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Fibers of Ring Homomorphisms
We begin with the following proposition, which gives some information about
fibers of a ring homomorphism.

Proposition A4. Let φ : R → S be a ring homomorphism. For P ⊆ S, set
p := P ∩ S. Then

height(P) ≤ height(p) + dim(k(p)⊗ S).

Equality holds if the going down property holds between R and S.

Proof. By localizing at P , R be comes local at p, and neither the heights or
dimensions in question change. So we may assume that R is local at p and S is
local at P .

Set d := dim(R) and t := dim(S/pS). Let x1, . . . , xd ∈ R be a
system of parameters and y1, . . . , yt ∈ S be such that their images in S/pS
form a system of parameters. Then Pc ⊆ yS + pS and pd ⊆ xR , for some
c, d ≥ 1. Then Pc+d ⊆ (x + y)S. This shows dim(S) ≤ d + t, which gives the
first statement.

Now suppose the going down property holds between R and S. Let
P0 ( P1 ( · · · ( Pt = P be a saturated chain of primes containing pS. Note
P0 ∩ R = p.
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Now let p0 ( · · · ( pd = p be a saturated chain in R . Then, by the going
down property, in S, there is a chain of primes P0 = Qd ) · · · ) Q0 with
Qi = pi , for all i .

This gives a chain of primes of length d + t in S. Thus, dim(S) = d + t, which
is what we want.

Proposition B4. Let φ : R → S be a ring homomorphism so that S is faithfully
flat over R . Then:
(i) φ is injective.
(ii) The going down and lying over properties hold between R and S. In

particular, equality holds in Proposition A4.
(iii) height(I) = height(IS), for all ideals I ⊆ R .

Proof. For (i) suppose a ∈ R is non-zero. We have an exact sequence
0 → aR → R . If we tensor with S (via φ), the sequence
0 → (aR)⊗ S → R ⊗ S = S stays exact, by the flatness of S over R . The
image of a ⊗ 1S under this map is just φ(a). If φ(a) = 0, then (aR)⊗ S = 0,
which contradicts the faithfully flat property.
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For (ii), let p ⊆ R be a prime ideal. Then the fiber k(p)⊗ S is non-zero. Thus,
Spec(k(p)⊗ S) is non-empty, so by our comments above, there exists a prime
P ⊆ S with P ∩ R = p. In other words, the lying over property holds. Now
suppose P2 is a prime ideal in S, and set p2 := P2 ∩ R and suppose we have a
prime p1 ( p2. Localizing at P2 preserves flatness (by transitivity of flatness),
so we may assume S is local at P2. Since p2 is the only maximal ideal of R and
p2S 6= S, the extension is also faithfully flat. By lying over, there is a prime
P1 ⊆ S with P1 ∩ R = p1. Since S is local at P2, P1 ⊆ P2, so the going down
property holds.

For part (iii), let p ⊆ R be a prime ideal and take P ⊆ S a prime minimal over
pS. Again, we may localize at P and assume that S is local at P and faithfully
flat over R . By part (ii), the going down property holds, so by Proposition A,

height(P) = height(p)+dim(k(p)⊗S) = height(p)+dim(S/pS) = height(p)+0 = height(p).

This argument shows height(I) = height(IS). Indeed, if p is minimal over I
having the same height as I, then the above shows height(IS) ≤ height(I). On
the other hand, starting with P minimal over IS, P is minimal over pS, for
p = P ∩ S, so the argument shows height(IS) ≤ height(I), and therefore,
height(I) = height(IS).
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Here is a proposition that sheds some light on the dimension of fibers. Note
that, in general, the going up property does not holds between R and a
polynomial ring or a power series over R .

Part (ii) of the example above shows that the going up property fails for power
series rings, and that part (i) of the proposition below can fail in a faithfully flat
extension, while if R is a DVR with uniformizing parameter π, going up fails for
the extension R ⊆ R [x ], even though the fibers all have the same dimension.

To see this, note that (πx − 1)R [x ] is a maximal ideal in the polynomial ring
contracting back to zero. If we take the chain (0) ⊆ (π) we cannot lift it to a
chain in R [x ] starting with (px − 1), since the latter is a maximal ideal.

