
A FAMILY OF FINITE SIMPLE GROUPS

D. Katz

The purpose of this note is to exhibit for my algebra class an important family
of finite simple groups. The family comes from matrix theory over finite fields.
We begin by fixing some notation and recalling some definitions. Throughout we
let F denote a field containing at least 5 elements and we always assume that the
characteristic of F is either zero or greater than two. This simply means that in the
field F , 2 ̸= 0. Recall that SLn(F ) denotes the set of n × n matrices over F with
determinant one. SLn(F ) is a group under matrix multiplication called the special
linear group. Let K denote the center of SLn(F ). Then K is a normal subgroup of
SLn(F ). Note that, on the one hand, any matrix in the center of SLn(F ) must be
a scalar matrix, while on the other hand, its determinant must equal one. Thus, K
consists of the n×n scalar matrices over F with an nth root of unity from F down
the diagonal. The factor group SLn(F )/K is called the projective linear group and
is denoted PSLn(F ). We are going to show that PSL2(F ) is a simple group. When
F is a finite field, PSL2(F ) is a finite group, so we will then have a class of finite
simple groups. The proof that PSL2(F ) is simple will involve a number of steps.
But the basic strategy is the following. By the correspondence theorem from class,
we must show that there are no normal subgroups of SL2(F ) properly containing K.
For this we will show that if N is a normal subgroup of SL2(F ) properly containing
K, then by conjugating the elements of N , we get all of SL2(F ).

Theorem. PSL2(F ) is a simple group.

Proof. As mentioned above, it suffices to prove the following statement. If N is a
normal subgroup of SL2(F ) containing K, then N = SL2(F ). We note that since
1, -1 are the only square roots of unity, in this case K consists of the two matrices
I,−I, where I is the 2× 2 identity matrix. The proof of this statement requires a
number of steps.

Step 1 : N contains a triangular matrix A not in K. To see this, start with

A =

(
a b
c d

)
belonging to N , but not K. If c = 0, then A is the required matrix.
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If c ̸= 0, then taking λ := −a/c, we get(
1 λ
0 1

)
·
(
a b
c d

)
·
(
1 −λ
0 1

)
=

(
0 ∗
c d+ a

)
∈ N,

since

(
1 λ
0 1

)−1

=

(
1 −λ
0 1

)
. Call this new matrix A and write it :

(
0 b
c d

)
.

Since det(A) = 1, bc = −1. Let 0 ̸= u ∈ F and set P :=

(
u−1 0
0 u

)
. Then

P−1A−1PA ∈ N and P−1A−1PA =

(
u2 (1− u2)bd
0 u−2

)
. We need to select u so

that this new matrix isn’t in K. If it were in K, then u2 is 1 or −1, so u4 = 1.
Thus u is a root of the polynomial X4 − 1. Since this polyomial has at most four
roots in F , we can find a non-zero u ∈ F such that u4 ̸= 1 – unless F = Z5. Using
such an element u yields the desired triangular matrix in N , but not in K.

If F is the field Z5 and d ̸= 0, then P−1A−1PA still has the required form,
by choosing u = 3 (in Z5), say. Suppose d = 0. Then returning to the case

that A =

(
0 b
c d

)
, bc = −1 ≡ 4 in Z5, so the pair (b, c) is one of the pairs

(1, 4), (2, 2), (3, 3), (4, 1). Choose t, w ∈ Z5 such that t2c − w2b = 0 and u, v such
that ut− vw = 1. Then(

u v
w t

)
·
(
0 b
c 0

)
·
(

t −v
−w u

)
=

(
vct− wub −v2c+ u2b
t2c− w2b −vtc+ uwb

)
is triangular, belongs to N and doesn’t belong to K, since the (1,1) entry of this
matrix equals -1 times the (2,2) entry. This completes the proof of Step 1.

Step 2 : N contains a matrix of the form

(
1 u
0 1

)
, with u ̸= 0. To see this, by

the previous step, N contains a matrix of the form A =

(
a b
0 d

)
not in K. Let

b′ := b + d − a and set A′ :=

(
a b′

0 d

)
. Note that A′ :=

(
1 1
0 1

)
· A ·

(
1 −1
0 1

)
,

so A′ belongs to N . Suppose d ̸= a. Since det(A) = 1, ad = 1. Therefore

(A′)−1 =

(
d −b′

0 a

)
, so (A′)−1 · A =

(
1 ad− d2

0 1

)
belongs to N , and has the

required form. If a = d, then since det(A) = 1, a is 1 or -1 and b ̸= 0. Thus either

A =

(
1 b
0 1

)
, which is what we want or A =

(
−1 b
0 −1

)
and A2 =

(
1 −2b
0 1

)
is

the matrix we seek, since −2b ̸= 0. This completes the proof of Step 2.



A FAMILY OF FINITE SIMPLE GROUPS 3

Step 3 : The conjugacy class in SL2(F ) of the matrix

(
1 u
0 1

)
contains the matrices(

1 0
−u 1

)
and

(
1 a2u
0 1

)
, for all 0 ̸= a in F . To see this we just note that

(
0 −1
1 0

)
·
(
1 u
0 1

)
·
(

0 1
−1 0

)
=

(
1 0
−u 1

)
and (

a 0
0 a−1

)
·
(
1 u
0 1

)
·
(
a−1 0
0 a

)
=

(
1 a2u
0 1

)
.

