
MATH 830 FALL 2021: HOMEWORK 2, SOLUTIONS

You may work together on these homework problems, but each student in the class must write up the
solutions to this assignment entirely on their own. You may use the class notes, previous homework or
class supplements, but you may not consult any other sources, including, any algebra textbook, the internet,
graduate students not in this class, or any professor except your Math 830 instructor. Please upload a pdf
copy of your solutions to Blackboard no later than 10pm on Monday October 5.

1. Let x, y be independent variables over Zp, p > 0 a prime. Set F := Zp(xp, yp) and K := Zp(x, y). Give
a rigorous proof that [K : F ] = p2 and use this fact to show that K is not a simple extension of F . Hint:
Take pth powers!

Solution. Let us assume first that [K : F ] = p2. If K is a simple extension of F , then we can write K = F (u),

for some u ∈ K. By definition of K, u = f(x,y)
g(x,y) for f(x, y), g(x, y) ∈ Zp[x, y]. Now up ∈ F , so u satisfies a

monic polynomial of degree p with coefficients in F , which implies [K : F ] ≤ p, a contradiction.
To see that [K : F ] = p2, note that K = F (x, y). We first prove that [F (x) : F ] = p. Certainly xp ∈ F ,

so x is a root of h(t) := tp − xp ∈ F [t]. We now argue that h(t) is the minimal polynomial of x over
F . Suppose not. Then, let c(t) denote the minimal polynomial of x over F , and assume c(t) is a proper
factor of h(t). Over K, we can write f(t) = (t − x)p, which means c(t) = (t − x)r, with r < p. Thus,
c(t) = tr − rxtr−1 + · · ·+ (−1)rxr ∈ F [t]. Since r 6= 0 in Zp, we have x ∈ F . Intuitively, this clearly cannot
happen.

To see formally that x 6∈ F , suppose x = a(xp,yp)
b(xp,yp) , for a(xp, yp), b(xp, yp) polynomials in xp and yp. Then

xa(xp, yp) = b(xp, yp) as polynomials in x, y. This is a contradiction, since wherever x appears in b(xp, yp)
its exponent is divisible by p, whereas no exponent of x in xa(xp, yp) is divisible by p. Thus, x 6∈ F , so
h(t) is irreducible over F , giving [F (x) : F ] = p. We now have F ⊆ F (x) = Zp(x, yp) ⊆ K = F (x)(y).
If we show that [K : F (x)] = p, then by the multiplicative property of the degree symbol, we will have
[K : F ] = p2. If we set d(t) := tp − yp, then d(t) is a monic polynomial in F (x)[t] having y as a root. If we
know that d(t) is irreducible over F (x), then d(t) will be the minimal polynomial of y over F (x), and thus
[K : F (x)] = [F (x)(y) : F (x)] = p, which is what we want. But the proof of this is almost the same as the
proof that h(t) is irreducible over F , so we will omit it.

2. Let F be a finite field having characteristic p > 0. For a field K, write K∗ for the group of non-zero
elements of K under multiplication.

(i) Prove that |F | = pn, for some n ≥ 1.
(ii) Prove that F is a splitting field of xp

n −x over Zp. Conclude that any two finite fields with the same
number of elements are isomorphic. Hint: F ∗ is a finite group.

(iii) Let F ⊆ K be a finite extension of finite fields. Prove that K is a splitting field over F .
(iv) Recall from Problem 9 on Homework 1 that any irreducible polynomial with coefficients in Zp is

separable. Use a similar proof to show that any irreducible polynomial with coefficients in F is
separable. Thus, every finite extension of a finite field is a separable extension.

Solution. For (i), since F has characteristic p, we may assume Zp ⊆ F . Thus, we may regard F as a vector
space over Zp. Since F is finite, it must be finite dimensional over Zp. If F is n-dimensional as a vector
space over Zp, then we have |F | = pn, since as a vector space over Zp, F ∼= Znp .

