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History of the Project

In 1981 the monumental project to classify all of the fi-
nite simple groups appeared to be nearing its conclusion.
Danny Gorenstein had dubbed the project the “Thirty
Years’ War,” dating its inception from an address by
Richard Brauer at the International Congress of Mathe-
maticians in 1954. He and Richard Lyons agreed that it
would be desirable to write a series of volumes that would
contain the complete proof of this Classification Theorem,
modulo a short and clearly specified list of background re-
sults. As the existing proof was scattered over hundreds
of journal articles, some of which cited other articles
that were never published, there was a consensus that
this was indeed a worthwhile project, and the American
Mathematical Society (AMS) agreed to publish this series
of volumes. In the spring of 1982, Danny and Richard
recruited me to be a partner in this project. Richard Foote
and Gernot Stroth were also recruited at an early stage to
contribute specific portions of this work.

Richard Lyons (pictured here with the author) and
Gorenstein agreed that it would be desirable to write
a series of volumes [GLS] that would contain the
complete proof of this Classification Theorem.

Considerable progress was made during the first
decade of the project, and then, tragically, Danny Goren-
stein died in August 1992. Nevertheless, the first six
volumes of our series were published by the AMS during
the decade 1994-2005. Then a hiatus ensued. I am happy
to report that Volume 7 has just been published by the
AMS, and Volume 8 is near completion and promised to
the AMS by August 2018. The completion of Volume 8
will be a significant mathematical milestone in our work.
It seems a good time to provide this progress report on
the GLS project. Moreover, although the strategy outlined
in Volume 1 [GLS] remains substantially unchanged, there
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is one significant change worthy of note. (A detailed
overview of the original Classification Project may be
found in [ALSS].)

We anticipate that there will be twelve volumes in the
complete series [GLS], which we hope to complete by
2023. T will report on the current state of our project in
this article.

Introduction to Classification

A common theme in mathematics is to study a partic-
ular mathematical structure and attempt to classify all
instances of it, e.g., regular polyhedra, distance transitive
graphs, and 3-manifolds, among others. Classifying infi-
nite groups is hopeless, but already in the 1890s, inspired
by the work of Killing and Cartan on finite-dimensional
semisimple complex Lie algebras, some mathematicians
began to contemplate the classification of all finite groups.

Can we classify all finite groups? Since we can combine
any two finite groups, for instance via direct product,
to create a new finite group, it is natural to begin
by considering groups that are “building blocks” for
all other finite groups. Similar to the factorization of
integers into prime numbers, one can “break down” finite
groups into smaller pieces called simple groups, which
cannot be decomposed further. A group G is simple if it
has no nontrivial proper normal subgroup; i.e., its only
normal subgroups are the trivial group and G itself. The
Jordan-Holder Theorem then tells us that for any finite
group G, there is an ordered sequence of subgroups,
1=H, <H; < <{H, = G called a composition series,
such that each H; is a maximal proper normal subgroup
of Hi+, and all H;+1/H;, called composition factors, are
simple. Moreover, any two composition series of a group
G are equivalent in the sense that they have the same
number of subgroups and the same composition factors,
up to permutation and isomorphism.

Nonetheless, the problem of determining all ways to
reassemble a set of composition factors into a finite group
is daunting, perhaps infeasible. Although it is very easy to
prove that the only abelian simple groups are Z/pZ, where
p is a prime number, the problem of determining all finite
p-groups, i.e., groups G all of whose composition factors
are isomorphic to Z/pZ, is of frightening complexity. For
example, there are billions of groups of size 2'°, and
many of them are essentially indistinguishable.

Fortunately, in most applications of finite group theory,
where the group arises as a group of permutations or
symmetries or linear operators on some other structure,
the problem can be reduced easily to the case where
the group action is “primitive” in some sense. Using the
classification of finite simple groups, Bob Guralnick, the
latest Cole Prize recipient (see Notices, April 2018, p. 461),
has demonstrated the efficacy of this strategy in a wide
variety of contexts.

