
MATH 830 FALL 2021: HOMEWORK 3 SOLUTIONS

You may work together on these homework problems, but each student in the class must write up the
solutions to this assignment entirely on their own. You may use the class notes, previous homework or
class supplements, but you may not consult any other sources, including, any algebra textbook, the internet,
graduate students not in this class, or any professor except your Math 830 instructor. Please upload a pdf
copy of your solutions to Blackboard no later than 10pm on Monday October 19.

1. Let K denote the splitting field of x3 − 2 over Q. In Example 15.2 (b) we illustrated the one-to-one
correspondence between the subgroups of Gal(K/Q) and the intermediate fields Q ⊆ E ⊆ K. Complete this
example by verifying parts (i), (ii) and (iii) of the Galois Correspondence Theorem.

Solution. Recall that K = Q( 3
√

2, 3
√

2ε, 3
√

2ε2) = Q( 3
√

2, ε). From Example 15.2, we have that the only

intermediate fields between Q and K are: Q( 3
√

2),Q( 3
√

2ε),Q( 3
√

2ε2) and Q(ε).Though we used part (i) of the
Galois Correspondence Theorem to help identify the intermediate fields, we didn’t have to. For example,
our calculations showed that Q(ε) is contained in the field field of 〈σ̂1〉. But [K : Q(ε)] = 3, so there are no
fields between Q(ε) and K, which forces the fixed field of 〈σ̂1〉 to be Q(ε) and thus,

[K〈σ̂1〉 : Q] = [Q(ε) : Q] = 2 = [Gal(K)/Q) : 〈σ̂1〉].
The other equality in indices in part (i) can be shown in a similar manner.

For part (ii), all extensions in question are separable, so we just have to show that K is a splitting field over

each intermediate field. If we let E denote any one of the fields, Q( 3
√

2),Q( 3
√

2ε),Q( 3
√

2ε2), then K = E(ε)

is the splitting field of x2 + x + 1 over E. Thus K is Galois over E. If E = Q(ε), then K = E( 3
√

2) is the
splitting field of x3 − 2 over E, so K is Galois over E.

Finally Q(ε) is the only intermediate field that is Galois over Q and 〈σ̂1〉 is the only subgroup of the Galois
group that is a normal subgroup (since the only normal subgroup of S3 is the subgroup generated by one of
the two 3-cycles).

2. Let Q denote the algebraic closure of Q.

(a) Use Zorn’s Lemma to show there exists a subfield F ⊆ Q maximal with respect to the property of

not containing
√

2.
(b) For F as in (a), let K be a finite extension of F . Prove that K is Galois over F and Gal(K/F ) is a

cyclic group. (Hint: Reduce to the case that K is Galois over F and use the Galois Correspondence
Theorem.)

Note: there is nothing special about
√

2 in this problem. Your argument should work with any α ∈ Q\Q.

Solution. For (a), let S denote the subfields of Q containing Q, but not containing
√

2. If {Eα}α∈A is a
chain in S, then, as we have seen before,

⋃
α∈AEα is a field, certainly contained in Q and it clearly does not

contain
√

2. Thus, the chain has an upper bound in S. Therefore, S has a maximal element, F

For (b), suppose that K is a finite extension of F . Let K0 be a finite extension of F containing K such that
K0 is Galois over F . One way to see this is as follows: Since K is separable over F (F has characteristic zero),
K = F (α). Let K0 be the field obtained by adjoining to F all of the roots of the minimal polynomial for α
over F . Then K0 is a splitting field over F , and thus Galois over F , since separability holds automatically.1

If Galois(K0/F ) is cyclic, it is abelian, so that Galois(K0/K) is normal in Galois(K0/F ) and K is Galois
over F . In this case Gal(K/F ) is a homomorphic image of Galois(K0/F ), and thus, is also cyclic. Therefore,
replacing K0 by K, we may begin again, assuming that K is also Galois over F .

1Note that more generally, if K is a finite extension of a field F , generated by finitely many αi over F , if we let K0 be
the field obtained by adjoining to F all of the roots of the minimal polynomials for the αi then K0 is a splitting field over F .

