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Preliminaries
The purpose of this section is to study quasi-unmixed local rings with the goal
of proving a fundamental theorem due to Ratliiff, which gives equivalent
conditions for a local ring (R ,m) to be quasi-unmixed. Recall that R is said to
be quasi-unmixed or formally equi-dimensional if dim(R̂/q) = dim(R̂), for all
minimal primes q ⊆ R̂ .

Here is Ratliff’s Theorem, stated for integral domains.

Theorem A3. Let (R ,m) be a local integral domain. The following statements
are equivalent.
(i) R is quasi-unmixed.
(ii) R is universally catenary.
(iii) R satisfies the dimension formula.

To address the other conditions in Ratliff’s theorem, we need a few definitions.
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Preliminaries

Definition. Let S be a Noetherian ring.

(i) S is catenary if for all pairs of primes P ⊆ Q ⊆ S, all saturated chains of
prime ideals between P and Q have the same length.

(ii) S is universally catenary if every finitely generated S-algebra is catenary.

(iii) If S is an integral domain, then S satisfies the dimension formula if for
every finitely generated S-algebra T and prime ideal Q ⊆ T , we have:

height(Q) + tr.degk(Q∩S)k(Q) = height(Q ∩ S) + tr.degST .

Several remarks are in order.
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Remarks. (i) The conditions in Ratliff’s theorem are not equivalent if R is an
arbitrary local ring - for trivial reasons. For example, the ring
k[[x , y , z]]/(x) ∩ (y , z) is a complete local ring and therefore is universally
catenary, something we will see later in this section. On the other hand it is
not equi-dimensional and since it is complete, it is not quasi-unmixed. If we
assume that R is equi-dimensional, then conditions (i) and (ii) in Ratliff’s
theorem are equivalent. But the proof of this equivalence easily reduces to the
domain case.

(ii) It turns out that the rings from algebraic geometry are all universally
catenary. In the late 1940s and early 1950s, it was not known whether or not
Noetherian rings in general were catenary or universally catenary. In the mid
1950s, Nagata gave an example of a Noetherian ring that was catenary, but not
universally catenary.

(iii) If S ⊆ T an extension of Noetherian domains and T is a finitely generated
algebra over S, then the following dimension inequality always holds:

height(Q) + tr.degk(Q∩S)k(Q) ≤ height(Q ∩ S) + tr.degST .

April 6: Quasi-unmixedness and Ratliff’sTheorem, part 1



Preliminaries

(iv) To invoke the dimension formula, one needs an extension of integral
domains. One could make a definition in the case that S is not a domain, by
requiring that S/q satisfies the dimension formula for all minimal primes q ⊆ S.
Again, in order to have conditions (i) and (iii) in Ratliff’s theorem equivalent,
one would have to require that S be equi-dimensional, and this case too
reduces easily to the case that S is an integral domain.

(v) It is not difficult to see that if S is a Noetherian domain, then the
dimension formula holds between S and S[x ], the polynomial ring over S. To
see this, note that tr.degSS[x ] = 1. Take a prime Q ⊆ S[x ] and set
P = Q ∩ S. There are two cases to consider.

If Q = PS[x ], then height(P) = height(Q) and S[x ]/Q = S/P[x ], and thus
tr.degS/PS[x ]/Q = 1. So the dimension formula holds between S and S[x ].

If Q 6= PS[x ], then height(Q) = 1+ height(P) and S[x ]/Q is algebraic over
S/P , so again, the required equality holds.
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Primes associated to the integral closure of ideals
We now work towards a characterization of quasi-unmixed local rings obtained
by studying asymptotic sequences, an integral closure analogue of regular
sequences. Our first goal is to show that if I ⊆ R is an ideal, then⋃

n≥1 Ass(R/In) is finite. Throughout the remainder of this section, R denotes
a Noetherian ring.

Lemma B3. Let S be a Noetherian ring and J ⊆ S be an ideal. Then for a ∈ S,
a ∈ J if and only if for all minimal primes q ⊆ S, the image of a in S/q belongs
to (J + q)/q.

Proof. The forward direction is clear. Suppose the image of a in S/q belongs
to (J + q)/q, for all minimal primes q ⊆ S. Then for each q there is an n
(depending on q) and equation of the form

an + j1an−1 + · · ·+ jn ≡ 0 mod q,

where each ji ∈ J i .