For (ii), since F ∗ is a finite group of order pn−1, with 1 ∈ F as the identity element, we have αp
n−1 = 1, for

all α ∈ F ∗. Thus, for all such α, αp
n

= α and therefore each α is a root of f(x) := xp
n − x ∈ Zp[x]. Since 0

is also a root of f(x), it follows that F contains pn (distinct) roots of f(x) as a polynomial with coefficients
in Zp. Certainly we obtain F if we adjoin these elements to Zp, so F is the splitting field of f(x) over Zp.
The same argument would show that any other field with pn elements is the splitting field of f(x) over Zp,
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and since any two splitting fields for the same polynomial are isomorphic, any two finite fields with the same
number of elements must be isomorphic.

For (iii), suppose |K| = pm. Then, by part (ii) K is the splitting field of xp
m − x over Zp, and in fact,

K = Zp(K∗). But then, K = F (K∗), so that K is also the splitting field of xp
m − x over F .

For (iv), it suffices to prove that every irreducible polynomial in F [x] is a separable polynomial. Suppose
f(x) ∈ F [x] is an irreducible polynomial. By problem 8 from Homework 1, f(x) has distinct roots in F if
f ′(x) 6= 0, for in this case, f(x) and f ′(x) will have no common factor. So, suppose to the contrary that
f ′(x) = 0. Then as in the proof of problem 9 from Homework 1, f(x) =

∑r
j=0 ajx

pj , with each aj ∈ F .

Since F is finite and the map φ : F → F given by φ(a) = ap is one-to-one, φ must also be onto. Therefore,
there exist bj ∈ F such that aj = bpj , for all j. Thus,

f(x) =

r∑
j=0

ajx
pj =

r∑
j=0

bpjx
pj = (

r∑
j=0

bjx
j)p,

which contradicts the irreducibility of f(x). Therefore, f ′(x) 6= 0, so f(x) has distinct roots, i.e., f(x) is a
separable polynomial over Zp.

�

Important Remark. Note that, in light of Theorem 16.1, it follows from Problem 2 that any finite extension
of finite fields is a Galois extension.

3. Prove that for each n ≥ 1, there exists an irreducible polynomial of degree n over Zp.

Solution. Let K denote the splitting field of f(x) := xp
n − x over Zp. Since f ′(x) 6= 0, f(x) has pn distinct

roots in Zp. If we show that these pn roots form a field, this field must be K, since it will be the smallest

subfield of Zp containing the roots of f(x). However, if α, β are roots of f(x), then

(α+ β)p
n

= αp
n

+ βp
n

= α+ β, (αβ)p
n

= αp
n

βp
n

= αβ, (α−1)p
n

= (αp
n

)−1 = α−1

showing that K is a subfield of Zp. Since |K| = pn, we have [K : Zp] = n. Moreover, since the extension is
separable, by the Primitive Element Theorem, there exists α ∈ K such that K = F (α). It follows that the
minimal polynomial of α over Zp has degree n, which gives what we want. �

4. Let F ⊆ K be a finite extension of finite fields having characteristic p > 0. Assume |F | = pn and
|K| = pm, with n < m. Let φ : K → K be the Frobenius map, i.e., φ(α) = αp, for all α ∈ K.

(i) Show that φ is an automorphism of K fixing Zp and that Gal(K/Zp) is a cyclic group generated by
φ. Which cyclic group is Gal(K/Zp)?

(ii) Describe the intermediate fields between Zp and K? Here you need to say more than the intermediate
fields correspond to the subgroups of Gal(K/Zp).

(iii) Determine Gal(K/F ).
(iv) What are the intermediate fields between F and K?
(v) Conclude that if F and K are finite fields, with |F | = pn and |K| = pm and n < m, then (up to

isomorphism) F ⊆ K if and only if n|m.