However, in positive characteristic, this need not be a Galois extension of F .
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Now, by the assumption on F , every intermediate field between F and K contains F (
√

2). Therefore, if we

let H := Galois(K/F (
√

2)), then by the Galois Correspondence Theorem, H is a subgroup of Gal(K/F )
containing every proper subgroup of Gal(K/F ). If we take a ∈ Gal(K/F )\H, then 〈a〉 = Gal(K/F ), which
gives what we want. �

3. Let K ⊆ H be subgroups of the group G and suppose {gαH}α∈A are the distinct left cosets of H in G
and {hβK}β∈B are the distinct left cosets of K in H.

(i) Prove that H is normal in G if for all α ∈ A, gαH = Hgα.
(ii) Prove that {gαhβK}α∈A,β∈B are the distinct left cosets of K in G. Here you may assume that the

indexing sets A,B are disjoint.
(iii) Conclude that if [G : H] and [H : K] are finite, then [G : K] = [G : H] · [H : K].

Solution. For (i), let g ∈ G. Then g ∈ gαH, for some α. Thus, g ∈ gH = gαH = Hgα, which implies
Hg = Hgα. Thus, gH = Hg, which shows that H is normal in G.

For (ii) first note that if g ∈ G, then g ∈ gαH for some α ∈ A. Thus, we can write g = gαh for some
h ∈ H. But then h ∈ hβK, for some β ∈ B, so that h = hβk for some k ∈ K, so that g = gαhβk, which
gives gK = gαhβK, showing that the set {gαhβK}α∈A,β∈B accounts for all cosets of K in G. To see that
these cosets are distinct, suppose, gαhβK = gα′hβ′K. If gα = gα′ , then we have hβK = hβ′K, which is a

contradiction. If gα 6= gp′ , we have gαhβ = gα′hβ′k, for some k ∈ K. It follows that g−1α′ gα = hβ′kh−1β ∈ H.

Thus, gαH = gα′H, a contradiction. It follows that the cosets {gαhβK}α∈A,β∈B are distinct. Now (iii)
follows immediately from (ii). �

4. Let N ⊆ G be a normal subgroup. Let (G/N)L denote the group of left coset of N in G and (G/N)R denote
the group of right coset of N in G. Either prove that these groups are isomorphic or give a counter-example
showing that these groups are not isomorphic.

Solution. Define φ : (G/N)L → (G/N)R by φ(aN) = Na. Note that if aN = bN , then Na = Nb, since
aN = Na and bN = Nb. Moreover,

φ(aNbN) = φ(abN) = Nab = NaNb = φ(aN)φ(bN)

so φ is a group homomorphism, which is clearly 1-1 and onto. �

Note: If N is a subgroup group of G, but not necessarily a normal subgroup, one can show that the set
function ψ defined by ψ(gN) = Ng−1 is a 1-1, onto function from the set of distinct left cosets of N in G to
the set of distinct right cosets of N in G, even if these sets are infinite.

5. Let G be a cyclic group.

(i) Prove that every subgroup of G is cyclic.
(ii) Let G be a cyclic group of order n > 1. Prove that for each positive integer d dividing n, there

exists a unique subgroup Hd of order d. Use this fact to draw a diagram illustrating the subgroup
structure of Z24.

Solution. Set G := 〈a〉 and suppose H ⊆ G is a subgroup. For (i), if we let k denote the least positive integer
such that ak ∈ H, then for aj ∈ H, write j = ck + r, with 0 ≤ r < k. Then aj = (ak)c · ar. Since akc ∈ H,
ar ∈ H. By the choice of k, r = 0. Thus, aj ∈ 〈ak〉, which shows H = 〈ak〉. Note also that k divides n. To
see this, write n = tk + r, with 0 ≤ r < k. Then e = an = (ak)t · ar, which shows that ar ∈ H, so again,
r = 0, showing k divides n.

