood

of the point P on 7, that is, to the local ring o, successive quadratic trans-

formations, the effect of which was to resolve the singularity of the curve W

at P, that is, to transform o/p into a regular ring. It is this step that may fail

to work in the general case. The following free presentation of an example by

F. K. Schmidt [9] will illustrate this possibility.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 OSCAR ZARISKI [July

Let k be a field of characteristic pr¿0 and let 2' be the field n(x, t) in two

independent variables x and t over k. Let £1, &,•••,{«••• be an infinite

sequence of elements of k such that the formal power series

ii + hx + Z3x2 + • • •

is transcendental over k(x)(6). Then the analytical branch in the (x, i)-plane

defined by

(7) i-({i + &*+ •--)*

is not algebraic, and therefore it defines a zero-dimensional, discrete, rank 1

valuation v' of 2'. Let o' be the valuation ring of v'. We now consider the

field 2 = 2'(r) =k(x, t), where r = /1/p, and the ring

(8) 0 = o'[t] = o'-l -|-o'-tH-ho'-T"-1.

Let v be the extension of v' to 2 (the extension is unique, for 2 is purely in-

separable over 2'). It is clear by (7) that v is defined by the following analyti-

cal branch in the (x, r)-plane:

(9) t = £i + £2* + • • • .

Since o' is a discrete, rank 1, valuation ring, it is a local (regular) ring of

dimension 1. Since o is a finite o'-module, it follows that also o is a local ring

of dimension 1 (Chevalley [2, Proposition 3, p. 694]). We shall now show that

0 is not regular and that it cannot be transformed into a regular ring by successive

quadratic transformations.

Let ri = (r — ¿i)/x. We have, by (9), v(n) ^0, whence v'(t\ ) =0. Conse-

quently tí Go' and therefore ti is integrally dependent on o. However

Ti= — fi/x- 1 + 1/x-r, whence, by (8), n$o, since 1, r, • • • , t*""1 form an in-

dependent basis of 2 over 2' and since 1/xG0'. Consequently o is not in-

tegrally closed and therefore it cannot be a regular ring.

The maximal ideal m' in o' is the principal ideal o'-x, since v'(x) = +1.

If m denotes the maximal ideal in o, then we have xGnt, and also r — ¿jiGtn

(for (t — íi)p = t — ̂ Gm'Çra). From (8) one sees then immediately that x and

T — %i form a basis for m.

To apply a "quadratic transformation" to the ring o means to pass from o

to the following ring 0i:

Oi = o[ti],        ti = (r — £i)/x.

Let h = (t-g)/xp. Then 2' = /c(x, t)=n(x, h) and, by (7), the valuation v'

can be equally well defined by the following analytical branch in the (x, ti)-

pláne:

(5) To construct such a power series one may proceed as Schmidt does, that is, take for k

a field of infinite degree of transcendency over the prime field T of characteristic p and take for

(&i Ê2, • • • , in, • • • ) a transcendence set in k/T.
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h= fe + É3X2+ ■••)".

We have Ti = t\lv and Oi = o'[ri]. It follows that the ring Oi is in similar rela-

tion to o' as o was. This shows that Oi is not a regular ring, and that the suc-

cessive quadratic transformations will never lead to a regular ring (the next

ring o2 will be defined as follows: 02 = 0i[t2], where t2 = (ti — í-í)/x, and so on).

It is easy to verify that the integral closure of o in 2 (that is, the valuation

ring of v) is not a finite o-module (Schmidt [9, p. 447]). This fact is the real

reason why it is not possible to transform o into a regular ring by successive

"quadratic transformations." For it can be easily proved that "any primary

integral domain o can be transformed into a regular ring by successive quad-

ratic transformations, provided the integral closure of o is a finite o-module."

Part II. Jacobian criteria for simple loci

6. The vector space *D(W) of local differentials.

6.1. The local W-differentials in Sn. Let Xi, x2, • • • , x„ be coordinates in

a linear Sn and let (771, t72, • • • , 77,,) be the general point of an irreducible

p-dimensional variety W in Sn. If u is. any element of the maximal ideal m

of the quotient ring 0 of T7 (o = <2(J7/S„)), then M=/(x)/g(x), where/(x) and

g(x) are in k[xi, x2, • • • , x„],/(?7) =0 and ¿(77) 9*0. From ¿(77) 9*0 follows that

the partial derivatives du/dxi are elements of 0. The m-residues (dM/dx,)x_,

of these partial derivatives are therefore elements of the field A = 7(17)

= jc(?7i, 772, • • • , 7?„). We call the ordered «-tuple

(du/dxi, du/dXi, • • • , du/dxi) x=v

of these residues the local differential of u at W, or the local W-differential of u,

and we denote it by dwu. We emphasize our assumption that u is an element

of m, that is, m = 0 on 17.

We regard dwu as a vector in the «-dimensional vector space, over A as

field of scalars, formed by all the ordered «-tuples of elements of A. The set

of all local differentials dwu (W is fixed, u varies in m) is a linear subspace of

that «-dimensional vector space. For in the first place, the relation

dwu±dwv = dw(u + v) is obvious (m, s£m and consequently also uinGnt).

In the second place, if ÔGA, we have ô=pirj)/pir)), where <p(x), ^(x)

Gk[xi, X2, • • • , x„] and pir¡)9*0. If «£m and if we set S=pix)/pix), then

SmGri and we have dwiàu) = ô-dwu, for (m)i=, = 0.

We shall denote the vector space, over A, formed by the local J7-differ-

entials dwu, «gm, by D(17).

6.2. The linear transformation VHtiW/Sn)^>'DiW). The given variety W

in Sn defines also its local vector space VitiW/Sn) over A (§2.1), and we have

the mapping r of m onto Vit(W/Sn) defined by (1). If for any m in m we let

correspond to the vector tu the local I7-differential of u, we obtain a trans-

formation
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(10) tu —> dwu, u G m,

of 7íí(W/Sn) onto D(IF). The linearity of this transformation is obvious.

Therefore to prove that (10) is single-valued it is only necessary to show that

if tu = 0 then also dwu = 0. Now if tu = 0, then «Gms, «=Sj=i«,i'J> where

u¡, V; G m, j = 1, 2, • • • , v. Hence (ii,.)», = (w,)^, = 0, and therefore

(dw/dxi)x_, = 0, i = l, 2, • • • , n, that is, djpM = 0.

Hence (10) defines a linear transformation of 9á(W/Sn) onto D(IF). We

know that IF is simple for Sn (§4), and that therefore M(W/Sn) is of dimen-

sion n — p. Consequently we can state the following result:

Lemma 5. The dimension of the space D( IF) of local W-differentials is at most

equal to n — p, where p is the dimension of W, and the dimension is exactly

n — p if and only if the linear transformation (10) is nonsingular.

7. Jacobian criterion for simple points: the separable case.

7.1. Criterion for uniformizing parameters. Let P(«i, a2, ■ ■ ■ , a„) be a

point of Sn. We have constructed in [13, p. 541] a particular set of « poly-

nomials which form not only a minimal local basis (§3.3) of the ideal p(P)

but even a basis of this ideal. It is a set of polynomials in k[x¡, x2, • • • , x„],

(11) /l(*l),/2(*l, x2), • • ■ ,/„(xi, x2, • • • , x„),

defined and uniquely determined by the following conditions:

a. fi depends only on xi, x2, • • • , x¿ and is monic in x,-;

b. /i(ai, 0!2, • • • , ai) =0, that is, /<(x) =0 at P;

c. fi(ai, a2, • • • , a,_i, xi) is irreducible over the field k(o:i, a2, • • • , a<_i) ;

d. If/i(x) is of degree Vi in x< then for j>i the degree of/,-(x) in x¿ is less

than Vi.

These n polynomials /,(x) depend only on the order in which the inde-

terminates xi, x2, • • • , x„ are labeled. They shall be referred to as the canoni-

cal uniformizing parameters of P.

By Lemma 5 the dimension of the vector space D(P) of local P-differen-

tials is at most equal to n. Making use of the particular form of the canonical

parameters/,(x), we can easily prove the following theorem:

Theorem 6. In order that the dimension of the vector space 'D(P) of local

P-differentials have its maximum value n, it is necessary and sufficient that the

coordinates ai, a2, ■ ■ ■ , an of P be separable quantities over k.

Proof. By Lemma 5 the dimension of D(P) is equal to n if and only if

the transformation (10) (with P instead of W) is nonsingular. Since

T/l> Th< • • • . Tfn f°rm an independent basis of M(P/S„), it follows that D(P)

has dimension n if and only if the local P-differentials dPfi, dPf2, • • • , dPfn

are independent vectors. These vectors are independent if and only if the

determinant of their components, that is, the Jacobian determinant

\d(fi, fi, • ■ • ,fn)/d(xi, X2, • • • , x„)| „, is different from zero. Since /,-(*) is
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independent of xs, j >i, this Jacobian determinant is given by the following

product :
n

Ylidfi/dxi)^a.
i-i

The first factor (dfj/dxi)x~a is not equal to 0 if and only if «i is separable

over K. The second factor (dfi/'dxi)n_ai.*j-a, is not equal to 0 if and only if

«2 is separable over k(«i). Hence both factors are not equal to 0 if and only if

ai and ai are separable over k. In the same fashion it follows that the separa-

bility of all the coordinates «i, a2, • • • , an is necessary and sufficient for the

nonvanishing of the Jacobian determinant, q.e.d.

As an immediate corollary of Theorem 6, we obtain the following:

Criterion for uniformizing parameters. Let the coordinates «i, a2,

• • • , an of P be separable over k and let ui, Ui, ■ ■ • , un be elements of m(P/S„).

A necessary and sufficient condition that the u's be uniformizing parameters of P

is that the Jacobian determinant \d(ui, u2, • • • , un)/d(xi, x2, • • • , x„)| x_a be

different from zero.

To see this it is only necessary to observe that if the a's are separable, then

by the preceding theorem and by Lemma 5 of the preceding section the linear

transformation (10) (with P instead of W) is nonsingular.

We add the obvious remark that if for a given set of elements Mi, m2, • • •, m„

the above Jacobian determinant is different from 0, then the differentials

dpUi are independent vectors of D(P), this vector space has then dimension «,

and therefore the a's are separable (Theorem 6), and the m's are uniformizing

parameters of P.

We shall use the notation J(v; x) for the Jacobian matrix of a set

Vi, Vi, ■ ■ • , vv of rational functions of Xi, x2, • • ■ , x„.