For the remainder of this article, I will discuss the
classification of the finite simple groups. In contrast to
the abelian case, the classification of nonabelian finite
simple groups is quite complex and requires a full-
scale classification strategy. The two smallest nonabelian
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simple groups are As, the alternating group on five
symbols, with 60 elements, and PSL(2,7), a member of
one of the families of groups of Lie type (see the next
section), with 168 elements. In addition to the simple
groups belonging to infinite families, there are also
twenty-six so-called sporadic groups, five discovered by
Mathieu in the nineteenth century, and the rest discovered
between 1965 and 1975. The sporadic groups range in size
from 7920 (the smallest Mathieu group) to approximately
8 X 10°3 (the aptly named Monster).

In the next section, we discuss our classification
strategy to prove the following theorem.

Theorem. Every finite simple group is isomorphic to one
of the following:

(1) a cyclic group of prime order,

(2) an alternating group of degree at least 5,

(3) a simple group of Lie type, or

(4) one of the 26 “sporadic” simple groups.

— — — ~—

The Classification Strategy

For about fifty years, the Classification Strategy has been
schematically represented as a box subdivided into four
smaller boxes:

small odd
large odd

small even
large even

Most of the finite simple groups are groups of Lie type
defined over some finite field. If you are not familiar with
Lie groups, you may consider the example of PSL(n, F),
which is the quotient of the group SL(n,F) of n X n
matrices of determinant 1 with entries from the finite
field F by the normal subgroup of scalar matrices of
determinant 1. In this context, odd and even refer to
the parity of |F|, while small and large are measured
by the size of n. When n < 3, the groups are definitely
small, though PSp(4, F) is also small. If you know Tits’s
description of groups of Lie type as BN pairs, then it is
more accurate to say that groups of BN rank 1 or 2 are
small, while most groups of BN rank at least 3 are large.

Of course, there are also simple alternating groups and
sporadic groups which must be fitted into this scheme.
Much more serious is the fact that we must provide
definitions for terms like “a group G of small odd type”
that do not presuppose that G is a group of Lie type
or indeed has any known property other than simplicity.
However, if p is a prime divisor of |G|, then Sylow
guarantees the existence of many p-subgroups of G, i.e.,
subgroups of order p™ for some m > 1. We call the
centralizers and normalizers of such subgroups p-local
subgroups of G. In his 1954 address, Richard Brauer
made the case for attempting to characterize simple
groups via their 2-local structures. A crucial validation
for this strategy was provided in 1963 when Walter Feit
and John G. Thompson [FT] published their proof that all
nonabelian finite simple groups have even order.

Now, if G = G(F) is a group of Lie type defined
over a field F of even order, then the 2-local subgroups
of G are contained in parabolic subgroups of G, and
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by a theorem of Borel and Tits they inherit significant
structural properties from these parabolics. On the other
hand, this is far from true in groups of Lie type when F has
odd order, with a small number of interesting exceptions.
This gave rise to the initial definitions of “even” and “odd”:
characteristic 2-type and “non”-characteristic 2-type. (We
shall instead call the latter “odd type.”)

Definition. A group H is of 2-parabolic type if H contains
anormal 2-subgroup Q such that the centralizer Cy(Q) is
just Z(Q). (This definition is nonstandard. It is used here
for expository purposes.)

Definition. A group G is of characteristic 2-type if every
2-local subgroup of G is of 2-parabolic type.

A weakness of using this definition to define the line
between even and odd is that, in the study of groups
of odd type, it forces the consideration of all groups G
having a 2-local, no matter how small, which is not of
2-parabolic type. A better definition is

Definition. A group G is of even characteristic (or para-
bolic characteristic 2) if every 2-local subgroup H of odd
index in G is of 2-parabolic type.

In the GLS Project, we use another term, “even type,”
which is convenient for our approach but technically
complicated to define. Recently, Magaard and Stroth have
classified all groups that are of even type but not of
even characteristic. The list is rather short: A;», Q7(3),
Qg (3), and the sporadic simple groups J;, Coz, and Fi»3.
I shall speak henceforth of the odd/even dichotomy as
the dichotomy between groups of even type and groups
of odd (i.e., not even) type.

The small/large dichotomy was first formulated for
groups of even type by John G. Thompson in his work
on N-groups, i.e., nonsolvable finite groups all of whose
local subgroups are solvable. He defined the parameter
e(G) to be the maximum rank of an abelian subgroup of
odd order contained in some 2-local subgroup of G. A
finite simple group G is of small even type if e(G) < 2,
i.e., if no 2-local subgroup H of G contains a subgroup
isomorphic to C, X C, X Cp for any odd prime p. Such
groups also came to be known as quasithin groups,
and the classification of quasithin simple groups of
even characteristic by Aschbacher and Smith [AS] was the
culminating accomplishment of the original Classification
Project. Notice that if G is a Chevalley group defined over
a field of even order g > 2, then e(G) typically measures
the rank of a split torus of G and hence the BN-rank of G.