Solution. For part (i), we have already been using the fact that when K is a field of characteristic p, then,
for all a, b ∈ K, (a + b)p = ap + bp, which follows since each binomial coefficient

(
p
j

)
with j 6= 1 or p equals

zero in K. This means φ(a + b) = φ(a) + φ(b). Also φ(ab) = (ab)p = apbp = φ(a)φ(b). Therefore φ is a
field homomorphism, and thus also injective. Since K is finite, φ must also be surjective, so that φ is an
automorphism of K. Finally φ(a) = ap = a, for all a ∈ Zp, which shows that φ fixes Zp, i.e., φ ∈ Gal(K/Zp).

Now consider φ2. For all a ∈ K, φ2(a) = φ(ap) = (ap)p = ap
2

. An easy induction argument shows that

φi(a) = ap
i

, for all a ∈ K and i ≥ 1. By part (ii) of the previous problem, φm(a) = ap
m

= a, for all a ∈ K, so

that φm is the identity map. Suppose φj = id, for some j < m. Then for all a ∈ K, a = φj(a) = ap
j

, so that

every element of K is a root of xp
j − x ∈ Zp[x]. But a polynomial cannot have more roots that its degree.

Thus, as an element of Gal(K/Zp), φ has order m. On the other hand, by the previous problem, K is a
simple, Galois extension of Zp, and thus |Gal(K/Zp)| = [K : Zp] = m, which implies that Gal(K/Zp) = 〈φ〉,
the cyclic group of order m.
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For (ii), since the extension Zp ⊆ K is Galois, the intermediate fields between Zp and K are in 1-1 corre-
spondence with the subgroups of Gal(K/Zp). Now, since Gal(K/Zp) ∼= Zm, the subgroups of Gal(K/Zp)
are of the form 〈φr〉 with r|m. For each such r, there is a corresponding subfield of the fixed field of 〈φr〉.
It is easy to check that an element a of K is fixed by 〈φr〉 if and only if it is fixed by φr, i.e., if and only if
ap

r

= a. In other words, the fixed field of 〈φr〉 is the splitting field of xp
r − x over Zp.

For (iii), from problem 2 we know that F is the splitting field of xp
n − x, and thus a ∈ K belongs to F if

and only of φn(a) = a. In other words, F is the fixed field of 〈φn〉. By the Galois correspondence theorem,
Gal(K/F ) = 〈φn〉, a cyclic group of order r, where m = rn.

For (iv), since the intermediate fields between F and K correspond to the subgroups of Gal(K/F ), we want
the subgroups of 〈φn〉. Now, 〈φn〉 is a cyclic subgroup of 〈φ〉 of order r, where m = rn, , so its subgroups
are of the form 〈φns〉, with s|r. It follows from (iii) that the intermediate fields between F and K are the
splitting fields of xp

ns − x, with s dividing r.

For (v), it follows from (iii) that if F ⊆ K are finite fields with F = Znpn and K = Zpm , then n|m. Conversely,
suppose n|m and F and K are finite fields satisfying |F | = pn and |K| = pm, with n < m. Then by problem
2, K is a splitting field of xp

m − x and over Zp and F is a splitting field of xp
n − x over Zp. Fix K. Then

by (ii), since n|m, there is a subfield F0 of K whose order is pn and it is a splitting field of xp
n − x over Zp.

Since splitting fields for the same polynomials over the same base field are isomorphic, F is isomorphic to
F0. Thus, up to isomorphism, F is contained in K. �

5. Let F := Q and K denote the splitting field of x7 − 1 over Q. Find (with proof) Gal(K/F ) and then use
the Galois Correspondence Theorem to find (with proof) all intermediate fields between F and K. You may
use the fact that x6 + x5 + · · ·+ x+ 1 is irreducible over Q.