In the sequel we shall have occasion to use the following lemma:

Lemma 6. Let 21 be an ideal in k[xu x2, • • • , x„] and let (Pi(x), F2(x),

• • ■ , F,ix)) be a basis of 21. If (£i, £2, • • ■ , £„) is a zero of 21 in some extension

field of k and if the Jacobian matrix J(F; x) has rank « at x = £, then the £'s are

separable algebraic over k, and (£) is a simple zero of 21. Moreover, n of the poly-

nomials Fiix) are uniformizing parameters of the point P(£).

Proof. Let 7 be the irreducible algebraic variety in S„ having (£) as gen-

eral point. Since JiF; x) has rank « on 7, it has still rank « at some point

P(«i, a2, • ■ • , an) of 7. We may assume that |/(Pi, F2, • • • , Fn; Xi, x2,

• • •, x„) | x^a 9* 0. By the preceding remark, the a's are separable over k, and the

polynomials Pi(x), P2(x), • • • , P„(x) are uniformizing parameters of P. This

implies that (a) is an isolated zero of the ideal (Fi(x), F2(x), • • • , Fn(x)),

that is, it is not a specialization of a zero of a higher dimension. But since

(a) is a specialization of (£) and (£) is a zero of 21, it follows that necessarily
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(¿i) = (a). Moreover, since Fi(x), F2(x), • • • , F„(x) are uniformizing parame-

ters of P, they form a local P-basis of 21. Hence (£) is a simple zero of 21

(Definition 2, §3.4).

Corollary. If the matrix J(F; x) of Lemma 6 has rank n — p at x = £,

say if J(F; xp+i, xp+2, • • • , x„) has rank n — p at x = £ (O^p^w), then

|p+i, £p+2, • • • , £„ are separable algebraic over the field k(£i, £2, • • • , £„) (and

hence the dimension of the "point" (£) is not greater than p).

7.2. Criterion for simple points. The classical criterion for simple points

of an algebraic variety (in terms of Jacobian matrices) can now be readily

derived.

We shall take a slightly more general point of view and shall derive a

criterion for a given point P to be a simple zero of a given ideal 21 in

k[xi, x2, • • • , x„]. If 21 happens to be the ideal I(V) of a given variety V

(irreducible or not), then we get the criterion for P to be a simple point of F.

Let V = V(W) be the zero manifold of 21 and let P(a) be a point of an irre-

ducible r-dimensional component Fi of V. Yet (Fi(x), F2(x), • • • , F,(x)) be a

basis of 21.

Theorem 7 (Classical criterion for simple points). In order that P(a)

be a simple zero of the ideal 21 it is sufficient that the Jacobian matrix J(F; x)

be of rank n — r at x = a. If the coordinates au a2, • ■ • , an are separable over k,

then this condition is also necessary.

Proof. By Theorem 2' (§3.4), (a) is a simple zero of 21 if and only if ex-

actly n — r of the vectors tFí(x) are independent. If ai, a2, ■ ■ ■ , a„ are separa-

ble over«, the linear transformation (10) (with P instead of IF) is nonsingu-

lar. Hence, in this separable case, (a) is a simple zero of 21 if and only if

exactly n — r oí the v local P-differentials dPFi(x) are linearly independent.

Hence in the separable case the above condition on the Jacobian matrix

J(F; x) is both necessary and sufficient.

In the general case, given that J(F; x) has rank n — r at x = a, it follows

that n — r oí the local P-differentials dPFi(x) are linearly independent. Since

in the linear transformation (10) we have tFí(x)—>dpFi(x), it follows a fortiori

that n — r of. the vectors tFí(x) are independent. Hence, by Theorem 2',

(a) is a simple zero of 21. •

Corollary. If k is of characteristic 0 or a perfect field of characteristic

pT^O, then the criterion of Theorem 7 is both necessary and sufficient.

8. Continuation of the separable case : generalization to higher varieties

in Sn.

8.1. Extension of the preceding results. The results of the preceding sec-

tion can be easily generalized to the case in which instead of a point P we

are dealing with an arbitrary p-dimensional irreducible variety IF in Sn- Yet
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(Vi, T?2, • • • , 77„) be the general point of W and let k, k, • • • , <„_„ be a given set

of uniformizing parameters of W. Since the vectors n\, rk, • • • , rtn-P form

an independent basis of the vector space Vit(W/S„), it follows that the linear

transformation (10) is nonsingular if and only if the Jacobian matrix J(t; x)

has rank n — p at x = ?7. If this condition is satisfied for the given set of uni-

formizing parameters ti, then the matrix J(t' ; x) will be of rank n — p at x = 77

for any other set of uniformizing parameters t{ ,tl, ■ • • , £„'_„. It is clear that

in all cases the above rank condition for the matrix J(t'; x) is sufficient in

order that given n — p elements // of m(W/Sn) be uniformizing parameters

of 17.
By analogy with Theorem 6 of the preceding section, the condition that

J(t; x) have rank n — p at x = t7 can be translated into the equivalent condi-

tion that the field J(W) ( = «(771, 772, • • • , 77„)) be separably generated over k.

The proof of this is as follows:

Suppose that /(/; x) is of rank n — p at x = 77. We can write k=pi(x)/gix),

where piix), g(x)G«[xi, x2, • • • , x„] and gir¡)r*0. Then it is clear that also

JiP; x) has rank n — p at x = t7. We may assume that

(12) I J(pi, pi, • • • , pn-P; Xp+i, xp+2, • ■ • , xn)\x=v 9* 0.

We take the field k* = k(t;i, 772, • • • , 77p) as new ground field and we set

p,*=pi(r]i, 772, • • • , 77p, xp+i, • • ■ , x„). The n — p polynomials p* in k*[xp+i,

xp+2, • • • ,xn],i = l,2, • ■ • ,« — p, have the common zero (77„+i, 77p+2, • • ■ , r¡„),

and we have by (12) that \j(p*, p*, • • • , p*-P; xp+i, xp+2, • • • , x„)\x^9*0.

Hence by Lemma 6 (where « and v should be replaced by n — p) we can con-

clude that 77P+i, 77p+2, ■ • • , 77« are separable algebraic over «(771, 772, • • • , 77p).

Since JiW) is of degree of transcendency p over k, it follows that

(171, *72, • • • , 77p) is a separating transcendence basis of JiW)/n.

Conversely, if (771, 772, • • • , 77p) is a separating transcendence basis of

JÍW)/k, then the adjunction of 77!, 772, • • • , 77P to k achieves a reduction of 17

to a point in S£_p having separable coordinates. Hence by Theorem 6 it fol-

lows that if h, k, • • • , tn-„ are uniformizing parameters of W then the de-

terminant I J(k, k, ■ ■ ■ , tn-„; xp+i, Xp+2, ■ • • , x„)| is different from zero at

X = 77.

We have thus shown that if k, k, • • ■ , tn-p are elements of ixii/W/V), then

the condition that the determinant \J(k, k, • • • , tn-P; xp+i, xp+2, ■ • • , x„)|

be different from zero at x = r¡ is equivalent to the condition that the set

(771, 772, • • • , 77p) be a separating transcendence basis of k(t;i, 772, • • • , t7„)/k

and that k, k, ■ ■ ■ , tn-p be uniformizing parameters of W. Since by a theorem

due to MacLane [8, Lemma 2, p. 380 or Theorem 15, p. 384] the set

(771, 772, • • ■ , 77„) always contains a separating transcendence basis of the field

k(t;i, 772, • • • , 77„)/k if this field is separably generated over k, our assertion

is proved.

8.2. A proof of the theorem of MacLane. It is of some interest that the
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italicized statement which we have just proved can be used in order to derive

the quoted theorem of MacLane. We proceed as follows:

Let  {fi, foi • • • i ?p}  be a separating transcendence basis of «(771, r¡2,

• • • , r/„)//c and let

f; = ^i(v)/4">(v), j = 1. 2, • • • , p.

We consider in a linear space S„+p the irreducible p-dimensional variety IF'

defined by the general point (771, tj2, • • • , ??„, £1, f2, • ■ • , ti) (note that

5(ÏF) = îî(iF/), whence IF and IF' are birationally equivalent varieties). Let

(13) 4>i(x), <j>i(x), ■ • • , <f>n-p(x)

ben — p polynomials in k[xi, x2, • • • , x„] which are uniformizing parameters

of IF. Let moreover

(14) <j>n_p+j(x) = xn+,<po(x) - 4>i(x), j = If 2, • • • , p.

The n polynomials <pi(x), <iS2(x), • • • , (¡>n(x) in xi, x2, • • • , x„+p vanish on IF',

that is, they vanish for x,- = 77,-, i=l, 2, • • • , n, and x„+,-= $",-, 7 = 1, 2, • • • , p.

IFe assert that these polynomials are uniformizing parameters of IF'. To prove

this we have to show the following: if F(x¿, x„+j)Gk[xi. x2, • • • , xn+P] and

F(Vi, ti) — 0, then there exists a polynomial A (x,-, x„+,-) such that A (77,-, ti) 9e 0

and A-F belongs to the ideal generated by <pi(x), <p2(x), • • • , 4>n(x) in

k[xi, xt, • • • , x„+p]. In view of (14) we can write for an arbitrary polyno-

mial F(xí, xn+i) an identity of the form:

p

[io(x)]'-F(x) = 22Bi(x)<t>n-p+Ax) +G(Xl, xt, - • • , xn),
Í-1

where B¡(x) Ç.k[xi, x2, ■ • • , xn+p] and v is a suitable integer. Now if F(t7¿, f,-)

= 0 then also G(r¡) =0. Since <pi(x), <b2(x), • • • , rp„_p(x) are uniformizing pa-

rameters of IF, there must exist a polynomial h(x) = h(xi, x2, • • ■ , x„) such

that h(v) 9* 0 and h(x)G(x) m 0(<pi(x), <p2(x), • • • , 0„_p(x)). Hence

\\po(x)]"h(x)F(x) =0(rpi(x), </>2(x), • • • , <pn(x)), and this proves our assertion,

since ^0(77) 9*0 and h(r¡) 9*0.

By hypothesis, the set (77,-, f,-) contains the separating transcendence basis

(?i,?í. • • -, tp) of J( IF') ( = 7( IF)), and we have just proved that <pi,<b2, ■ ■ ■ ,<pn

are uniformizing parameters of IF'. Hence by the result proved above (applied

to IF' instead of to IF), the determinant | J(<pi, <t>i, ' ' • > <?*, Xi, x2, • • • , x„) |

must be different from zero on IF' (that is, for Xi = rn and x„+,-=£",-). This im-

plies that the matrix /(rpi, <b2, • • • , <pn-p', Xi, x2, • • • , x„) is of rank n' — p at

x = 77, and therefore, again by the same result proved above (and applied to

IF itself), the set (771, 772, • • • , 7j„) must contain a separating transcendence

basis of «(771, 772, • • • , 77„)/k.