Proposition C4. Let φ : R → S be a ring homorphism between Noetherian
rings. Let q ⊆ p ⊆ R be prime ideals.
(i) If the going up holds, then dim(k(q)⊗ S) ≤ dim(k(p)⊗ S).
(ii) If going down holds, dim(k(p)⊗ S) ≤ dim(k(q)⊗ S).
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Proof. For (i), let r := dim(k(q)⊗ S). Then there exists a chain of distinct
primes Q0 ⊆ · · · ⊆ Qr in S such that for each i , Qi ∩ R = q. Suppose
s := height(p/q). Then in R , there exists a chain of distinct primes
q = p0 ⊆ · · · ⊆ ps = p. Since p0 = q by the going up property, we can lift this
chain in R to a chain to Qr ⊆ · · · ⊆ Qr+s , where each Qr+j ∩ R = pj . Applying
Proposition B4 to the induced homomorphism R/q → S/qS, we have:

r + s ≤ height(Qr+s/qS) ≤ height(p/q) + dim(k(p/q)⊗ S/qS),

so r ≤ dim(k(p/q)⊗ S/qS) = dim(k(p)⊗ S), which is what we want.
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For (ii), we first note that if the conclusion of part (ii) holds when
height(p/q) = 1 then it holds in general. For if q ⊆ p ⊆ p′ with
height(p/q) = 1 = height(p′/p), then the longest chain of primes in S lying
over p′ is less than or equal to the longest chain of primes in S lying over p,
which is less than or equal to the longest chain of primes in S lying over q, by
the height one case. Iterating this shows we may assume height(p/q) = 1.

Set r := dim(k(p)⊗ S). If r = 0, there is nothing to prove. Now, suppose
r > 0 and let P0 ⊆ · · · ⊆ Pr be a chain of distinct primes in S with Pj ∩ R = p,
for all j.

We need to find a chain of distinct primes Q0 ⊆ · · · ⊆ Qr in S, so that
Qj ∩ R = q, for all j. For this we will use the following fact: If T is a
Noetherian domain and C is a prime ideal in T having height greater than one,
then C contains infinitely many height one primes of T .
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Now, by going down, there exist Q0 ( P0 such that Q0 ∩R = q. Take x ∈ p\q.
We apply the fact above to T := S/Q0 and its prime P1/Q0, which has height
greater than one.

The fact above implies that there exists a height one prime contained in P1/Q0
not containing the image of x , since the image of x in T is contained in only
finitely many height one primes This prime corresponds to a prime Q1 in S
containing Q0, properly contained in P1.

Since x is not in Q1, we can’t have Q1 ∩R = p and since there are no primes in
R between q and p, we must have Q1 ∩ R = q. We can now apply the same
process in S/Q1 to the prime P2/Q1 which has height greater one. There is a
height one prime in S/Q1 contained in P2/Q1 not containing the image of x .
As before, this corresponds to a prime Q2 properly containing Q1, which
satisfies Q2 ∩ R = q. Continuing in this fashion, we can create a chain of
primes of length r in S where each element of the chain contracts to q. This
complete the proof of the proposition.
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Remark Let R be a Noetherian ring.
(i) R satisfies Serre’s condition Sn if for all P ∈ Spec(R),
depth(RP) ≥ min{n, dim(RP)}. Thus, for example, a ring is Cohen-Macaulay
if and only if it satisfies Sn for all n ≤ dim(R).

(ii) R satisfies Serre’s condition Rn if for all P ∈ Spec(R), with height(P) ≤ n,
RP is a regular local ring. A ring is regular if and only if it satisfies Rn for all n.

Comments. (i) R is reduced if and only if R satisfies R0 and S1. The conditions
clearly hold if R is reduced. Suppose the conditions R0 and S1 fold. The
condition S1 implies that the associated primes of zero have height zero, i.e.,
are the minimal primes of R .

The R0 condition implies that Rq is a field for each minimal prime q ⊆ R , and
hence qq = 0, for all minimal primes q. Together these conditions give
(0) = q1 ∩ · · · ∩ qs , where the qi are the minimal primes of R . Therefore, R is
reduced.
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(ii) Even though we have been considering integrally closed domains, the ring
R does not have to be an integral domain to be integrally closed. We say that
R is integrally closed (as a ring) if R equals the integral closure of R in its total
quotient ring.

Note however, that if R is integrally closed, then either R is its total quotient
ring or R must be reduced - since if a ∈ R satisfies ac = 0, then for any
non-zerodivisor s in R , a

s is an element in the total quotient ring of R , integral
over R , yet not in R . With this in mind, one can show that R is integrally
closed if and only if R satisfies Serre’s conditions R1 and S2. The proof of this
is almost identical to the proof of Proposition A.

We need a special case of standard result concerning flatness before proving one
of our main results. This result is known as the local criterion for flatness. In
general, one does not have to assume that the given ring map is faithfully flat.
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Theorem D4. Let φ : (R ,m, k) → (S, n, l) be a faithfully local homomorphism
of Noetherian local rings. A finitely generated S-module M is flat over R if and
only if TorR

1 (k,M) = 0.

Sketch of Proof. If M is flat, then TorR
1 (N,M) = 0 for all R-modules by

applying the long exact sequence in Tor associated to the short exact sequence
0 → K → F → N → 0, where F is a free R-module.