For (ii) suppose n = dk. Set H := 〈ak〉. Then clearly o(ak) = d, which shows |H| = d. Suppose that K is
a subgroup of order d. Then K = 〈aj〉, where j is the least positive integer such that aj ∈ and o(aj) = d.
Then ajd = e. Since o(a) = n, jd ≥ n, If jd > n, write jd = nc + r, with 0 ≤ r < n. This yields ar = e,
which is a contradiction. Thus, jd = kd, so that j = k. If follows that H = K, so that H is the unique
subgroup of order d.
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A diagram of the subgroups of Z24:

Z24

↗ ↖
〈3〉 〈2〉
↑ ↗ ↑
〈6〉 〈4〉

↖ ↗ ↑
〈12〉 〈8〉
↑ ↗
〈0〉

,

where the diagonal arrow departing from 〈6〉 is meant to indicate that 〈6〉 ⊆ 〈2〉. �

6. Let G be a group and H,K ⊆ G finite subgroups, prove that |HK| = |H|·|K|
|H∩K| . Note that we are not

requiring that the set HK be a subgroup of G. Discuss the conditions under which HK is a subgroup.

Solution. Suppose H = {h1, . . . , hs} so that |H| = s and (H ∩K)k1, . . . , (H ∩K)kt are the distinct right

cosets of H ∩ K in K, so that t = |K|
|H∩K| . We need to show that |HK| = st. For this, consider the set

X = {hikj} with 1 ≤ i ≤ s and 1 ≤ j ≤ t. It suffices to show that X = HK and the elements hikj are

distinct. Suppose hikj = hckd. Then h−1c hi = kjk
−1
d belongs to H ∩ K. Thus kj ∈ (H ∩ K)kd, so that

(H ∩ K)kj = (H ∩ K)kd. Since the cosets are distinct, this forces kj = kd. From hikj = hckd, it follows
that hi = hc. Thus, there are st distinct elements in X. Finally, if hk ∈ HK, then k ∈ (H ∩K)kj , for some
j. Thus, hk = h(h0kj), for some h0 ∈ H ∩K. Therefore hk = (hh0)kj ∈ X. Thus, X = HK and we have
|HK| = st, as required.

For the second statement, it is not difficult to show that HK is a subgroup of G if and only if HK = KH. �

7. Treating Z, Q and R as abelian groups under addition, consider the abelian group Q/Z. Prove :

(i) Every element of Q/Z is a coset of the form q + Z, with 0 ≤ q < 1.
(ii) Every element of Q/Z has finite order, but there are elements in Q/Z of arbitrarily large order.
(iii) Q/Z is the subgroup of R/Z of elements of finite order.

Proof. For (i), suppose r + Z ∈ Q/Z. We may write r = r0 + n, where n is an integer and 0 ≤ r0 < 1. But
then r + Z = (r0 + n) + Z = r0 + Z.

For (ii), if r + Z ∈ Q/Z, write r = a
b , with a, b ∈ Z, and b > 0. Then b · r, which is r added to itself b times,

is an element of Z. This shows that in Q/Z, r + Z added to itself finitely many times is 0 + Z. Thus, r + Z
has finite order. For n ≥ 1, 1

n + Z clearly has order n, so that Q/Z has elements of arbitrarily large order.

For (iii), let α+Z ∈ R/Z have finite order. Then n(α+Z) = nα+Z = 0 +Z, for some integer n ≥ 1. Thus,
nα ∈ Z, so that nα = m, for some m ∈ Z. But this implies α ∈ Q, and therefore, Q/Z is the set of elements
of finite order in R/Z. �

8. Let G be a group and x, y ∈ G. Set [x, y] := xyx−1y−1, the commutator of x and y. Note that [x, y]−1

is also a commutator. Let G(1) denote the subgroup of G consisting of all finite products of [x, y] such that
x, y ∈ G. G(1) is called the commutator subgroup of G. Prove the following statements:

(i) G(1) is a (not necessarily proper) normal subgroup of G.
(ii) For a normal subgroup N ⊆ G, G/N is abelian if and only if G(1) ⊆ N .

Solution. For (i), by what we have mentioned in the statement of the problem, we just have to check the
normal property. If [x1, y1] · [x2, y2] · · · [xn, yn] ∈ G(1), then for any a ∈ G, we have

a−1[x1, y1] · [x2, y2] · · · [xn, yn]a = a−1[x1, y1]a · a−1[x2, y2]a · · · a−1[xn, yn]a,
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so it suffices to show that any conjugate of a commutator belongs to G(1). For this, we have

a−1[x, y]a = a−1x−1y−1xya

= (xa)−1y−1xya

= (xa)−1y−1x(ayy−1a−1)ya

= {(xa)−1y−1(xa)y} · y−1a−1ya,

which is a product of two commutators and therefore belongs to G(1).