8.3. The singular manifold of an algebraic variety. As an immediate conse-

quence of the preceding results we find that if k is afield of characteristic zero
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or is a perfect field of characteristic p9*0, then the singular manifold of an irre-

ducible algebraic variety V in Sn is a proper algebraic subvariety of V. For let

(íi, £2, • • • , In) be the general point of 7 and let (Pi(x), F2(x), • • • , F,(x))

he a basis of p(V). If r is the dimension of 7, then under our assumption con-

cerning the field k, the Jacobian matrix (/(P; x))x=i (which can never be of

rank greater than n — r since £)( V) is at most of dimension n — r; see Lemma 5,

§6.2) must be exactly of rank n — r. Hence the points of 7 where the above

matrix is of rank less than n — r form a proper algebraic subvariety of 7,

and by Theorem 7 this subvariety coincides with the singular manifold of 7.

The above result will be extended later on to arbitrary ground fields.

We observe that if we had assumed only that the field J( V) is separably

generated over k, then on the basis of Theorem 7 we could only assert the

following: the singular points of V belong to some proper algebraic subvariety

of V. But we could not assert immediately that the singular manifold is alge-

braic, because Theorem 7 gives only a sufficient condition for simple points.

To conclude this section we shall state the analogue of Theorem 7 for the

case in which instead of a point P(a) we are dealing with an irreducible vari-

ety W in Sn having (771, 772, • • • , rjn) as general point. We assume, as in Theo-

rem 7, that W lies on some r-dimensional irreducible component of the zero

manifold 17(21) of tne given ideal 21.

Theorem 7' (Classical criterion for simple subvarieties). 7« order

that (771, 772, • • • , t)„) be a simple zero of the ideal 2Í it is sufficient that the

Jacobian matrix J(F; x) be of rank n — r at x = r¡. If the field k(t)i, 772, ■ ■ • , rj„)

is separably generated over k then the above condition is also necessary.

The proof is the same as that of Theorem 7.

We observe that if k is a field of characteristic zero or a perfect field of

characteristic P9*0, then Theorem 3 (§4.2) follows from Theorems 7 and 7'.

9. The nonseparable case.

9.1. The dimension ofDiW) as a numerical character of the field J(W). We

say that an irreducible variety W in S„ presents the nonseparable case if

the field J(W) is not separably generated over k. In particular, if IF is a point

P, the nonseparable case is characterized by the condition that at least one

of the coordinates of P is inseparable over n.

Whether we are dealing with the separable or the nonseparable case, it

is always true that if (771, 772, • • • , r¡n) is the general point of W and if

(«i, u2, ■ ■ ■ , ui) is a local 17-basis of p(W), that is, a basis of miW/Sn), the

rank of the Jacobian matrix Jiu; x) at x = 77 is independent of the local basis,

for this rank gives the dimension of the vector space £)(J7) of local T7-differ-

entials. We know that the rank is always less than or equal to n — p, where

p is the dimension of W, and that the equality sign holds if and only if W

presents the separable case. So at least in the separable case it is true that the

difference «—(« —p) between the dimension of the ambient space Sn and the
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dimension of 0(W) is an intrinsic character of the field J(W), namely it is

equal to the degree of transcendency of J(W)/n. We shall now show that also

in the nonseparable case, if we denote by n — a the dimension of D(IF) (cr>p),

then a- is an intrinsic character of the field J(W).

Theorem 8. If'dimD(IF) =n — a<n — p, then J(W) isao-fold extension of k

(that is, J(W) can be obtained by adjoining to k a suitable set of a elements of

^(IF)) but is not a (o—l)-fold extension of k(6).

Proof. We select for uniformizing parameters of IF as set of polynomials

(15) <bi(x), <p2(x), • • • , <bn-p(x).

We have, by hypothesis, that the Jacobian matrix J(<p; x) has rank » —cr at

x = 77. Let, say, J(<p; x<,+i> x„+2, • • • , x„) be of rank n — r/ at x = 77. Then by the

corollary to Lemma 6 (§7.1) the field J(W) is a separable algebraic extension

of the field «(771, 7j2, • • • , 77,). Without loss of generality we may assume that

Vi> Vi, " • ' . Vp are algebraically independent over k. Since 0>p, the field

J(W) is an algebraic extension of the field Ai = k(t7i, ?72, • • • , 77,-1). Let AÍ

be the greatest subfield of J(W) which is separable algebraic over Ai. Every

element of J(W) is either in Ai* or is purely inseparable over Ai. A fortiori

every element of J(W) is either in Ai (77„) or is purely inseparable over Aí (77i).

From this we conclude that J(W) =AÍ (r¡„) since «(771, t72, ■ • • , 77,,) ÇA/ (77,)

and since therefore J(W) is a separable algebraic extension of A/(77,). Now

A/ as a separable algebraic extension of Ai is a simple extension of Ai'.Ai

=Ai(0). Hence J(W)=Ai(8, ni). Of the two elements 0, 77, one, namely 0,

is separable algebraic over Ai. Hence J(W) is a simple extension of Ai'. J(W)

=Ai(a) =k(t7i, t;2, • • • , 77„_i, a), that is, J(W) is a o-fold extension of k.

Now let (fi, t2, • • • , tm) be any set of generators of J(W) over k'.J(W)

~K(ti, ti, " " • 1 tm). To complete the proof of the theorem we have to show

that

(16) » à <r.

Since 7(IF)=k(t7i, 772, ■ • • , r¡n), we can write

ti = ^i(v)/h(.v), j = 1. 2, • • • , m,

where ipo(x), fj(3c)G«[ïi, x2, • • ■ , x„] and ^0(77)^0. We denote by IF' the

algebraic variety in 5„+m whose general point is (771,772, • • -^».fi, f2, • • • ,t™).

Let moreover IFi be the algebraic variety of Sm whose general point is

(t) — (tu ti, ' • ' > tm). The three varieties IF, Wi, W are birationally equiva-

lent, and IF' is symmetrically related to IF and Wi, namely IF' is the join

of IF and IFi.

(6) The theorem is not true in the separable case. If o = p = degree of transcendency of

J(W)/k, then J{W) can always be regarded as a (p-|-l)-fold extension of k (a pure transcenden-

tal p-fold extension, followed by a simple separable extension), but not always as a p-fold ex-

tension of (t.
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If we set

Pn-P+i(x) = xn+jpo(x) - pj(x), j = 1, 2, • • • , m,

then it follows as in our proof of MacLane's theorem (§8.2) that the n — p

polynomials (15) together with the m polynomials pn-P+,- just introduced

form a set of uniformizing parameters of W' in Sn+m. The Jacobian matrix

J(<l>i, 02, • • • , pn+m-P\ Xi, x2, ■ • • , xn+m) has the form

J(Pi, 02, • • • i Pn-P', Xl, x2, • • • , x„) 0

* po(x)Em   '

where Em is the m-rowed unit matrix. Since the matrix at the upper left corner

has rank n,—a at x, = 77,-, i = 1, 2, • • • , «, it follows that the above (n+m — p)-

rowed matrix has rank n+m — o at Xi = r¡i and x„+,- = f,- (j = l, 2, • • • , m).

Therefore

dim 0(W) = n + m- a.

If dim <D(Wi)=m — oi, then interchanging the roles of W and J7i we get

dim <D(W) = m + n — au

Consequently a = Ou Since m — cri è 0 we have the inequality (16), and this com-

pletes the proof of the theorem.

9.2. Abstract differentiations over k". We shall assume in this section that

the ground field k is of characteristic p9*0. Our main purpose at this stage is

to derive general criteria for uniformizing parameters and simple loci, valid

whether we are dealing with the separable or the nonseparable case. First we

recall a few well known facts about abstract differentiation. Given a field K,

a differenitation in K is an operator D in K with the following properties:

(1) Dy GK is defined and is single-valued for all elements y in K; (2) if y, zGK

then D(y — z) =Dy — Dz and D(yz) =yDz+zDy. The set of all differentiations

in K can be regarded as a vector space over K, if we define: (1) (Di+D2)y

=-Diy+D2y, (2) (cD)y = c-Dy for any c in K. The zero vector is the trivial

differentiation Da'D0y = 0 for all y in K.

If P is a subfield of K, we say that a differentiation D in K is over P if

Da = 0 for all a in P. The differentiations in K over P also form a vector space

over K (and hence also over P).

Suppose that K is of characteristic p9*0 and that KPÇP. For any element

y of K it is true then that either yGP or yp is the least power of y which be-

longs to P. Let Z= {zi} be a minimal (finite or infinite) set of generators of

K/P (Z = a relatively p-independent basis of K/P; see MacLane [8, p. 376]).

The minimality of Z is equivalent to the property that if {zi, z2, • • • , z,\ is

any finite set of s elements in Z, then the relative degree [P(zi, z2, • • • , zi) :P]

is p'. This property in its turn is equivalent to the condition that each ele-
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ment y of K can be written in one and only one form as a polynomial in the z,-,

with coefficients in P, of degree not greater than p — 1 in each of the argu-

ments Zi.

It is clear that an abstract differentiation D over P is uniquely determined

if the values a¿ = Z>z,, 2¿G2, are known, for if y =</>({ z¿}) ls any element of K,

then Dy =2li(d<p/dzi) ■ at, only a finite number of partial derivatives d<p/dzi

being different from zero. On the other hand, if the elements a,- are preassigned

in an arbitrary fashion, then the above expression of Dy defines a differentia-

tion in K over P. The only thing that ought to be verified is that D is then

single-valued, and for that it is sufficient to show that if y = 0 then Dy = 0.

Now if we have a relation <j>( {z,-} ) =0 over P, then in view of the p-independ-

ence of the elements z¿ the polynomial </>( {A<} ) in the indeterminates Xt must

belong to the ideal generated in P[{X,} ] by the elements Xp — Ci, where d

is the element z\ of P. That implies that the partial derivatives dcp/dXi also

belong to that ideal, whence d<p/dzi = 0.

In particular we have for each z, in Z the differentiation Di=d/dz, de-

fined by the conditions D,Zi = i, Z>,-Zj = 0 ii J9*i. If the relative degree of K/P

is finite, these differentiations form a vector basis for the set of all differentia-

tions in K over P.

We now identify K with the field k(xi, x2, • • • , x„), where Xi, x2, • • • , x„

are indeterminates, and P with the field kp. If Z — {z,} is a p-independent basis

of k/kp, then we consider the following differentiations in k(xi, x2, • • • , xn)

over kp:

(17) Di = d/dx¡,       D,* = d/dzj.

The differentiations Z>, are actually over k, while the D * are extensions of

differentiations in k/kp.