Solution. Set ε := e
2πi
7 , a primitive 7th root of unity, so that 1, ε, ε2, . . . ε6 are the roots of x7 − 1. Thus,

K := Q(ε) is the splitting field of x7 − 1 over Q. Since ε is a root of f(x) := x6 + x5 + · · · + x + 1, which
is irreducible over Q, f(x) is the minimal polynomial of ε over Q and thus [K : Q] = 6. Since K = Q(ε) is
Galois over Q, Gal(K/F ) is a group of order six. We will show that Gal(K/F ) ∼= Z6. Since ε3 is also a root
of f(x), there is a field isomorphism σ : K → Q(ε3) ⊆ K such that σ(ε) = ε3. Moreover, [Q(ε3) : Q] = 6,
therefore Q(ε3) = K, so that σ ∈ Gal(K/F ). If we show that the values ε, σ(ε), . . . , σ5(ε) are distinct, this
will show that 1, σ, . . . , σ5 are distinct elements of Gal(K/F ) and it will follow that Gal(K/F ) = 〈σ〉 is cyclic
of order six.

Now,

id(ε) = ε.
σ(ε) = ε3.
σ2(ε) = σ(ε3) = σ(ε)3 = (ε3)3 = ε9 = ε2.
σ3(ε) = σ(σ2(ε)) = σ(ε2) = σ(ε)2 = ε6.
σ4(ε) = σ(ε6) = σ(ε)6 = ε18 = ε4.
σ5(ε) = σ(ε4) = σ(ε)4 = ε12 = ε5,

which gives what we want. It now follows that H1 := 〈σ2〉 and H2 := 〈σ3〉 are the only proper subgroups of
Gal(K/F ), so that the fixed fields KH1 and KH2 are the only intermediate fields between Q and K.

To find KH1 , it suffices to find the elements of K fixed by σ2. We first calculate σ2 on the basis 1, ε, . . . , ε5,
for K over Q.

σ2(1) = 1.
σ2(ε) = ε2.
σ2(ε2) = σ2(ε)σ2(ε) = ε2ε2 = ε4.
σ2(ε3) = σ2(ε)3 = ε6 = 1− ε− ε2 − ε3 − ε4 − ε5.
σ2(ε4) = σ2(ε)4 = ε8 = ε.
σ2(ε5) = σ2(ε)5 = ε10 = ε3.
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It follows that if γ = a+ bε+ cε2 + cε3 + eε4 + fε5 ∈ K, then

σ2(γ) = a+ bε2 + cε4 + d(−1− ε− ε2 − ε3 − ε4 − ε5) + eε+ fε3

= (a− d) + (e− d)ε+ (b− d)ε2 + (f − d)ε3 + (c− d)ε4 +−dε5

If γ ∈ KH1 , then γ = σ2(γ). This yields the system of equations

a = a− d
b = e− d
c = b− d
d = f − d
e = c− d
f = −d

It follows that d = 0, f = 0, b = c = e. Thus, γ = a+bε+bε2+bε4 = a+b(ε+ε2+ε4). Moreover, the equations
above for σ2, show that ε+ ε2 + ε4 is fixed by σ2, and thus any expression of the form a+ b(ε+ ε2 + ε4) is
fixed by σ2. It follows that KH1 = {a+ b(ε+ ε2 + ε4) | a, b ∈ Q} = Q(ε+ ε2 + ε4).

To find KH2 , we will argue indirectly. Note that to find KH2 , we need to find the elements of K fixed by
σ3. An easy calculation shows that:

σ3(1) = 1.
σ3(ε) = ε6 = −1− ε− ε2 − ε3 − ε4 − ε5.
σ3(ε2) = ε12 = ε5.
σ3(ε3) = ε18 = ε4.
σ3(ε4) = ε24 = ε3.
σ3(ε5) = ε30 = ε2.

Note that σ3(ε3 + ε4) = σ3(ε3)+σ3(ε4) = ε4 +ε3, so that ε3 +ε4 belongs to KH2 , and thus Q(ε3 + ε4) ⊆ KH2 .
Now, since |H2] = 2, [KH2 : Q] = 3. Thus, there are no fields between Q and KH2 . It follows that
KH2 = Q(ε3 + ε4).