For part (ii), suppose N ⊆ G is a normal subgroup. Then G/N is abelian if and only if xNyN = yNxN for all
x, y ∈ G, which happens if and only if xyN = yxN if and only if (yx)−1xy ∈ N if and only if x−1y−1yx ∈ N .
Since this is true for all x, y, and N is a subgroup, the latter happens if and only if G(1) ⊆ N . �

9. Let G be a group. For i ≥ 2, set G(i) := (G(i−1))(1), the commutator subgroup of G(i−1). Use the previous
problem to prove that G is solvable if and only if G(n) = {e}, for some n ≥ 1.

Solution. We first note that if A ⊆ B are subgroups of G, then A(1) ⊆ B(1). Now suppose G is solvable,
with solvable series

{e} = N0 ⊆ N1 ⊆ · · · ⊆ Nr−1 ⊆ Nr = G.

Since G/Nr−1 is abelian, by the previous problem, G(1) ⊆ Nr−1. Since Nr−1/Nr−2 is abelian, N
(1)
r−1 ⊆ Nr−2.

By the comment above, G(2) = (G(1))(1) ⊆ N
(1)
r−1 ⊆ Nr−2. Continuing inductively, it follows that for all

1 ≤ i ≤ r, G(i) ⊆ Nr−i. Therefore G(r) ⊆ Nr = {e}, which shows G(r) = {e}.

Conversely, if G(n) = {e} for some n, then

{e} = G(n) ⊆ G(n−1) ⊆ · · · ⊆ G(1) ⊆ G,
is a solvable series. �

10. For n ≥ 2, set σ := (1, 2), τ := (1, 2, . . . , n) ∈ Sn . Show that no proper subgroup of Sn contains both σ
and τ . In other words, Sn = 〈σ, τ〉. Does this generalize to any 2-cycle and any n-cycle?

Solution. It is easy to check that for any any 2-cycle (a, b) and γ ∈ Sn, that γ(a, b)γ−1 = (γ(a), γ(b)). Thus,
since τ i−1(1) = i and τ i−1(2) = i + 1, it follows that τ i−1(1, 2)τ−(i−1) = (i, i + 1) belongs to the subgroup
generated by σ and τ . Since Sn is generated by 2-cycles, it suffices to show that any 2-cycle is a product of
2-cycles with adjacent entries. Let (a, b) be a 2-cycle, and we assume a < b. Say , b = a + i, with i ≥ 1.
Then,

(a, b) = (a, a+ 1)(a+ 1, a+ 2) · · · (a+ i−2, a+ i−1)(a+ i−1, b)(a+ i−2, a+ i−1) · · · (a+ 1, a+ 2)(a, a+ 1).

For the second statement, in S4 if we take σ = (2, 4) and τ = (1, 2, 3, 4), an easy calculation shows that
τσ = (1, 2)(3, 4) = στ3. It follows that, any finite product involving σ and τ can be written in the form σiτ j ,
with 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3. Thus, the subgroup of S4 generated by σ and τ has at most eight elements.
Therefore, σ and τ do not generate S4. �

Bonus Problem. . Let K := F (x) denote the rational function field in one variable over Fand σ : K → K
be a field homomorphism.

(i) Prove that σ is an automorphism of K fixing F if and only if σ is a fractional linear transformation,
i.e., σ fixes F and σ(x) = ax+b

cx+d , where a, b, c, d ∈ F satisfy, ad − bc 6= 0. Hint: Note that σ is
determined by its value on x and use problem 10 from Homework 1.

(ii) Since the degree of K over F is infinite, let us say that K is Galois over F if the fixed field of
Gal(K/F ) is F . Prove that K is Galois over F if and only if F is infinite. (Again problem 10 from
Homework 1 might be useful.)

Solution. This is a difficult problem, if one is not used to working with the rational function field in one

variable over F . For one direction, suppose σ is an automorphism of K fixing F and set σ(x) := f(x)
g(x) .