Let IF be an irreducible algebraic variety in Sn, and let (771, 772, • • • , r¡n)

be the general point of IF. The differentiations (17) leave invariant the quo-

tient ring o = Q(W/S„). For any element y in 0 we set

(18) Z?Fy = (Ay)*=„       D*wy = (D,*y)x^.

The DY and Dfw are operators Dw satisfying the following conditions: (1) Dw

is a single-valued mapping of 0 into the field J(W)=k(vi, 772, • ■ • , 77«) ;

(2) Dw(y-z) =Dwy-Dwz\ (3) Dw(yz)=yDwz+zDwy, where y and z are the

IF-restdues of y and z; (4) if c(E.kp then Dwc = 0.

Any operator Dw satisfying the first three of the above 4 conditions may

be called a local W-differentiation. Condition (4) signifies that the differentia-

tion is over kp. The local IF-differentiations over kp form in an obvious fashion

a vector space over J(W). We denote this vector space by A^(IF).

9.3. A lemma on the canonical uniformizing parameters. Our object now is

to prove an important auxiliary lemma. Let P(o¡i, a2, • ■ • , a„) be a point in

5„and let/i(xi),/2(xi, x2), • • ■ ,/„(xi, x2, • • • , xi) be the canonical uniformiz-
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ing parameters of P (see §7.1). Let «i be any subfield of k which is a finite

extension of kp and which contains all the coefficients of the « polynomials

fi(xi, x2, ■ • • , xi). Let (zi, z2, • ■ ■ , zi) be a /»-independent basis of ki/kp. The

partial derivatives Z),*/¿ = d/¿/oz,-, i = l, 2, • • • , n;j = l, 2, • • • , v, are well

defined, and it is indifferent whether D* is regarded as a differentiation in

ki(xi, x2, • • • , xn),or asa differentiation in k(xi,X2, • • • , xn)defined by choos-

ing a ^-independent basis Z of k/kv containing the elements Zi, Z2, • • • , z,.

Lemma 7. If each polynomial /,(x), i = l, 2, • • • , n, depends only on

x\, x\, • • • , x?, then the Jacobian matrix J(f; z)=d(fi, f2, ■ • • ,fi)/d(zi, z2,
■ ■ • , z,) has rank « at x=a.

Proof. We shall proceed by induction with respect to the dimension n

of the space Sn. For « = 1 the lemma asserts that the derivatives dfi/dz,-,

j=l, 2, ■ • • , v, are not all zero at xi = ai. Let us assume that this assertion

is false. Our assumption is then that x=ai is a root of the polynomial

d/i(xi)/rJz¡, j = l, 2, • • • , v. Since/i(xi) is an irreducible monic polynomial

over k which vanishes at Xi=ai, it follows d/i(xi)/dz, is identically zero, that

is, the coefficients of/1 behave as "constants" under each of the differentia-

tions d/dzj in Ki over kp. Therefore their derivatives are zero under all differ-

entiations in Ki/kp, and consequently all the coefficients of /i(xi) are in kp. This

implies that/i(xi) .which by hypothesis is a polynomial in x?, is the pth power

of a polynomial in k[xi], in contradiction with the irreducibility of /i(xi).

We assume now that the lemma is true for linear spaces Sn-i- Setting

Ä = «(a]) we apply the lemma to 5^_i and to the point P{a2, «3, • • • , a„)

in this space. The canonical uniformizing parameters of P are the polynomials

PíÍXí, X3, • • • , x,) =/t(ai, X2, X3, • ■ • , xi), i = 2, 3, • • • , n, and these depend

only on x?, xf, • ■ • , x£. As field analogous to Ki we take the following field Hi :

ki = kpizi, z2, ■ ■ ■ , z,) = Ki(aJ).

This field ¿1 satisfies all the necessary requirements: (1) it is a subfield of ¡c;

(2) it is a finite extension of Rp; (3) it contains all the coefficients of the poly-

nomials <fi2, p3, ■ • ■ , cj5„ since by hypothesis only the powers of a\ occur ex-

plicitly in/i(ai, X2, • • • , xi). Thus all the conditions of the lemma are satis-

fied. However, this time the elements zx, z2, ■ ■ • , z, are not relatively p-independ-

ent over a". While the relative degree [ki:kp] was p", we shall now show that

(19) [81: S"] = P'-\

and consequently v — l of the elements z¡ form a p-independent basis of ki/kv.

To see this we observe that [ki:kp] = [ki:kp] ■ [kp:»cp] = [ki:kp] ■ [k'.k], and that

on the other hand f/ci:/cp]= [kiIki]- [ki:kp]. Hence

(20) [*i:/£"]•[*:«] = [ki:kpH*i:ki].

Since * = K(ai) and ai is a root of the irreducible polynomial /i(xi) in k[xi],
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we have [k:k] = j'i = degree of fi(xi). On the other hand, by hypothesis we

have/i(xi) =<bi(xi),<pi irreducible over k, and Xi=oc\ is a root of <pi(Xi). Then

<pi(Xi) is also irreducible over the subfield Ki of k, and since ki = Ki(a\) it fol-

lows that [kiIki] = degree oi<pi(Xi) =vi/p. Hence [/c:ic]=p- [*i:ki], and there-

fore, by (20), [ki'.kp]=P- [ki'.kp], as asserted in (19).

We may then assume that (z2, z3, • • • , zi) is a p-independent basis of

ki/k". We shall denote differentiation in ¿i over a" by d/dz,-, j = 2, 3, • • • , v.

The differentiation d/dz,-, if applied to elements of the subfield «i of ki, is express-

ible in terms of the old derivatives d/dz¡, 7 = 1, 2, • • • , v, by the usual rule

of composite differentiation:

(21) d/dzj m d/dzj + d/dzi-'dzi/dzj, j = 2,3, • • • ,v.

Here dzi/dz¡ is to be computed by making use of the relation

(22) [dfi/dzj + dfi/dzi -dzi/OZi] ̂ - 0.

From (21) and (22) we conclude that the matrix (J(f; z))x-a is equivalent to

the matrix

dfi/dzi,       0

J($; z)

where 7($; z)=5($2, $3, ■ ■ ■ , $n)/d(z2, z3, ■ • • , z,).

By our induction, the matrix J($; z) is of rank n — 1 at x= a. By the case

« = 1 and by (22) we have dfi/dzi9*0 at xi=ai. Hence J(f; z) is of rank n at

x=a, and this completes the proof of the lemma.

9.4. The vector space D*(W) of the mixed local W-differentials. We go back

to the vectors space RZ(W) of the local IF-differentiations (§9.2). For a given

element to in o we have that Dwu is a linear function of the variable element

Dw in À^(ÏF). This function we call the mixed local W-differential of u>, and

we denote it by ¿ir«, or simply by d*u. The following relations are obvious:

d*(u>i— ui) =d*o¡i — d*cu2; ¿*(coiW2) =ûid*ci}2+ù2d*o>i, where ¿i and w2 are the

m-residues of «i and co2 (m = the maximal ideal in o).

We are primarily interested in the differentials of elements in m. For w

in o and « in m we have ¿*(wm) =ûd*u, where w is the m-residue of w, since

the m-residue of u is zero. It follows that the product ûd*u is again a differ-

ential of an element of nt. Therefore, for variable u in m the differentials d*u

form a vector space over J(W). We shall call this vector space the space of mixed

local W-differentials, and we shall denote it by 0*(W).
From ¿*(ü)iO)2) =¿Jifi*co2-(-w2d*wi follows that if «Gut2 then d*u = 0. From

this we conclude, as in the case of the ordinary local differentials (§6.2) that

the mapping

(23) t« -> d*u

is a linear transformation of the local vector space í7>f(IF/5„) onto the vector
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space 0*(W) of mixed local differentials at W.

9.5. The nonsingular character of the linear transformation Vit(W/Sn)

—*D*(W). Our main result for ground fields k of characteristic p?*0 is the

following theorem:

Theorem 9. The linear transformation (23) of Vit(W/Sn) onto V*(W) is

nonsingular (in other words: <D*(W) is of dimension n — p, where p=dimension

ofW).

Proof. We shall first prove Theorem 9 in the case in which W is a point

P(a). Let n—a = dim iD(P), (rgïO. Then for any set of uniformizing parame-

ters k, k, • • • , t„ of P the matrix J(t; x) is of rank n — a at P. We take a

fixed set of uniformizing parameters t¡ and we label the coordinates x< in Sn

in such a fashion that J(k, t2, • • » , /„; x„+i, xI+2, ■ • • , x„) be of rank n—a at

x = a. If n, r2, • • • , Tn is any other set of uniformizing parameters, then the

matrix J(ti, t2, • • • , t„; x„+i, x,+2, • • • , x„) will also be of rank n — a at

x = a, for the r's are linear forms in the t's with coefficients in o = Q(P/Sn),

and the determinant of these coefficients is not 0 at x = a. In particular we

have then that if /,(xi, X2, • • • , x<), i = l, 2, • • • , n, are the canonical uni-

formizing parameters of P (relative to the particular order in which we have

labeled the coordinates x.), then J(fu /»»*'• i /« Î *«+if x„+2, • • • , x„) is of

rank n—a at x=a. Since fi,f2, • • ■ ,f„ are independent of x„+i, x„+2, • • • , x„,

it follows that

(24) | J(f,+U fc+i, • • •  , fn', X„+i, Xr+i, ■ ■ ■  , X„) | z_„ 7* 0.

We have

J(fl, fi, • ' • , fn, Xi, Xi, • • • , x„)
(25)

Jifi, h ■ ' • , /»; xi, X2, • • • , xi) O

Jifv+l, /»+2,  '  '  '   , fn',  X„+l,  X„+2,  •  •  •   ,   Xn)

and this matrix must be of rank n—a at x = a. Hence, by (24), it follows that

iJ(fi,fc, ' * ' »/»»*ii *ti • * * i xi)x~„ is the zero matrix, that is, we must have:

dfi/dxi = dfi/dx2= • • • =dfi/dxi = 0, at x=a, i=l, 2, • • • , a. This implies,
in view of the defining properties of the canonical uniformizing parameters

(§7.1, especially properties c and d), that for ¿ = 1, 2, • • • , a the polynomial

/,• is a polynomial in x\, x\, • • • , xf. These polynomials are canonical uni-

formizing parameters of the point Pi(ai, a2, • • • , a,) in Sff. We are therefore

in position to apply the preceding Lemma 7 (with n replaced by a), and we

may assert that the matrix J(fu /*•••,/#; zi, z2, • • • , zi) is of rank a at

x = a. Here (zit z2, ■ ■ ■ , zi) is a ¿»-independent basis of ki/kp, where «i is

any field between kp and k which is a finite extension of kp and which con-

tains all the coefficients of fu fi, • • • , /,. If we take Ki large enough so as

to include in this field also the coefficients of /„+i, f,+2, ■••,/„, we can
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introduce the mixed Jacobian matrix:

J(f\ x, z) = J(fi, fi, • • • , /„; xi, Xi, ■ ■ • , xn; zu z2, • • • , zi).