Taking the product of these equations yields an equation of the form

am + j1am−1 + · · ·+ jm ≡ 0 mod N,

where each ji ∈ J i , and N denotes the nilradical of S.

Raising this last congruence to an appropriate power shows a ∈ J.
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Corollary C3. Let S be a Noetherian ring and J ⊆ S be an ideal. If
P ∈ Ass(S/J), then there is a minimal prime q ⊆ P with P/q ∈ Ass S/J + q.

Proof. Without loss of generality, we assume S is local at P . Write
P = (J : a), for some a 6∈ J. Then, by Lemma B2, a 6∈ (J + q)/q, for some
minimal primes q ⊆ S/q. Thus, P/q consists of zerodivisors mod (J + q)/q,
which gives what we want.

The next crucial proposition is a nice application of the Mori-Nagata theorem
and properties of Krull domains.

Proposition D3. Let S be a Noetherian domain and 0 6= a ∈ S. Then
P ∈ Ass (S/anS) for some n ≥ 1 if and only if there exists a height one prime
Q ⊆ S′ containing a such that Q ∩ S = P .

In particular
⋃

n≥1 Ass (S/anS) is a finite set.
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Proof. The second statement follows immediately from the first. To prove the
first statement, we may assume R is local at P .

Suppose P ∈ Ass (S/anS) for some n ≥ 1 and write P = (anS : b), with
b 6∈ anS.

Let Q1, . . . ,Qr be the height one primes in the Krull domain S′ containing a,
and write anS′ = C1 ∩ · · · ∩ Cr , where each Ci is Qi -primary.

Since anS′ ∩ S = anS, b 6∈ Ci , some i .

But Pb ⊆ anS′ ⊆ Ci , so we must have P ⊆ Qi , since Ci is Qi -primary.

Therefore Qi ∩ S = P .

The proof of the converse requires just minor tweaking of the proof of Lemma
K2.
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Take a height one prime Q ⊆ S′ containing a. Since Q is minimal over aS′,
for all q ∈ Q, there exists s ∈ S′\Q such that s · qh ∈ aS′, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S′\Q, t ≥ 1 and a ring S ⊆ S0 ⊆ S′, such that P t · s ⊆ aS0 and S0 is a
finite S-module.

Thus, for all n ≥ 1, Pnt · sn ⊆ anS0. Let 0 6= c ∈ S satisfy c · S0 ⊆ S. Then,
Pnt · (csn) ⊆ anS ⊆ anS, for all n.

If csn ∈ anS for all n, then c ∈ anS′
Q , for all n, since s 6∈ Q.

But then c ∈
⋂

n≥1 anS′
Q = 0, since S′

Q is a DVR. This is a contradiction.

Thus csn 6∈ anS, for some n, which implies P ∈ Ass (S/anS) .
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Remark. Note that the last paragraph of the proof above shows that if S is a
Noetherian domain and 0 6= a ∈ S, then

⋂
n≥1 anS = 0. This is extended to

arbitrary ideals below.
Corollary E3. Let S be a Noetherian ring and a ∈ S be a non-zerodivisor.
Then

⋃
n≥1 Ass (S/anS) is finite.

Proof. Immediate from C3 and D3.
We need one more lemma before we can show that

⋃
n≥1 Ass(R/In) is finite.

Lemma F3. Let I ⊆ R be an ideal and R := R [It, t−1] denote the extended
Rees aring of R with respect to I. Then for all n ≥ 1:
(i) In = t−nR∩ R .
(ii) The vth graded component of t−nR is (Iv ∩ In+v )tv , for all v .

Proof. For (i), take a ∈ R . Suppose a ∈ In. Then there exists an equation of
the form

as + inas−1 + i2nas−2 + · · ·+ isn = 0,
where each ijn ∈ In. Multiply this equation by tsn to get

(
a

t−n )
s + intn(

a
t−n )

s−1 + i2nt2n(
a

t−n )
s−2 + · · ·+ isntsn = 0. (∗)

This shows a
t−n is integral over R, so a ∈ t−nR.
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Conversely, if a ∈ t−nR∩ R , then a
t−n is integral over R. By comparing terms

of the same degree in an equation of integral dependence of a
t−n over R, we

may work backwards from an equation like (*) to show a ∈ In.

The proof of (ii) is almost the same. Suppose ctv ∈ t−nR. Then clearly
c ∈ Iv .