Step 4 : The additive group (F,+) is generated by the squares of the elements of
F . To see this, we show that x ∈ F can be written x = a2 − b2 = (a+ b)(a− b), for
elements a, b ∈ F . Indeed, we take a := (x + 1)/2 and b := (1 − x)/2. Note, these
elements exist in F , since we are assuming 2 ̸= 0, so we can divide by 2. It follows
that a+ b = 1 and a− b = x, so (a+ b)(a− b) = x, as required.

Step 5 : The group SL2(F ) can be generated by the matrices

(
1 u
0 1

)
and

(
1 0
u 1

)
,

as u varies over F . To see this, we first note that the basic elementary row operation
of adding a multiple of one row to another is obtained by multiplying by a matrix of
one of the two types in question. Indeed, if we want to add u times the first row of
the matrix A to the second row of A, then we multiply A on the left by the matrix(
1 0
u 1

)
. Now start with an arbitrary matrix A =

(
a b
c d

)
in SL2(F ) and row

reduce it to the identity as follows. If needed, by adding the first row to the second,
we may assume c ̸= 0. Then we add a multiple of the second row to the first,
changing a to 1. Then, add −c times the (new) first row to the second, changing c

to 0. Now the matrix has the form

(
1 b′

0 d′

)
. Since the determinant of this matrix

is 1, d′ = 1. Now we take −b′ times the second row and add it to the first row to
obtain the identity matrix I. Thus we have a product U4 ·U3 ·U2 ·U1 ·A = I, where
each Ui is a matrix of one of the two required types. Thus, A = U−1

1 ·U−1
2 ·U−1

3 ·U−1
4 .

But the inverse of each Ui is also a matrix of the required type, since, for example,

the inverse of

(
1 u
0 1

)
is just

(
1 −u
0 1

)
. Thus, each matrix in SL2(F ) is a product

of matrices of the required type. This completes the proof of Step 5.
We are now almost finished with the proof. By Step 2, N contains at least

one matrix of the form

(
1 u
0 1

)
, with u ̸= 0. By Step 3, N contains

(
1 a2u
0 1

)
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and

(
1 b2u
0 1

)
, for all non-zero elements a and b in F . Thus N contains each(

1 −b2u
0 1

)
, the inverse of

(
1 b2u
0 1

)
. Therefore,

(
1 a2u
0 1

)
·
(
1 −b2u
0 1

)
=

(
1 (a2 − b2)u
0 1

)
belongs to N for all a, b. By Step 4, if we vary a and b over F , we obtain all of
the elements of F . Since u ̸= 0, the product (a2 − b2)u also realizes the elements of

F . Thus,

(
1 v
0 1

)
belongs to N for all v ∈ F . Step 3 then gives that the matrices(

1 0
−v 1

)
also belong to N as v varies over F . But then so do all of the matrices(

1 0
v 1

)
. Therefore, by Step 5, N = SL2(F ). □

Remark. The orders of the smallest non-abelian simple groups are 60, 168, 360,
504, 660, 1092 and 2,448. For each of these seven integers n, there is, up to isomor-
phism, just one simple group of order n and each of these groups arise as PSL2(F )
for an appropriate choice of F .

For example, take F := Z5. We show that |PSL2(Z5)| = 60. To do this, we first

calculate |SL2(Z5)|. For matrices in SL2(Z5) of the form

(
a 0
∗ ∗

)
, there are 4

non-zero choices for a. Thus, such a matrix has the form

(
a 0
∗ a−1

)
and for a

fixed a, we have 5 choices for *. This gives 20 matrices of the form

(
a 0
∗ a−1

)
.

Similarly, there are 20 matrices of the form

(
0 b

b−1 ∗

)
. For matrices of the form(

a b
∗ ∗

)
, with both a and b non-zero, there are 4 · 4 = 16 choices for the first

row. Moroever, such a matrix is

(
a b
u v

)
, with av − bu = 1. Any choice of v then

determines u and we can make 5 choices for v, once a and b have been chosen.
Thus, there are 5 · 16 = 80 matrices with both a and b non-zero. It follows that
|SL2(Z5)| = 20 + 20 + 80 = 120. Thus, |PSL2(Z5)| = 120/2 = 60. Therefore, by
the theorem above, |PSL2(Z5)| is a simple group of order 60. A similar counting
argument shows that |PSL2(Z7)| = 168.
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Finally, we point out that what we have now shown is that PSL2(Z5) is a simple
group of order 60, and thus by the theorem from class, this group must be isomorphic
to A5. As we saw in class, An is simple for all n ≥ 5. Likewise, it can be shown
that for any n ≥ 2, PSLn(F ) is a simple group. Thus, two of the families of finite
simple groups are {An}n≥5 and {PSLn(F )}n≥2, with F a finite field having at least
5 elements.
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