By (24) and (25), and in view of the fact that J(fi,f2, •••,/*; Zi, z2, • • • , z>,)

is of rank a at x = a, we conclude that the matrix J(f; x, z) is of rank n at x=a.

This implies that the n mixed local P-differentials d*f„ are linearly independent

vectors of *D*(P), for d*fh is, by definition, a linear function on Á^(P) whose

value at £>f and at D*p is respectively (dfh/dxi)x=a and (d/z,/özj) x_a

(i, h = l, 2, • • • , m;_7*=1, 2, ■ • • , v). Hence £)*(P) is of dimension n, and this

completes the proof of Theorem 9 when IF is a point.

In the general case we carry out our usual reduction to the zero-dimen-

sional case. However, we must exercise caution in the course of this reduction,

for there is one element in our definition of local IF-differentiation which de-

pends on the given ground field k (and not only on the quotient ring of IF) :

it is the requirement that Dwc = 0 ii cGkp- If (771, 772, ■ • ■ , 77,,) is the general

point of IF and if we take as our new ground field the field k = k(xi, x2, • • •, xp)

(where we assume that 771, 772, • • • , t7p are algebraically independent over k

and hence are identifiable with Xi, x2, • • • , xp), we shall be dealing with the

point P(r¡p+i, r¡p+2, • • • , 77„) in S£_„. The local P-differentiations D* in 0

(o = Q(W/Sn) = Q(P/Sl-„)) are then the local IF-differentiations Dw which

satisfy the stronger requirement: Dwo) = 0 for w in kp. Therefore the vector

space KS.P) is a (proper) subspace of AC(IF). The elements d*u of D*(IF) are

the linear functions on AC(TF) defined by the various elements u in the maxi-

mal ideal m of 0, while the elements d*u of D*(P) are the linear functions on

A^(P) defined by the same elements u. Hence d*u is the linear function on

AC(P) induced by d*u, and therefore <D*(P) is a projection ofcD*(W). The main

point that has to be brought out, and this will complete the proof of Theo-

rem 9, is the following: the two vector spaces <D*(W) and D*(P) have the same

dimension. We have only to show that if d*u = 0 then also d*u = 0. By Theo-

rem 9, which we have already proved in the case of points, it follows that if

d*u = 0 then tu = 0. But then u is necessarily an element in m2, and that, of

course, implies that also d*u is equal to zero. Since by Theorem 9 (applied

again to the point P in S£_p) the space £>*(P) has dimension n — p, the proof

of Theorem 9 is now complete.

9.6. General Jacobian criteria for uniformizing parameters and for simple

loci. From Theorem 9 we now can derive readily the desired consequences.

Theorem 10 (Criterion for uniformizing parameters). A necessary

and sufficient condition that given elements Mi, u2, • • • , w„_p in m(W/Sn) be uni-

formizing parameters of W is that the mixed local W-differentials d*Ui, d*u2,

• • • , d*un-„ be independent vectors of<D*(W); or equivalently : if «i is the field

obtained by adjoining to kp all the coefficients of the rational functions Ui and if

(zi, z2, ■ • • , zi) is a p-independent basis of ki/kp, then the matrix J(u; x, z)

should be of rank n — p on W.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1947] A SIMPLE POINT OF AN ABSTRACT ALGEBRAIC VARIETY 39

The proof is obvious.

Let 21 be a given ideal in k[xi, x2, ■ ■ ■ , xn] and let us assume that W lies

on an r-dimensional irreducible component of the zero manifold 1^(21) of 21.

Let (Pi(x), F2(x), • • • , Fhix)) be a basis of the ideal 21, and let (zi, z2, • • ■ , z,)

he a /»-independent basis of k\/kp, where «i is the field obtained by adjoining

to kp all the coefficients of ,the polynomials P,(x). Let moreover (77) =

(771, 772, • • • , 77„) be the general point of W.

Theorem 11 (Criterion for simple zeros). 7« order that (77) be a simple

zero of the ideal 21 it is necessary and sufficient that the mixed Jacobian matrix

JiF; x, z) be of rank n — r on W ithat is,forx = r¡).

The proof is the same as that of Theorem 7 (§7.2), with all references to

separability to be omitted.

Corollary. If V is an irreducible algebraic r-dimensional variety in Sn

and if the ideal 21 of Theorem 11 is identified with the prime ideal pi V), then the

singular manifold of V consists of those points of V at which the mixed Jacobian

matrix JiF; x, z) has rank less than n — r. This manifold is a proper algebraic

subvariety of V.

The last assertion in the corollary follows from the fact that, in view of

Theorem 11, the rank of JiF; x, z) on 7 itself must be exactly n — r.

10. Absolutely simple loci.
10.1. Algebraic ground field extensions. Let P = k[xi, x2, ■ • • ,xn] be a poly-

nomial ring in w indeterminates x¿, over the ground field k, and let k' be an

algebraic extension of k. We denote by R' the polynomial ring k' [xi, x2, • • • ,

Xn j.

If 21 is an ideal in R and if w' is an element of the extended ideal R' ■ 21,

then u' can be expressed in the form u' =uiu{ +u2u¿ + • • • +uau¡, where

«iG2l, Mi =1 and u{, ui, ■ • • , u¡ are elements of k' which are lineary inde-

pendent over k. From this it follows that if w'GP'-2inP, then necessarily

w'=Wi and w2=W3 =  • • ■ =ws = 0. Hence the relation

(26) P'-2inP = 2f

holds for any ideal 21 in R.

Lemma 8. If vi, v{, ■ ■ • , v„' are elements of k' whcih are linearly independ-

ent over k, then an element of R' which is of the form uiv{ +UiV2' + ■ • • +o)avä',

o¡i(ER, can belong to R' -21 only if co»G2l, i = l, 2, ■ ■ ■ , g.

Proof. Let the element ^'=1co,d' be denoted by w' and let ki denote the

field k{v{ , ví, ■ • • , Vq ). The set {v' } can be extended to an independent

basis [v(, vi, ■ ■ ■ , Vg , Vg'+i, v¡+2, • ■ • , vi } of ki/k. Let Pi = KiR = /a[xi,

xt, ■ ■ ■ , Xn] and let 2li=Pi-2l. We have P'-2i = P'-2Ii and co'GPi- Hence

u'GR'-%ir\Ri,  and  therefore,  by  (26),,co'G2Ii.   Since  Pi=Xî=1P-^/,  2Ii
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=yiLi2I-fl,' and since co'G2Ii. we can write co' in the form <o'=^J_1a<D,',

where the a< are in 21. Since the h elements v{ are also linearly independent

over the field k(xi, x2, • • • , x„), it follows that we must have a<=co,-, *■»_,

2, • • • , g, and o,- = 0 for j = g + l, g+2, • • • , h. Hence the w¿ are in 21, as

asserted.

Lemma 9. If p is a prime ideal in R and if p' is a prime ideal of R' • p, then

p'C\R = p.

Proof. It is only necessary to show that p'i~\RÇ:p. Yet co be an element of

pT\K. Since «Gp'we must have R' p:R' a)9*R' p. Let co' be an element of

R'p:R' o) which is not in R'• p and let us write co' in the form co' =}£?_i«<»/,

where co<GA\ vi Gk', vi = 1 and v! ,v2, • • • , v¿ are linearly independent over

k. We have co'co = y^,Wifavl G A' • P, and hence, by Lemma 8, co,-coGp>

i = l, 2, • • • , g. On the other hand not all the g elements co,- can belong to p,

since o)'(¡.R'-p. Hence coGp, p'^ACZp, and this establishes the lemma.

Theorem 12. a. If k' is a separable extension of k then the extension R'-p

of any prime ideal p in R is the intersection of prime ideals in R'.

b. If the quotient field of R/p is separably generated over k, then a holds

also for inseparable extensions k'/k.

c. Under the assumption made in b, the ideal R' ■ p is prime if k' is a pure

inseparable extension of k.

Proof. In parts a and b of the theorem we have to show that if some

power of an element co' in R' belongs to R' ■ p, then co' itself belongs to A" ■ p.

Now if co'^GP'-p, then co''=23î=1co<«/, co^Gp, «/ G«', so that co'^GArp,
where Äi = iti[*i, x2, • • • , x„] and ki = k(uí, u2, • ■ • , u¡) =a finite exten-

sion of k. To prove our assertion it is sufficient to prove that co'GAV P- Hence

for the proof of the theorem it is permissible to assume that n' is a finite

extension of k (a similar argument covers part c of the theorem).

Let «i, m2, ■ • • , u, be an independent basis of k' over k, whence

R'=R-Ui+R-u2+ ■ ■ ■ +R-u,. By (26) we have R'-pC\R = p, and hence the

integral domain R = R/p is a subring of R'/R' ■ p. Consequently we can write:

(27) R'/R'-p = R-ui + Ru2 +•••+!«, = k'R.

By Lemma 8, the elements m, u2, • • ■ , u, are linearly independent with re-

spect to R. By Lemma 9 no element of R, different from zero, is a zero di-

visor in R'/R' • p. Hence if 2 denotes the quotient field of R, the ring R'/R'p

can be embedded in the hypercomplex system

ui  = 2 • «i + 2 • M2 + • • • + S • m„

which is an extension of the field k'/k regarded as a hypercomplex system

«,' =K-Mi+K-M2-f- • • • -f-K-M,. It is well known that if k' is a separable ex-

tension of k or if S is separably generated over k, then k| is semi-simple
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(van der Waerden [10, p. 174]). If k¿ is semi-simple then R'/R'-p (which is

a subring of nj,) has no proper nilpotent elements. This establishes parts a

and b of the theorem.

As to part c it is sufficient to consider the case k' = «(a1'*), where o£/t

and p9*0 is the characteristic of k. In this case we have by (27): R'/R'-p

= R[z]/zp — a, and hence k| = s[z]/zp — a, where z is an indeterminate. SinceS

is separably generated over k, zp — a remains irreducible over S. Hence k|

is a field and therefore R'/R'-p is an integral domain. This completes the

proof of the theorem.

Remark. The ring R[z]/zp — a is at any rate a primary ring. Hence if R/p

is not separably generated over k, we can still assert that if k' is purely in-

separable over k then R'-pis a primary ideal.