Finally, since Gal(K/F ) is abelian, every subgroup is normal in Gal(K/F ), so that Q(ε + ε2 + ε4) and
Q(ε3 + ε4) are Galois over Q. �

6. Let F := Q and K denote the splitting field of (x2−2)(x2−3)(x2−5) over Q. Find (with proof) Gal(K/F )
and then use the Galois Correspondence Theorem to find (with proof) all intermediate fields between F and
K.

Solution. Note that K := Q(
√

2,
√

3,
√

5). By Examples 12.2 and 15.2 (a), Q(
√

2,
√

3) has degree four over Q
and has intermediate fields Q(

√
2),Q(

√
3),Q(

√
6). It is easy to see that

√
5 does not belong to any of these

fields, therefore
√

5 6∈ Q(
√

2,
√

3) (since Q(
√

2,
√

3) cannot equal Q(
√

5)). Therefore [K : Q(
√

2,
√

3)] = 2,
and thus, [K : Q] = 8. We argue that Gal(K/F ) ∼= Z2 × Z2 × Z2. The proof is similar to the proof

that the Galois group of Q(
√

2,
√

3) over Q is Z2 × Z2, as given in Example 12.2. Now, if σ ∈ Gal(K/F ),

σ(
√

2) = ±
√

2, σ(
√

3) = ±
√

3, σ(
√

5) = ±
√

(5). There are eight possible such automorphisms and they all

exist. For example, to see that there is σ ∈ Gal(K/F ) such that σ(
√

2) = −
√

2, σ(
√

3) = −
√

3, σ(
√

5) = −
√

5,

we start with the automorphism φ : Q(
√

2,
√

3)→ Q(
√

2,
√

3) that takes
√

2 to −
√

2 and
√

3 to −
√

3, which

exists by Example 12.2. Now the minimal polynomial of
√

5 over Q(
√

2,
√

3) is x2−5. Thus, by Homework 1,

problem 7, there exists a field isomorphism σ : Q(
√

2,
√

3)(
√

5)→ Q(
√

2,
√

3)(
√

5) such that σ extends φ and

σ(
√

5) = −
√

5. Thus, σ ∈ Gal(K/F ) has the required properties. It is easy to see that σ2 = id. In a similar
way, we can create six other non-identity elements that take any combination of roots to x2−2, x2−3, x2−5
to any other combination of corresponding roots. In fact, the easiest way to see this is to take φ to be any
one of the four elements of Gal(Q(

√
2,
√

3)/Q) found in Example 12.2 and to apply problem 7 on Homework

to extend each of these to K by sending
√

5 to
√

5 or
√

5 to −
√

5.

We can easily identify Gal(K/F ) as Z2 × Z2 × Z2 if we write Z2 = {1,−1} as a multiplicative group. Then
the elements of Z2 × Z2 × Z2 are:

(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1).
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Clearly, σ as defined above corresponds to (−1,−1,−1). And likewise, the element τ ∈ Gal(K/F ) that takes√
2 to

√
2,
√

3 to −
√

3,
√

5 to −
√

5 is identified with (1,−1,−1). If one identifies the elements of Gal(K/F )
with the triples above, and writes out the two groups tables, one can see the required isomorphism of groups.

As for the subgroups of Gal(K/F ) = Z2 × Z2 × Z2, one has to be a bit careful, since if A,B are groups,
then the subgroups of A × B are not only the subgroups H ×K, where H is a subgroup of A and K is a
subgroup of B. While the H ×K are certainly subgroups of A × B, not every subgroup of A × B has this
form. (FWIW: It is true for rings with identity that if J ⊆ R1 × R2 is an ideal in the product of rings,
then J = I1 × I2, for ideals I1 ⊆ R1 and I2 ⊆ R2.) However, if L ⊆ A × B is a subgroup, then L1 the set
of first components of the elements of L forms a subgroup of A and similarly, L2, the second components
of the elements of L form a subgroup of B, and L ⊆ L1 × L2. This latter fact will still help us identity
the subgroups of Z2 × Z2 × Z2 = Gal(K/F ). The first thing to note is that every non-identity element of
Z2×Z2×Z2 has order two, hence they each generate a subgroup of order two and account for all subgroups
of Z2 × Z2 × Z2 of order two. Let us identify each of these subgroups by their generators:

C1 ↔ (−1, 1, 1)

C2 ↔ (1,−1, 1)

C3 ↔ (1, 1,−1)

C4 ↔ (−1,−1, 1)

C5 ↔ (1,−1,−1)

C6 ↔ (−1, 1,−1)

C7 ↔ (−1,−1,−1)

Since each of these subgroups has index four in Z2 × Z2 × Z2, their fixed fields have degree four over Q.
For ease of notation, we will write C ′i instead of KCi for the fixed field of Ci. With the identification of

Z2×Z2×Z2 with Gal(K/F ) above, it is clear, say, that C1 fixes
√

3,
√

5, and therefore Q(
√

3,
√

5) ⊆ C ′ and

since Q(
√

3,
√

5) has degree four over Q, we must have C ′1 = Q(
√

3,
√

5). Another case: C4 clearly fixes
√

6

and
√

5, so that C ′4 = Q(
√

6,
√

5). Thus, we obtain

C ′1 = Q(
√

3,
√

5)

C ′2 = Q(
√

2,
√

5)

C ′3 = Q(
√

2,
√

3)

C ′4 = Q(
√

6,
√

5)

C ′5 = Q(
√

2,
√

15)

C ′6 = Q(
√

3,
√

10)

C ′7 = Q(
√

6,
√

15).

It might seem that we have omitted some subfields of degree four over Q, say E := Q(
√

10,
√

15). But√
10 ·
√

15 = 5
√

6 ∈ E, and thus
√

6 ∈ E. Therefore, E contains Q(
√

6,
√

15), which forces E = C ′7. This
shows the power of the Galois Correspondence Theorem. We have accounted for all of the subgroups of
Gal(K/F ) of order two, and have therefore accounted for all of the intermediated field having degree four
over Q, even though there may be multiple ways to represent each intermediate field.

We now identify seven subgroups of order four, K1, . . . , ,K7. Since these subgroups have index two in
Z2 × Z2 × Z2 = Gal(K/F ), it will follow that their fixed fields K ′i (using the same notation as before) will

have degree two over Q. Note that a basis for K over F is 1,
√

2,
√

3,
√

6,
√

5,
√

10,
√

15,
√

30. If we adjoin
each of the basis elements, except 1, to Q this will give us seven of the expected fixed fields of degree two
over Q. But we also need to see which fixed field corresponds to which subgroup of order four and that there
are no other intermediate fields having degree two over Q.
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We first identify the subgroups of order four having the form H ×K. Let G := Gal(Q(
√

2,
√

3)/Q). Then
K1 := G × {1} is a subgroup of order four. If we let σ2, σ3, σ4 be as in Example 12.2, and set H2 := 〈σ2〉,
H3 := 〈σ3〉, H4 := 〈σ4〉 be the corresponding subgroups, then K2 := H2×Z2,K3 := H3×Z2,K3 := H4×Z2

are the remaining subgroups of Gal(K/F ) of the form H ×K. Note that in terms of Z2 × Z2 × Z2 we have

K1 = {(1, 1, 1), (−1, 1, 1), (1,−1, 1), (−1,−1, 1)}
K2 = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)}
K3 = {(1, 1, 1), (1, 1,−1), (−1, 1, 1), (−1, 1,−1)}
K4 = {(1, 1, 1), (1, 1,−1), (−1,−1, 1), (−1,−1,−1)}.

We can now see that the corresponding fixed fields are

K ′1 = Q(
√

5)

K ′2 = Q(
√

2)

K ′3 = Q(
√

3)

K ′4 = Q(
√

6).

We now list three more subgroups of order four:

K5 = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}
K6 = {(1, 1, 1), (−1,−1,−1), (1,−1, 1), (−1, 1,−1)}
K7 = {(1, 1, 1), (−1,−1,−1), (−1, 1, 1), (1,−1,−1)}.

