
SOLVING CUBICS AND QUARTICS BY RADICALS

D. Katz

The purpose of this handout is to record for my algebra class the classical formulas

expressing the roots of degree three and degree four polynomials in terms of radicals. We

begin with some general comments. Let F be a field and f(X) a polynomial with coefficients

in F . We will assume throughout that F contains the rational numbers. In searching for

the roots of f(X), it is convenient to simplify f(X) by eliminating some of its terms. This

can often be done by making a substitution of the form X = Y + λ, for some λ ∈ F . If we

set g(Y ) := f(Y + λ), then clearly α is a root of f(X) if and only if α− λ is a root of g(Y ).

Thus, any procedure leading to the roots of g(Y ) leads to the roots of f(X) and conversely.

We will employ this technique in each of the cases below.

Cardano’s formulas for the roots of a cubic polynomial. We begin with a cubic

polynomial having coefficients in F , say f(X) = X3+aX2+bX+c. If we set X := Y −a/3,

then for g(Y ) := f(Y − a/3), we obtain g(Y ) = Y 3 + pY + q, where

p =
1

3
(3b− a2) and q =

1

27
(2a3 − 9ab+ 27c).

Thus, by our comments above, we may start over assuming f(X) = X3 + pX + q. We now

consider the discriminant of f(X), D := −4p3 − 27q2 and set

A :=
3

√
−27

2
q +

3

2

√
−3D and B :=

3

√
−27

2
q − 3

2

√
−3D,

where the cube roots are chosen so that A ·B = −3p. To elaborate, if we take

µ1 := −27
2 q+ 3

2

√
−3D, then µ1 has three cube roots : α1, α2, α3, where α2 = α1ω, α3 = α1ω

2

and ω is a primitive cube root of 1, in other words, ω2 + ω + 1 = 0. Similarly, if we also

set µ2 := −27
2 q − 3

2

√
−3D, then µ2 has three cube roots, β1, β2, β3 with β2 = β1ω and

β3 = β1ω
2. Now

(α1 · β1)
3 = −27p3 = (−3p)3.
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Therefore α1β1 = −3p,−3pω or −3pω2. If α1β1 = −3p, we take A = α1 and B = β1. If

α1β1 = −3pω, then α2β2 = −3p, so we take A = α2 and B = β2. If α1β1 = −3pω2, then

α2β1 = −3p and we set A = α2, B = β1. In other words, we can choose cube roots A and

B of µ1 and µ2, so that A ·B = −3p.

We now show that the roots of f(X) are :

α =
A+B

3
β =

ω2A+ ωB

3
γ =

ωA+ ω2B

3
.

To do this, we calculate.

3(α+ β + γ) = (1 + ω + ω2)A+ (1 + ω + ω2)B = 0,

so −(α+ β + γ) = 0. Similarly,

9(αβ + αγ + βγ) = (1 + ω + ω2)A2 + 3(ω + ω2)AB + (1 + ω + ω2)B2,

so, 9(αβ + αγ + βγ) = −3AB = 9p. Therefore αβ + αγ + βγ = p. Finally,

27αβγ = ω3A3 + (ω2 + ω3 + ω4)A2B + (ω2 + ω3 + ω4)AB2 + ω3B3,

so, 27αβγ = A3 + B3 = −27q. Therefore, −αβγ = q. It now follows that we may factor

f(X) = (X − α)(X − β)(X − γ), which is what we want.

Suppose F = Q, the rational numbers. Then either f(X) has one real root and two

imaginary roots or f(X) has three real roots. We can use the discriminant D to tell us

which case occurs. Write f(X) = (X − α)(X − β)(X − γ). Taking the derivative gives

f ′(α) = (α− β)(α− γ), f ′(β) = (β − α)(β − γ) and f ′(γ) = (γ − α)(γ − β).

Therefore, −f ′(α)f ′(β)f ′(γ) = [(α − β)(α − γ)(β − γ)]2. Temporarily call this number D̃.

We will show D̃ = D. Since f ′(X) = 3X2 + p, we have

−D̃ =(3α2 + p)(3β2 + p)(3γ2 + p)

=27α2β2γ2 + 9p(α2β2 + α2γ2 + β2γ2) + 3p2(α2 + β2 + γ2) + p3.



SOLVING CUBICS AND QUARTICS BY RADICALS 3

Of course, α2β2γ2 = (−q)2 = q2. A straight forward calculation shows that

α2β2 + α2γ2 + β2γ2 = (αβ + αγ + βγ)2 − 2(α+ β + γ)(αβγ),

so, α2β2 + α2γ2 + β2γ2 = p2. Similarly,

α2 + β2 + γ2 = (α+ β + γ)2 − 2(αβ + αγ + βγ),

so, α2 + β2 + γ2 = −2p. Therefore −D̃ = 4p3 + 27q2, and D̃ = D, as claimed.