10.2. Jacobian criterion for absolutely simple loci. Let 7 be an irreducible

algebraic variety in 5„ and let p=p(7) be the corresponding prime ideal.

We have seen that with one exception (k' inseparable over k and J(V) is not

separably generated over k) the ideal R' • p is the intersection of prime ideals

inP':
h

r'-p = np/-
>-i

Correspondingly, the variety V/k may become reducible over k' ; it splits into

h irreducible varieties:

h

(28) V/k->V/k' = U FÍA',
t-i

where VI =V(pl).
The varieties 7/ are all of the same dimension as 7, for p< (~\R = p and

R' is integrally dependent over R. In the exceptional case noted above, we

have A = l but P'-p is, in general, not prime and hence does not coincide

withp(7').
If W is an irreducible subvariety of 7, let

(29) W/k -> W/k' = U 17/ A'
•-i

describe the splitting of W/k. into irreducible varieties upon the field exten-

sion k—*k'. Let a=p(W), q/ =p(W'). Since R' is integrally dependent on R,

it is well known that any p/ is contained in at least one q/ [6, Theorem 3;

4, Theorem 3]. Moreover, since R is integrally closed, it is also well known

that any q/ contains at least one p/ [6, Theorem 6; 4, Theorem 5]. Hence,

each 7/ contains at least one of the varieties W¡ and each W¡ belongs to at

least one of the varieties VI.

We shall say that W splits into simple subvarieties (under the given
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ground field extension k—>k') if each W' is simple for any of the varieties VI

which contain W¡.

Definition 3. .4« irreducible simple subvariety W/k of V/k is absolutely

simple for V/k if it splits into simple subvarieties under any algebraic extension

of the ground field k, and if J( V) is separably generated over k.

Let (/i(x),/2(x), • ■ • , f,(x)) be a basis of the ideal p=p(7).

Theorem 13. A necessary and sufficient condition that an irreducible sub-

variety W of an irreducible r-dimensional variety V in S„ be absolutely simple

for V is that the Jacobian matrix J(f; x) be of rank n — r on W.

Proof. Assume that W is absolutely simple for 7. We pass from k to the

algebraically perfect field k' determined by k. By assumption, 7(7) is separa-

bly generated over k. Hence, by Theorem 12, part c, the ideal p remains prime

in R', so that V remains irreducible over k' and (/i(x),/2(x), • • • , f,(x)) re-

mains a basis of the prime ideal of 7 over k'. Also W remains irreducible (see

the remark at the end of the proof of Theorem 12). By assumption W/k' is

simple for V/k', and since k' is a perfect field, it follows (§8.3) that J(f; x)

must be of rank n — r on W.

Conversely, assume that /(/; x) is of rank « —r on W. The matrix J(f; x)

is then a fortiori of rank « —r on 7, and hence (§8.1) 7(7) is separately gen-

erated over K. Let k' be an arbitrary algebraic extension of k, and let (28) and

(29) be the corresponding decompositions of 7 and W over k'. If a given Wf

belongs to a given 7/, then we have that/„(x)=0 on 7/, p = 1, 2, ■ • • , v,

and that J(f; x) has rank n — r on W¡. Consequently (Theorem 7', §8.3) W¡

is simple for 7/.

Corollary 1. If W/k is absolutely simple for V/k, then for any algebraic

extension k' of the ground field k it is true that each of the irreducible varieties

W'i ¡k' into which W/k splits belongs to only one of the varieties VI /k' into which

V/k splits. In other words: each W' /k' is simple for the composite variety V/k'

in (28).

For the composite variety V/k' is the zero manifold of the ideal

R''ifii%), fi(x), " " ' > f*ix)), and the fact that /(/; x) is of rank n — r on

each W' implies that each W¡ is simple for this composite variety (Theo-

rem V, §8.3)(7).

Corollary 2. If it is known that the condition "Ji V) is separably generated

over k" is already satisfied, then either one of the following two conditions is suffi-

C) It is clear from the proof that when we say "W'/ k ¡s simple for the composite variety

V/k'" we actually mean more precisely the following: the general point of W' /k' is a simple

zero of the ideal R' ■ p, where p is the prime ideal of V/k. This condition can replace in Defini-

tion 3 the condition that J( V) be separably generated over <c. For if J{ V) is not separably gen-

erated over k then for a suitable extension k of k (for instance, for x' = the algebraic closure of k)

the ideal R' - p will be primary and therefore nowhere locally prime.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1947] A SIMPLE POINT OF AN ABSTRACT ALGEBRAIC VARIETY 43

cient in order that W be absolutely simple for V:

(1) W/k remains simple under the extension K—*K' = the algebraically perfect

field determined by k.

(2) W/k remains simple under any finite purely inseparable extension of k(8).

The sufficiency of condition (1) has already been established in the course

of the proof of Theorem 13. The sufficiency of condition (2) can be seen as

follows. Let k' be the field obtained by adjoining to n the pth roots of the co-

efficients of the polynomials/i(x), /2(x), • • • , /,(x) of a basis of p(V). The

varieties V/k' and W/k' remain irreducible (Theorem 12, part c). To these

varieties we apply Theorem 11 (§9.6), k' being our new ground field. Since

the coefficients of the polynomials/^(x), p = \, 2, • ■ ■ , v, already belong to

k'p and since these polynomials still form a base for the ideal p(V/n') (Theo-

rem 12, part c), it follows that the parameters z, are missing and that the

matrix J(f; x, z) coincides with the matrix /(/; x). If W/k' is simple for V/k',

then it follows that /(/; x) has rank n — r on IF, and hence W/k is absolutely

simple for V/k.

Corollary 3. Any simple irreducible subvariety W of V such that J(W)

is separably generated over k is absolutely simple for V.

This is an immediate consequence of Theorem 7' (§8.3) and Theorem 13.

11. Intrinsic characterizations of absolutely simple loci.

11.1. Differential characterization. Using Theorem 13 it is not difficult to

show that the concept of an absolutely simple subvariety IF of F belongs to

the local geometry of F at IF; in other words: whether IF is or is not abso-

lutely simple for F depends entirely on the structure of the quotient ring

o = Q(W/V). The easiest way to see this is to use local IF-differentiations on

the variety V. We mean by such a differentiation a mapping D of the above

quotient ring o into the field J(W) such that the following conditions are

satisfied: (1) Dc = 0 if cÇzk; (2) Z?(coj— C02) =Dui — Du>2\ (3) Z?(coiCo2) =ôiiDu2

+ûiDo>2, where ¿ô denotes the IF-residue of co. These differentiations form a

vector space over J(W). To prove the local character of the concept of an

absolutely simple subvariety, we shall prove in this section the following

stronger result:

Lemma 10. If (fi(x), f2(x), • • • , f,(x)) is a basis of the ideal p(V) and if
the Jacobian matrix J(f; x) has rank n — o at W, then there exist on V exactly o

local W-differentiations which are linearly independent over J(W).

In view of this lemma, the number of linearly independent local TF-differ-

entiations on F is always greater than or equal to r, r = dim F, and (by

Theorem 13) this number is equal to r if and only if W is absolutely simple for V.

(e) The proof of (2) exhibits one specific finite, purely inseparable extension of k, such that

W/k is absolutely simple if and only if it remains simple under that particular extension of k.
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Proof of the lemma. Let (¿j) = (&, &,•••, £») and (77) = (771, tj2, • • • , 77»)

be respectively the general point of F and the general point of IF. If

co = A (£)/.B(£) is an element of 0 (whence 5(77) 9*0) and if D is a local IF-differ-

entiation on V, then

(30) [B(V)]2D<¿ - ¿ [BMóVl/dTji - il(-)aB/%]Dfc.
<=i

Hence the values of the « derivatives Z>£,- determine the differentiation D

uniquely. However these derivatives cannot be arbitrary elements of the field

J(W), for they must satisfy the v relations:

(31) G, = ¿ dfi/drji-Díi = 0, i - 1, 2, •.., v.
»•=1

On the other hand, these relations are sufficient for the existence of a corre-

sponding differentiation D, for then Pco can be defined by (30) for any element

co in 0, and the only point to check is the following: if F(x) = F(xi, x2, • • • , x„)

is a polynomial with coefficients in k such that F(i-) = 0 then

n

22dF/dViDti = 0.
¿-i

But this is obvious since F(x) can be expressed in the form 2^2j=i-Ai(x)fj(x),

whence

¿ dF/dvi-D^i = ¿AMGi.
»=i i-i

If J(f; x) has rank n — a at IF, that is, for x = 77, the equations (31) have ex-

actly <r independent solutions (¿>£i, Z>£2, ■ • • , Z>£»), p = l, 2, • • • , <r, and

this completes the proof of the lemma.

11.2. Direct verification of the local character of the definition. The local char-

acter of the concept of absolutely simple loci can also be deduced directly

from the definition of these loci (Definition 3), without the use of Theorem 13.

We shall only indicate the steps of the proof ; the details present no difficulty

whatsoever.

It will be sufficient to consider only finite algebraic extensions k' of k. Yet

k' = K-Ui+K-Ui+ • • • +k-u„, where («1, m2, • • • , ua) is an independent basis

of k'/k. We extend the domain of coefficients in the hypercomplex system

2^H=iKUi from k to the quotient ring 0 ( =Q(W/V)), that is, we consider the

ring

0' = O-Mi + 0-M2 + • • •  + O-Ug.

We use the notation of §10.1. If R'■p = f)'t=iPÍ, then 0' is a direct sum of A

integral domains:
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o' = Oi   © 02' © ■ ■ ■ © Oh ■

If 7/ contains s< of the varieties W', then 0/ is a semi-local ring having ex-

actly Si maximal prime ideals, and the s,- quotient rings of these prime ideals

in 0/ coincide with the S< quotient rings Q(W¡ JVl) ii fixed, W¡ ÇZ 7/). Thus
everything is described in terms of the quotient ring 0, so that it is entirely

a local matter whether or not each W¡ is simple for its carrier 7/.

One could also proceed as follows. Let S = J( V) and let 2'/k be a compos-

ite extension of 2/k and k'/k (see Chevalley [l ]). Let 0' = k'o be the least sub-

ring of S'/k which contains both 0 and k'. Then 0' is a local ring and is in

fact isomorphic to a quotient ring Q(W¡/VI) (W¡ ÇF-). There is only a

finite number of nonequivalent or non-isomorphic composite extensions of

S/k and k'/k, and in this fashion we get the quotient rings Q(Wf /V{) for all

pairs of indices i and j such that 17/ ÇZ 7/.