For these subgroups, we clearly have

K ′5 = Q(
√

30)

K ′6 = Q(
√

10)

K ′7 = Q(
√

15).

To see that we have accounted for all of the subgroups, and hence, all of the intermediate fields, we just have
to see that there are no more subgroups of order four. Let us do so by examining the last coordinates of the
elements of a subgroup of order four. If all of the last coordinates are 1, there is clearly one such subgroup,
namely, K1. If at least one element, say a has last coordinate -1, there has to be at least two such elements,
because, if b is a non-identity element with 1 as last coordinate, ab is a non-identity element with -1 as a last
coordinate. On the other hand, if a, b are non-identity elements, with -1 as the last coordinate, ab has last
coordinate 1. Thus, except for K1, any subgroup of order four has two elements with last coordinate 1 and
two elements with last coordinate -1. Now, Z2 × Z2 × Z2 has four elements with -1 in the last coordinate.
There are six ways to choose two of them, say a, b. Then it is not hard to see that {(1, 1, 1), a, b, ab} forms a
subgroup of Z2 ×Z2 ×Z2. Since there are six ways to do this, and we have found six such subgroups above,
we have accounted for all possible subgroups of order four, and therefore all intermediate fields having degree
two over Q. �

7. Suppose F ⊆ K is a finite extension of fields and K = F (α1, . . . , αn). Give a proof by induction on n that
|Gal(K/F )| ≤ [K : F ]. Hint: First get a good understanding of the case n = 2. For this, find the number
of field homomorphisms F (α1)→ F (α1, α2) fixing F . Now work out how to use problem 7 from Homework
1 to count the number of automorphisms of F (α1, α2) that fix F . Once you have done this, you should be
able to do the general case.

Solution. Since K is finite over F , we can assume K = F (α1, . . . , αn). We may further assume that no αi+1

belongs to F (α1, . . . , αi). We induct on i to show that the number of field homomorphisms from F (α1, . . . , αi)
to K fixing F is less than or equal to [F (α1, . . . , αi) : F ]. The case i = 1 is covered by Proposition 2.1, for if
f(x) denotes the minimal polynomial of α1 over F , and φ : F (α1) → K is a homomorphism fixing F , then
φ(α1) must be a root of f(x). Since there are at most deg(f(x)) = [F (α1) : F ] roots of f(x) in K, this gives
what we want.
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Now suppose i > 1 and there are s field homomorphisms from E := F (α1, . . . , αi) to K fixing F with
s ≤ [F (α1, . . . , αi) : F ]. Let g(x) denote the minimal polynomial of αi+1 over E. Let φ : E → K be a field
homomorphism fixing F . Set E′ := φ(E), so that φ is field isomorphism from E to E′. As in problem 7
in Homework 1, we let gφ(x) denote the polynomial in E′[x] obtained by applying φ to the coefficients of
g(x). Suppose d := deg(g(x)) and σ : E(αi+1) → K is a field homomorphism extending φ. Then σ(αi+1)
must be a root of gφ(x) in K. Since there are at most d such roots, the number of field homomorphisms
σ : E(αi+1)→ K extending φ is less than or equal to d = [E(αi+1) : E]. Now, suppose τ : E(αi+1)→ K is
a field homomorphism fixing F . Then τ|E : E → K is a field homomorphism from E to K fixing F . In other
words, any field homomorphism from E(αi+1)→ K fixing F is the extension of a field homomorphism from
E to K fixing F . Now, there are s field homomorphisms φ : E → K and at most d extensions of each φ to
E(αi+1), therefore there are at most

sd ≤ [E : F ] · [E(αi+1) : E] = [F (α1, . . . , αi+1) : F ],

homomorphisms from F (α1, . . . , αi+1) to K fixing F . Thus, by induction on i, when i = n, we have that
the number of field homomorphisms from K → K fixing F is less than or equal to [K : F ], which completes
the proof. �
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