On the other hand, ctv

t−n = ctv+n is integral over R. Thus, there exists an
equation of the form

(ctv+n)s + f1(ctv+n)s−1 + · · ·+ fs = 0,

with fi ∈ R. Taking the coefficient of ts(n+v) in this equation gives

cs + j1cs−1 + · · ·+ js = 0,

where each ji ∈ I i(v+n). Thus, c ∈ In+v .

The converse of (ii) is similar.
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Theorem G3. Let R be a Noetherian ring, I ⊆ R an ideal and R the extended
Rees ring of R with respect to I. For a prime P ⊆ R , P ∈ A∗(I) if and only if
there exists Q ∈ A∗(t−1R) with Q ∩ R = P . In particular, for any ideal I ⊆ R ,⋃

n≥1 Ass(R/In) is finite.

Proof. In light of Corollary E3, it suffices to prove the first statement. Without
loss of generality we may assume R is local at P . Suppose P = (In : c), for
some n ≥ 1 and c 6∈ In. By the previous lemma, c 6∈ t−nR.

Thus P consists of zero divisors on R/t−nR. It follows that PR ⊆ Q, for
some Q ∈ Ass (R/t−nR). Thus, Q ∩ R = P .

Conversely, suppose Q ∈ A∗(t−1R). Write Q = (t−nR : ctv ).

Then Pctv belongs to the degree v component of t−nR, which, by the previous
lemma is (In+v ∩ Iy )tv .

Thus, Pc ∈ In+v . Since ctv 6∈ t−nR, c 6∈ In+v . This implies n + v ≥ 1, thus,
P ∈ A∗(I), as required.
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Remarks. (i) We denote the finite set of prime ideals in Theorem G3 by A∗(I).
Note that x ∈ R is a zerodivisor modulo In for some n if and only if x ∈ P , for
some P ∈ A∗(I).

(ii) The proof of the Theorem G3 can be adapted to show the following: If
R ⊆ S are Noetherian rings, and J ⊆ S is an ideal, then, if
P ∈ Ass R/(J ∩ R), there exists Q ∈ Ass S/J such that Q ∩ R = P .

(iii) There is a stronger version of Theorem G3. Ratliff has shown that if
height(I) > 0, then the sets Ass R/I ⊆ AssR/I2 ⊆ · · · form an ascending
chain. Since the union of these set is finite, this increasing chain of sets must
stabilize and we have that there exists an n0 such that⋃

n≥1 Ass R/In = Ass R/In0 .

(iv) The stronger statement in (iii) is an integral closure analogue of a theorem
due to M. Brodmann who showed that for all finitely generated R-modules M
and ideals I ⊆ R , Ass (M/InM) is stable for n sufficiently large.

However, the sets Ass (M/InM) need not be an increasing set of prime ideals.

When M = R , we will denote this stable value A∗(I). A theorem of Ratliff
shows that A∗(I) ⊆ A∗(I).
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Asymptotic sequences
Definition. A sequence of elements x1, . . . , xr ∈ R is said to be an asymptotic
sequence if for each 1 ≤ i ≤ r , xi does not belong to any prime ideal in
A∗((x1, . . . , xi−1)R). In other words, for all i , xi is not a zerodivisor modulo
(x1, . . . , xi−1)nR , for all n.

Remarks. (i) Asymptotic sequences in the form above were defined
independently Ratliff and D. Katz. Earlier, Rees had defined the notion of an
asymptotic sequence over I, for an ideal I contained in a local ring. His
definition was that xi is not a zero divisor modulo (I, xi , . . . , xi−1)nR , for all n
and all i . Rees used this concept to improve an earlier inequality of Burch that
related analytic spread of an ideal I ⊆ R to a difference between the dimension
of R and the the depths of the modules R/In.

(ii) Ratliff and DK studied properties of asymptotic sequences, discarding the
ideal I. They independently proved that a local ring is quasi-unmixed if and
only if some (every) system of parameters forms an asymptotic sequence. This
theorem will be our next main goal. Using this result one can give a natural
proof of Ratliff’s theorem, once one knows a little about how the dimension
formula is related to the universally catenary property.

April 6: Quasi-unmixedness and Ratliff’sTheorem, part 1



Asymptotic sequences

(iii) A regular sequence is an asymptotic sequence, though this is not obvious
from the definitions. However, this is clear in the case of a single element,
because x is the first element in a regular sequence if and only if x is a
non-zerodivisor, while x is is the first element in an asymptotic sequence if and
only if height(xR) = 1, since A∗(0) is the set of minimal prime ideals of R .
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