11.3. André Weil's criterion. Another intrinsic characterization of abso-

lutely simple loci has been communicated to me by André Weil. Given a simple

irreducible subvariety W of 7 and given r elements «1, «2, • • • ,wr(r = dim 7)

in the quotient ring 0 ( = Q(W/V)), we say that the co's are uniformizing

coordinates of W (on V) if the following two conditions are satisfied: (1) the

ring k[ü)i, Ui, ■ ■ ■ , ur] contains a set of uniformizing parameters of W; (2) if

fii T2. • • • » fr denote the ^residues of the co's then J(W) is an algebraic ex-

tension of the field k(J"i, f2, • • • , &)(')•

Any simple W possesses uniformizing coordinates. For we can take, for

instance, for &>i, «2, • • • , wp (p=dim W) any set of p elements in 0 whose

I7-residues are algebraically independent over k, and for wp+i> coP+2, • • • , wr a

set of r — p uniformizing parameters of 17. For later purpose we prove the

following lemma:

Lemma 11. Any r uniformizing coordinates of W are algebraically independ-

ent over k.

Proof. If p=dim T7 we may assume, in view of condition (2), that

fii fïi • • • » fp are algebraically independent over k. Let k„ t2, ■ ■ • , t,-p be ele-

ments of k[wi, w2, • • • , wr] which are uniformizing parameters of T7. We shall

prove the lemma by showing that the r elements m, (i>2, • • •, wp, k, k, • • •, k-p

of k[«i, W2, • • • , d>r] are algebraically independent over k. Let F(Xi, X2,

• • • , Xr) be a nonzero polynomial in k[Xi, X2, • • • , Xr]. We show that

F(k, k, • • ' , k-P, «1, w2, • ■ • , o>p)t^0. We write F(X) in the following form:

F(X) = ¿P(X),

where Fi is homogeneous, of degree i, in Xi, X2, • • • , Xr-P and F.(X) 9*0. We

(•) We find it convenient to include condition (2) in the definition of uniformizing coordi-

nates. When W is a point this condition is, of course, vacuous.
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have Fi(ti, t2, ■ • • , tr-„; coi, co2, ■ • ■ , cop)Gm\ where m = m(W/V). On the

other hand, since FS(X)9*0 and since ti, ti, ' • • . tp are algebraically inde-

pendent over k, the form F,(Xi, X2, • • • , Xr-P;tu ti, • ' • , tp) (having coeffi-

cients in the residue field J(W) of o) is not zero. Since o is a regular ring it

follows (§5.1) that F,(t; co)Gm*+1- Consequently F(t; a) 9*0, q.e.d.

Weil's criterion can be stated as follows :

Theorem 14. A necessary and sufficient condition that a simple subvariety

W of V be absolutely simple is that there exist uniformizing coordinates

coi, «2, • • • , cor of W such that the W-residue ti, tt, • • • » tr of the w's generate

over k the entire field J(W) (that is, J(W) = «(fi, ti, ' ' ' , tr))-

Proof. We first show that the condition is sufficient. Let (£) = (£i, £2,

• • • , £„) and (77) = (771, 772, • • • , 77,,) be respectively the general point of F

and of IF. We consider the variety V in Sn+r having (£1, £2, • ■ • , £„,

coi, co2, • • • , cor) as general point. This variety V is birationally equivalent to

F and it carries a subvariety IF' with general point (771, 772, • • • , r\n,

Tii ti, ' ' ' > ti)- Since the co's belong to the quotient ring Q(W/V), it follows

that Q(W/V)=Q(W'/V) (that is, the birational correspondence between F

and V is regular at IF). Hence it will be sufficient to show that IF' is abso-

lutely simple for V. Now if we deal with V and IF' we have a particular

situation whereby the r uniformizing coordinates co< of IF' are among the

coordinates of the general point of V. Hence we may assume that this situa-

tion prevailed already in the case of IF, that is, we assume that the co's are

in the set (¿1, £2, • • • , £»). say coi = £;, i = l,2, • ■ ■ ,r.

By hypothesis, the ring k[£i, £2, • • • , £r] contains a set of uniformiz-

ing parameters of IF, say /,-(&, &,•••, £r), 7 = 1, 2, • • • , r — p. Let

/r_p+(I(xi, X2, • • • , xn), p = \, 2, • • ■ , n — r, be uniformizing parameters of F

in 5„. Then it follows from Lemma 2, corollary (§2.3) that the n — p polyno-

mials fi(xi, x2, • • • , xr), fr-p+ii(xi, x2, • • • , xn) are uniformizing parameters

of IF in Sn (that is, of TF regarded as subvariety of S„). By hypothesis, the

field J(W) ( = k(t7i, t?2, • • • , 77«)) coincides with the field «(771, 772, • • • , -ni).

Actually, for the purposes of the proof, we need only a weaker hypothesis,

namely that J(W) is a separable extension of k(tji, 772, • • • , 77r)(10). For then

there exists for p = l, 2, • ■ ■ , n — r a polynomial F?(xi, x2, • • • , xr, xT+li) such

that F(t7i, r¡2, ■ ■ ■ , nr, r]r+u) =0 and (dFM/axr+„)x_,,?íO. Therefore the Jacobian

determinant | J(Fi, F2, • ■ ■ , F„_r; xr+i, xr+2, • • • , x„) | is not 0 at x = 7/. Since

the n — p polynomials/,,/n_p+(1 are uniformizing parameters of IF, it follows

that a fortiori the Jacobian matrix J(fi,f2, ■ • • ,/„-„; xr+], xr+2, • • • , x„) is of

rank not less than n — r at x = t7. Since /1, f2, ■ • ■ , /r-P are independent of

xr+i, xr+2, • • • , xn, it follows that the determinant | J(fr-P+i, fr-p+i, • • • ,/n-P;

(10) Hence we can weaken the sufficiency condition and assert that W is absolutely simple

for V if there exist uniformizing coordinates «1, W2, • • • , wrof H/such that J(W) is a separable

algebraic extension of the field <c(fi, t2, - - ■ , fr), where f¿ = W-residue of w,-.
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Xr+i, xr+2, • • • , x„)| is not 0 at x = t7. Since fr-P+P(x) is zero on 7 (p-=l, 2,

■ - -, n — r) we conclude by Theorem 13 that W is absolutely simple for 7.

We now prove that the condition is necessary. If Wis absolutely simple for

7then we may assume that \j(fi,f2, • • • ,fn-r;xr+i,xr+2, • • • , x„) | ^Oon W,

where /i(x), f2ix), ■ ■ • ,/n-r(x) are suitable polynomials which vanish on 7.

In that case 77r+i, Tjr+2, ■ • • , r¡„ are (separable) algebraic over «(771, r)2, • ■ ■ , r)i)

(Lemma 6, corollary, §7.1), and p of the first r 77's, say 771, 772, • • • , 77P, are

algebraically independent over k. We can therefore make the identification

Xi = 77¿, i = l, 2, ■ ■ ■ , p, and carry out a reduction to the zero-dimensional

case. Instead of Sn, V, and 17 we shall then have an S„_p, V*, and W*, where

k* = k(xi, x2, • • • , xp), dim V*Ik* = r — p, and dim W*/k* = 0. Moreover, the

general points of 7* and W* are respectively (£P+i, £„+2, • • • , £„) and

(t7p+i, 77P+2, ■ ■ • , 77„), while the coordinates in 5^t-p are xp+i, Xp+2, • • • , x„. From

the above inequality, \j(fi,f2, ■ • • ,/„-r; x,+i, xr+2, • ■ • , x„)| 9*0 at W, fol-

lows that also W* is an absolutely simple point of 7*. If we assume that the

theorem is true for points, there will exist r — p elements wp+i, cop+2, • • • , u>r in

the quotient ring 0 ( = Q(W/V)=Q(W*/V*)) such that k[up+u o>p+2, • • • , cor]

contains a set of uniformizing parameters of W* (on 7*) and such that the

T7*-residues of «p+i, a>p+2, • • • , wr generate over k* the entire field JiW*)

i = JiW)). If we set «¿ = £¿, i = l, 2, ■ ■ ■ , p, the r elements «1, o>2, ■ • • , wr

will satisfy all the conditions of the theorem. Hence it is sufficient to prove the

theorem for points of 7.

We assume therefore that a given point P(ai, a2, • • • , a„) of 7is absolute-

ly simple for 7. Let, say,

(32) \Jifr+u f,+i, ••-,/„; xr+i, xr+2, ■ ■ ■ , x„)\ 9*0   at   P,

where fr+i, fr+i, '••,/« are suitable polynomials which vanish on 7. Let

fiixi, Xi, ■ ■ ■ , xi), *«"I, 2, • • • , r, be the canonical uniformizing parameters

of the point (ai, a2, • • • , ai) in Sr. From (32) it follows that the n — r polyno-

mials fr+jiai, a2, • • • , ar, xr+i, • • • , x„) are uniformizing parameters of the

point («r+i, ar+2, • • • , a„) in S£lr, where K* = /c(ai, a2, ■ • • , a,). From this

one concludes by a simple calculation that the « polynomials /i(x), /2(x),

• • • , /n(x) are uniformizing parameters of the point P in Sn- But since the

last n — r polynomials vanish on 7, it follows that /i(£i), /2(£i, £2), • • • ,

/r(£i, £2, • • • , £r) are uniformizing parameters of the point P on V. We have

thus shown that ¿¡1, &,•••,& ire uniformizing coordinates of P on V.

Again by (32), we have that the field J(P) ( = /c(ai, a2, • • • , a,)) is a sepa-

rable extension of /c(ai, a2, • • ■ , ai). From this it follows as in the proof of

Theorem 8 (§9.1) that J(P) is a simple extension of «(ai, a2, ■ ■ • , ar-i). We

set

Ai = k(ui, a2, • • • , a,_i),        A = J(P) = Ai(a0).

We proceed to show the existence of an element ¿0 in Q(P/V)- whose P-residue
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is ao and such that ¿o, £1, • • • , £,—i are uniformizing coordinates of the point

P on V. This will complete the proof of the theorem.

We consider two cases, according as a, is or is not separable over. Ai.

First case: ar separable over At. In this case also a0 is separable over Ai,

since «o is separable over Ai(ar). Let c£(z; oçt, a2, • • • , ar-i) be the monic irre-

ducible polynomial in Ai[z] having z=ao as a root. We may assume that <b

is a polynomial in ai, ca, • • • , ar-i and z, with coefficients in k. Moreover, we

have

(33) 0«o(o!o, «u • • • , ar-i) 9* 0.

Let to be a fixed element in Q(P/V) whose P-residue is a0. and let ir be a

variable element of m(P/V). We set:

£o = t o + TT,

TO = 4>(ffJ, íl, Í2, •  • •   , fr-l),

'o = <p(£o, il, ?2, • • •  , Çr-l),

U = Mil, &, • • • , £<). i = 1, 2, • • • , r,

so that ao is also the P-residue of £0, and t0, <oGm, where m = in(P/F). We

have

(34) to = to + 3«(fo, £i, • • • , £,- i)/óTo-7r (mod tn*).