Now, suppose that α is real and β, γ are imaginary, say β = a+ bi and γ = a− bi, with

a, b ∈ R and b ̸= 0. Then

√
D = [(α− (a+ bi)(α− (a− bi)((a+ bi)− (a− bi))] = 2bi[(α− a)2 + b2],

which is purely imaginary. Thus, D ≤ 0. Conversely, if D ≤ 0, in the formulas for A and

B above, we may choose both to be real. It follows that α is real and β and γ are nonreal

complex numbers. If all three roots are real, then taking D = [(α−β)(α−γ)(β−γ)]2 shows

that D ≥ 0. Note that if D = 0, then f(X) has repeated roots. Also note that if D > 0,

then the formulas for the roots involve radicals of nonreal numbers. If f(X) is irreducible

over Q, it can be shown that this is necessary.

Examples. (i) Suppose f(X) = X3 −X + 1. Then D = −4(−1)3 − 27(1)2 = −23, so we

expect one real root and two complex conjugate roots. Using the formulas above, we get

A =
3

√
−27

2
+

3

2

√
69 and B =

3

√
−27

2
− 3

2

√
69,

where we choose A to be the real cube root of −27
2 + 3

2

√
69. From A ·B = −3p = 3, it follows

that B is also real. Thus, the root α is real and the roots β and γ are complex conjugates.

(ii) Suppose f(X) = X3 − 21X − 7. Then D = −4(−21)3 − 27(−7)2 = 3672, so f(X) has

three real roots. Using the formulas above, we obtain

A = 3
3

√
7

2
+

21

2

√
−3 and B = 3

3

√
7

2
− 21

2

√
−3,

so that the formulas express the roots of f(X) in terms of cube roots of complex numbers.

At first blush, it may not seem that the roots α, β and γ are real, but direct calculation
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shows that they are. For example, if z = a + bi is a complex number, then we may write

z = reiθ, where r =
√
a2 + b2 and θ is the angle determined by z and the x-axis. Letting

3
√
r denote the real cube root of r, we have that ( 3

√
rei(θ/3))3 = z. Set 3

√
z := 3

√
rei(θ/3).

Using the fact that eiθ = cos(θ) + isin(θ), it follows that 3
√
z + 3

√
z is real. Applying this to

z = 7
2 + 21

2

√
−3, shows that α = A+B

3 is real. Similarly, one can show directly that β and

γ are real as well. Note that f(−5) = −27, f(−1) = 13, f(0) = −7 and f(5) = 13, which

gives an alternate way to see that f(X) has three real roots.

(iii) The formulas above can also be deceiving. Let f(x) = x3−7x+6 = (x−1)(x−2)(x+3).

Then from Cardano’s formulas one obtains

A+B

3
=

3

√
1

2
(−6 +

√
−400

27
) +

3

√
1

2
(−6−

√
−400

27
),

which is either 1, 2 or 3. Is it clear which one it is ?!

The quartic case. It turns out that extracting the roots from a degree 4 polynomial

reduces to the degree three case. We start with an irreducible quartic polynomial

f(X) = X4 + aX3 + bX2 + cX + d having coefficients in the field F containing Q. As

before, we can simplify by setting X := Y − a/4. Then for g(Y ) := f(Y − a/4), we obtain

g(Y ) = Y 4 + pY 2 + qY + r, where

p =
1

8
(−3a2 + 8b), q =

1

8
(a3 − 4ab+ 8c), r =

1

256
(−3a4 + 16a2b− 64ac+ 256d).

Thus, we may begin again assuming that f(X) = X4 + pX2 + qX + r, with p, q, r ∈ F .

Then f(X) has distinct roots, say α1, α2, α3, α4. Set

θ1 :=(α1 + α2)(α3 + α4)

θ2 :=(α1 + α3)(α2 + α4)

θ3 :=(α1 + α4)(α2 + α3)

and s1 := θ1 + θ2 + θ3, s2 := θ1θ2 + θ1θ3 + θ2θ3 and s3 := θ1θ2θ3. Using the factorization

f(X) = (X − α1)(X − α2)(X − α3)(X − α4), an easy calculation shows that s1 = 2p,

s2 = p2 − 4r and s3 = −q2. It follows from this that θ1, θ2 and θ3 are the roots of

h(X) := X3 − 2pX2 + (p2 − 4r)X + q2, the so-called resolvent cubic associated to f(X).
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Now,

(α1 + α2)(α3 + α4) = θ1 and (α1 + α2) + (α3 + α4) = 0.

Therefore, we may write α1+α2 =
√
−θ1 and α3+α4 = −

√
−θ1. Similarly, α1+α3 =

√
−θ2,

α2+α4 = −
√
−θ2, α1+α4 =

√
−θ3 and α2+α3 = −

√
−θ3. (Since

√
−θ1

√
−θ2

√
−θ3 = −q,

the choice of two square roots determines the third.) If we now add (α1+α2)+ (α1+α3)+

(α1 + α4), we get 2α1 on the one hand and
√
−θ1 +

√
−θ2 +

√
−θ3 on the other. Doing

likewise for α2, α3, α4, we find

α1 =
1

2
(
√

−θ1 +
√
−θ2 +

√
−θ3)

α2 =
1

2
(
√

−θ1 −
√
−θ2 −

√
−θ3)

α3 =
1

2
(−

√
−θ1 +

√
−θ2 −

√
−θ3)

α4 =
1

2
(−

√
−θ1 −

√
−θ2 +

√
−θ3),

which reduces the solution of the quartic equation to the solution of the associated resolvent

cubic.
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