Conversely, of TorR
1 (N,M) = 0 for all N, then M is flat since if

0 → A → B → C → 0,

is an exact sequence of R-modules, we have and exact sequence

TorR
1 (C ,M) → A ⊗ M → B ⊗ M → C ⊗ M → 0.

Since TorR
1 (C ,M) = 0, the map A ⊗ M → β ⊗ M is injective, showing M is

flat. We now make a series of reductions.

April 15: Fibers of Ring Homomorphisms



Fibers of Ring Homomorphisms

Step 1. M is flat over R if TorR
1 (N,M) = 0, for all finitely generate R-modules.

This follows since N = lim−→Ni is a direct limit of finitely generated R-modules
and lim−→TorR

1 (Ni ,M) = TorR
1 (lim−→Ni ,M), M is flat over R if TorR

1 (N,M) = 0,
for all finitely generated R-modules N.

Step 2. Let N be a finitely generated R-module. Then N has a filtration
0 = N0 ⊆ N1 ⊆ · · · ⊆ Nr = N, such that Ni/Ni−1 ∼= R/Pi , where each Pi ⊆ R
is a prime ideal. If TorR

1 (R/Pi ,M) = 0, for all i , then induction on i together
with the long exact Tor sequence applied to the sequences
0 → Ni−1 → Ni → Ni/Ni−1 → 0, shows that TorR

1 (Ni ,M) = 0 for all i and
hence TorR

1 (N,M) = 0. Thus, it suffices to prove TorR
1 (R/I,M) = 0, for all

ideals I ⊆ R .

Step 3. Suppose TorR
1 (R/J,M) = 0, for all m-primary ideals J ⊆ R . Let I ⊆ R

be an ideal. Fix t ≥ 1. Then J := I +mt is m-primary. Let
0 → K → F → M → 0 be an exact sequence with F finitely generated and free
over S. Then TorR

1 (R/J,M) = 0 implies JF ∩ K = JK , since the long exact
Tor sequence implies (JF ∩ K)/JK = TorR

1 (R/J,M). Thus
IF ∩ K ⊆ (I +mt)K ⊆ (I + nt)K .
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Since K is finitely generated and S is local, taking this last intersection over all
t shows IF ∩ K = IK . Since F is flat over R , the long exact Tor sequence with
I now shows TorR

1 (R/I,M) = 0. Thus, it suffices to shows TorR
1 (R/J,M) = 0

for all m-primary ideals J.

Step 4. Let J ⊆ R be m-primary. It suffices to prove TorR
1 (N,M) = 0, for all

finite length R-modules N. Proceeding by indeuction on the length, when the
length is one, N ∼= k, and our assumption gives TorR

1 (N,M) = 0. When N has
length greater than one, we can find an R-module N′ ⊆ N such that N/N′ has
length one. We then apply the long exact Tor sequence associated to
0 → N′ → N → N/N′ → 0 to complete the proof.

Here is an important corollary.
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Corollary E4. Let φ : (R ,m, k) → (S, n.l) be a flat local homomorphism of local
rings. Suppose x = x1, . . . , xr ∈ S have the property that their images in S/mS
form a regular sequence. Then x forms a regular sequence in S and S/(x)S is
flat over R .

Proof. It suffice to prove the case r = 1. So, suppose x ∈ S is a
non-zerodivisor on S/mS. Take s ∈ S and suppose sx = 0. Then sx ∈ mS, so
s ∈ mS. Let a1, . . . , ad ∈ R be a minimal generating set for m. Then we have
part of a minimal resolution of m over R :

Rc α→ Rd → m → 0,

where the matrix α has entries in m. Tensoring with S, we preserve exactness
and have Sc α⊗1→ Sd → mS → 0. On the other hand, we may write
s = s1a1 + · · · sdad , with si ∈ S. Therefore, 0 = (xs1)a1 + · · ·+ (xsd)ad . It

follows that the column vector

xs1
...

xsd

 belongs to the image of α⊗ 1. Thus

each xsi ∈ mS.
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Therefore, by our assumption on x , each si ∈ mS. Thus, s ∈ m2S. Repeating
the argument shows s ∈ mtS, for all t, and thus, s = 0. Therefore, x is a
non-zerodivisor in S.

Now, consider the exact sequence 0 → S x→ S → S/xS → 0. Tensoring with k
we get:

· · · → TorR
1 (k, S) → TorR

1 (k, S/xS) → S/mS x→ S/mS → S/(x ,m)S → 0.

In the Tor sequence above, multiplication by x is injective, by the assumption
on x , and TorR

1 (k, S) = 0, since S is flat over R . Therefore TorR
1 (k,S/xS) = 0,

and thus S/xS is flat over R , as required.
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