By (33) the partial derivative d<p/dt0 in (34) does not belong to m and is there-

fore a unit in Q(P/V). We can therefore select ir in such a fashion as to have

To+dQ/dtoT^tr. For such a choice of tr we shall have <o=ir (mod m2), and

consequently h, k, • • • , tT-i, h are uniformizing parameters of P on V. From

the above definition of the ¿,'s, t = 0, 1, • • • , r—1, it follows then that

{01 £11 • • • 1 £r-i are uniformizing coordinates of P on F.

Second case: ar inseparable over Ai. In this case we have that dfT/dx, van-

ishes at x=a, whence

(35) dfrOi, £2, • • • , WM, G m.

Since ar(E.K(ao, ai, • • • , ar_i), we can write

(36) ar = g(ao, «i, ♦ •• , ov-i),

where g is a polynomial with coefficients in k. We now take for £0 an arbitrary

element of Q(P/ V) whose P-residue is ao. Let

/o(*0, Xi, • • •  , Xr-l)  = /r(xi, Xi, • • •  , Xr-l, g(Xo, Xi, • • ■  , Xr-l))

and let fo=/o(£o, £1, • • • , £r-i). We have

'0 ■ /r(£l, ?2, • • •  , £r-l, £r)

+ àfr(h, ?2, • • • , €,)/3&- [g(&, ft, • • • , Sr-i) - f,] (mod m2),
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since, by (36), g(£0, £i, • • • , £r-i) — £rGnt. For this same reason and in view

of (35) we conclude that <o=/r(£i, £2, • • • , £r) (mod m*), that is, U=t,

(mod m2), and therefore, as in the preceding case, we find that £0, £i, • • •, £r-i

are uniformizing coordinates of P on 7.

11.4. A criterion of analytical equivalence. Closely connected with Theorem

14 is another characterization of absolutely simple loci which is very sugges-

tive and which we proceed to derive. For that purpose we introduce first of

all the concept of analytically equivalent varieties. Let 7 and V be two irre-

ducible algebraic varieties over k, and let W and W' be irreducible sub-

varieties respectively of 7 and of V. Nothing is said about the dimen-

sions of the ambient linear spaces Sn, Sn> in which 7 and V are immersed;

these dimensions may very well be distinct. A priori we do not even as-

sume that the dimensions of 7 and V, or of W and W', are the same. Let

0 = Q( W/V), 0' = Q( W'l V) ; m = m( W/ V), m' = m( W'/ V). Let moreover 0*
be the completion of 0 with respect to the powers of m, and let similarly 0'*

be the completion of 0' with respect to the powers of m'.

Definition 4. The varieties V and W are said to be analytically equivalent

at (or in the neighborhood of) W and W respectively, if the rings 0* and 0'*

are K-isomorphic.

Let r and p be the dimensions of 7 and W respectively; similarly let r'

and p' be the dimensions of V and W. The dimensions of the local rings 0*

and 0'* are then r — p and r' — p' respectively. Consequently, if 7 and V

are analytically equivalent at W and 17', then we must have r — p = r' — p'.

Moreover, the residue field of 0* is J(W) and the residue field of 0'* is J(W').

Consequently the assumption of analytical equivalence implies that the field

J(W) and J(W) are K-isomorphic, that is, W and W' must be birationally

equivalent. Hence p=p' and therefore also r = r'. Thus analytically equivalent

varieties 7 and V must have the same dimension (but they need not be bira-

tionally equivalent).

Having established the concept of analytical equivalence, we now can

state the following theorem :

Theorem 15. A necessary and sufficient condition that an irreducible sub-

variety W of V be absolutely simple for V is that V be, locally at W, analytically

equivalent to the linear space Sr, where r = dim 7.

Proof. Assume that W is absolutely simple for 7, and let o>i, w2, • • • , wr

be elements of the quotient ring 0 of W (o = Q(W/V)) which have the proper-

ties stated in Theorem 14. Let W' denote the irreducible variety in S, whose

general point is (fi, fr, • • • , fr), where f< = 17-residue of co,-, and let

0' = Q(W'/Si). As usual we denote by m and m' the maximal ideals of 0 and

0' respectively.

By Lemma 11, the uniformizing coordinates coi, a2, • • • ,.o>r are algebrai-

cally independent over k. Hence we can identify the ring k[wi, w2, • • • , «,]
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with the coordinate ring (the polynomial ring) k[xi, x2, • • • , xr] of 5r. The

elements of o' are then of the form <p(a)/rpfa), \p(t)9*0. Hence:

(a) o' is a stibring of o.

The ring o, topologized by the powers of m, shall be referred to as the

m-adic ring o. We prove now that:

(b) The ring a' is everywhere dense in the m-adic ring o.

We have to show that if m is any element of o and if i is ai y positive in-

teger, then there exists a rational function c6,(co)/^¿(co) such that \pi(t) 9*0 and

u=<t>i(u>)/\f/i(u) (mod mi+1). If i = 0 we make use of the fact that J(W)

= K(ti,ti, " • • 'tr)- Because of this we can write: IF-residue of u =4>o(t)/^o(t),

and hence M=r>o(co)/^0(w) (mod m). Assuming that rpi(co)/^¿(co) has already

been shown to exist for all i<s, we make use of the fact that the co's are

uniformizing coordinates. Let ti, t2, • - • , tr-P be elements of k[coi, C02, • • • , cor]

which are uniformizing parameters of IF. We have m—<7J»_i(co)/^8_i(co)Gnis,

hence we can write u— <7>,_i(co)/^8_i(co) as a form in h, t2, • • • , tr-,, of degree s,

with coefficients in 0. By the case i = 0, each of these coefficients is congruent

mod m to elements of 0'. If these elements—rational functions in the co's—are

substituted for the coefficients, then we get a rational function a(u)/ß(w) such

that ß(t) 9*0 and such that M=rps_i(co)/^s_i(co)-|-a/|3 (mod m>+1). This yields

the desired rational function e>,(co)/^,(co) and establishes the assertion (b).

An element <p(w)/ipota) of 0' belongs to tn' if and only if <t>(t)=0, that is,

if and only if <p(u)/\f/(w) G<n. Hence

(37) m r\ 0 = m'.

If mGtti and if we write, by (b), mscM-O/iM-0 (mod m2), then $i(w)/ipi((û)
GmrW, that is, c>i(co)/^i(co)Gm', by (37). Consequently m = o-Tn' + rrt2, and

from this we conclude as in §2.1 that

(38) m = o-m'.

By (38), any basis of m' is also a basis of m. Since IF' is of dimension p and

is immersed in a linear Sr, it follows that a minimal basis of m' consists ex-

actly of r — p elements. Let n, r2, ■ ■ ■ , Tr_p be any minimal basis of m', that

is, the t's are uniformizing parameters of IF' in Si. Then the r's form also a

minimal base of m, and therefore they are, as well as t's, uniformizing parame-

ters of IF on V. Since the t's are in m' we have relations of the form:

ti=2~ÜJj=iOtiíTi, aiíGo', i — 1, 2, • • • , r — p. Since both the t's and the t's are

uniformizing parameters of IF on F and since the a,-,- are also in 0, it follows

that the determinant \an\ is a unit in 0, that is, it is not an element of m.

But since |a,-,-| Go' it follows by (37) that |a,-,-| Gra', and therefore \aa\ is

also a unit in 0'. Consequently t%, t2, ■ ■ • , /,._„ are also uniformizing parame-

ters of IF'. What we have shown is that not only is every minimal basis of

m' a minimal basis of m, but also that any minimal basis of m whose elements

belong to 0' is necessarily a minimal basis of m'.
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If u is an element of m'* but is not in m'i+1, then u=pi(k, t2, ■ ■ ■ , tr-P),

where pi is a form of degree * with coefficients in o', but not all in m'. There-

fore these coefficients are not all in m, and consequently MGm\ MGmi+1.

Hence

(39) mTlo' = m'«', i = 1, 2, • • • .

The relations (38) and (39) imply that:

(c)  The m'-adic ring o' is a subspace of the m-adic ring o.

From (a), (b) and (c) we conclude that the complete rings o* and o'* co-

incide (see Chevalley [2, Theorem 1, p. 698]), and therefore 7 and Sr have

analytically equivalent neighborhoods at W and W' respectively.

Conversely, assume that there exists in Sr a p-dimensional irreducible va-

riety W such that 7 and Sr are analytically equivalent in the neighborhoods

of W and W' respectively. Let xi, X2, • • • , xr be variable coordinates in ST,

and let (?/, fs, • • • , f,') be the general point of 17'. Let o' = Q(W'/Si),
m' = m(W'/Si). We denote by o* and o'* the complete rings determined re-

spectively by the m-adic ring o and the m'-adic ring o'; and we denote by

m* and m'* the maximal ideals in these rings. By hypothesis, o'* and o* are

K-isomorphic. Let / denote a fixed K-isomorphism of o'* onto o*.

We can find a minimal basis of m' consisting of polynomials in

k[xi, x2, • • • , xr]. Let (tí, tí, ■ • ■ , t'r-P), t¡ =pj(xi, Xi, • • • , xi), he such a

basis. Let

(40) /*, = a? G o*.

Since o* is the completion of the m-adic ring o, we can find elements coi, u2, ■ ■ •,

u, in o such that

(41) Wi ̂ ^(modm*2).

Let f¿ be the m-residue of w,-. By (41), f¿ is also the m*-residue of wf.

Since o'*/m'*=o'/m' = J(W') = K(U,â, • • ■ , fr)i it follows from (40) that

o7m* = K(fi, fü, • • • , f,), that is (since o*/m* = o/m = 7(J7)):
(a) The W-residues of ui, u2, • • • , ur generate over k the entire field J(W).,

Let

(42) U* = fi{ = *,(«?, »»*, •••,«*),

(42') k = pi(wi, u2, • • • , ui).

Since tí, tí, • ■ ■ , t'T-p is a basis of m'*, it follows from (42) that t*, t2*, ■ ■ • ,

t*-p is a basis of m*. In view of (42') and (41) we have /*=/< (mod m*2).

Hence k, k, • ■ ■ , ¿r_p also form a basis of m*. Since the t's belong to o, they

also form a basis of m. We have then that:

(b) The polynomial ring k[ui, u2, • ■ ■ , ur] contains a set of uniformizing

parameters of W on V.

From (a) and (b) it follows, by Theorem 14, that W is absolutely simple

for 7. This completes the proof of the theorem.
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