Then, since σ is an automorphism of K fixing F , F (σ(x)) = σ(F (x)) = F (x). Thus, [K : F (σ(x))] = 1.
By Homework 1, problem 10, the maximum of the degrees of f(x) and g(x) equals 1. Therefore, we may
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write σ(x) = ax+b
cx+d , where a, b, c, d ∈ F , and a, b not both 0. Suppose ad − bc = 0. Then the second row

of the matrix

(
a b
c d

)
over F is a multiple of the first row. Therefore, there exists 0 6= λ ∈ F such that

cx+ d = λ(ax+ b). Therefore λσ(x) = λ · ax+bcx+d = 1. It follows that

σ(λx− 1) = λ · σ(x)− 1 = 0,

which contradicts σ being an automorphism. Therefore, ad− bc 6= 0.

Conversely, suppose σ : K → K is defined by σ(x) = ax+b
cx+d , where a, b, c, d ∈ F satisfy, ad − bc 6= 0. Note

that σ extends to all of K by defining σ( f(x)g(x) ) := f(σ(x))
g(σ(x)) , for all f(x)

g(x) ∈ K. It is straightforward to check

that σ is a field homomorphism as long as σ(x) is not algebraic over F . Indeed, if we set σ(x) := u, then we

can think of u as a variable over F , and then σ( f(x)g(x) ) = f(u)
g(u) , for all f(x)

g(x) ∈ K, and this is easily seen to be

a field homomorphism. So, assume for the moment that σ(x) is not algebraic over F , and thus σ is a field
homomorphism. Since ad− bc 6= 0, there exists a matrix equation over F :(

e f
g h

)
·
(
a b
c d

)
=

(
1 0
0 1

)
.

Then, using the matrix equation above, we have

σ(
ex+ f

gx+ h
) =

eσ(x) + f

gσ(x) + h
=
e(ax+bcx+d ) + f

g(ax+bcx+d ) + h
=

(ea+ cf)x+ (eb+ df)

(ga+ hc)x+ (gb+ hd)
= x.

This implies σ is surjective, since the image of σ equals F (σ(x)) which is a subfield of K, and since x is in
the image of σ, F (x) is in the image of σ, so σ is onto. Therefore σ is an automorphism of K.

Finally, suppose σ(x) = ax+b
cx+d were algebraic over F . First, assume c 6= 0. Using the division algorithm,

σ(x) = d
c +

b− ad
c

cx+d , where by assumption, b− ad
c 6= 0. Then, using that sums, products and inverses of algebraic

elements are algebraic, we get that 1
cx+d is algebraic over F , and thus cx + d is algebraic over F , and then

x is algebraic over F , which is a contradiction. Therefore, σ(x) is not algebraic over F . A similar, though
simpler, argument shows that if c = 0, then σ(x) = ax+b

d is not algebraic over F .

For part (ii), by part (i) we have that Gal(K/F ) is the set of all automorphisms of K with σ(x) = ax+b
cx+d ,

where a, b, c, d ∈ F satisfy, ad − bc 6= 0. Now, suppose F is finite. Then, there are only finitely many
expressions of the form ax+b

cx+d where a, b, c, d ∈ F (satisfy, ad − bc 6= 0). Thus, Gal(K/F ) is finite, say

Gal(K/F ) = {id, σ2, . . . , σn}. Then clearly, any elementary symmetric function in x, σ2(x), . . . , σn(x) belongs
to the fixed field F0 of Gal(K/F ). Thus,

f(t) := (t− x)(t− σ2(x)) · · · (t− σn(x)) = tn − s1tn−1 + s2t
n−2 + · · ·+ (−1)nsn,

belongs to F0[t]. Here s1, . . . , sn are the elementary symmetric functions in x, σ2(x), . . . , σn(x). Since x is a
root of f(t), we cannot have all si ∈ F otherwise x would be algebraic over F . Thus, some si ∈ F0\F , which
shows that K is not Galois over F .

Now suppose K is not Galois over F . Let F0 6= F be the fixed field of Gal(K/F ). Then Gal(K/F ) =
Galois(K/F0). However, by problem 10, from Homework 1, [K : F0] <∞. But this implies |Gal(K/F )| <∞,
which, by part (i) implies that F is a finite field. �
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