The small/large dichotomy for groups of odd type was
originally formulated in terms of the 2-rank (or normal
2-rank or sectional 2-rank) of G. In the [GLS] volumes, the
study of groups G of odd type focuses on the isomorphism
types of components of involution centralizers, where an
involution is an element of order 2 in G. The following
definitions are of crucial importance.

Definitions.
1. A finite group L is quasisimple if L/Z (L) is a non-
abelian simple group and L = [L, L].
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Some of those who have worked on the Classification
Project (I to r: David Goldschmidt, Ron Solomon,
Stephen D. Smith, Richard Lyons, Michael Aschbacher,
John G. Thompson, and Richard Foote), who gathered
at Cambridge University in 2013 in celebration of
Thompson’s eightieth birthday.

2. A subgroup L of a group H is a component of H if L
is a quasisimple subnormal subgroup of H. (Subnormality
is the transitive extension of the normality relation.)

If, for example, G = GL(V), where V is an n-dimensional
vector space over a finite field F of odd order, and if t
is an involution in G, then the components of Cg(t)
typically are SL(V_(t)) and SL(V4(t)), where V_(t) and
V. (t) are the —1 and +1 eigenspaces for t on V. Thus
the components of Cgv)(t) are [C4+,C4+] = SL(V4) and
[C_.,C_] = SL(V_-). See Figure 1. (Computations are
similar in SL(V) and PSL(V), and the components are
isomorphic to those in GL(V).)

(5 )

CoLv (0) = {(g g) cAeGL(Vy),Be GL(V_)}
=C, XC_ =GL(Vy) X GL(V_).

Figure 1. The components of Cg(v)(t) are
[C+,C+] = SL(V+) and [C,,C,] = SL(Vf).

Roughly speaking, groups of small odd type are defined
to be simple groups G such that the only components
occurring in any involution centralizer are isomorphic to
SL(2,F) or PSL(2,F) for some field F of odd order. The
classification of finite simple groups of small odd type
appears in Volume 6 [GLS]. Since the [GLS] Project will
quote [AS] for the classification of quasithin groups of
even type, 2004 marked the publication of the volumes
treating “small” groups of both odd and even type.

It should be noted here that in the outline of the [GLS]
series in Volume 1, a slightly broader definition of small
even type was formulated. Namely, it was stipulated that G
was of small even type if G was of even type with e(G) < 3
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and no 2-local subgroup H of G contained a subgroup
isomorphic to C, XC, X Cp,unless p = 3.Itwas anticipated
that the Quasithin Problem would be enlarged to treat this
wider problem. Given the monumental task accomplished
by Aschbacher and Smith, it is quite understandable that
they limited themselves to the original Quasithin Problem
(though extended to groups of even type). It should also
be noted that both Aschbacher-Smith [AS] and [GLS]
treat only X-proper simple groups, i.e., simple groups
all of whose proper simple sections are known simple
groups. This certainly suffices for an inductive proof of
the Classification Theorem.

In the philosophy of the GLS Project, large simple
groups of both even and odd type are to be treated
as groups of component type, i.e., groups G that, for a
suitable prime p, have p-rank at least 3 and have elements
of order p whose centralizers have components of suitable
type. Notice that if G is a simple group of Lie type defined
over a field F of characteristic r, then centralizers of
elements of order r have no components, while elements
of prime order p different from r often do. For example, if
G = GL(6,F), |F| = 22 and x is an element of G of order
3 with three 2-dimensional eigenspaces, with eigenvalues
1, w, and w?, then CcL.r) (x) has three components,
each isomorphic to SL(2,F) as in Figure 2. Again, the
calculations are similar in SL(6, F) and in PSL(6, F).

I O O
x=|10 wl O

O 0 w
and
A O O
Carerx)=4(0 B O|:AB,CEGLZ2,F)
O O C

= GL(2,F) X GL(2,F) X GL(2, F).

Figure 2. The centralizer C¢r6,r) (x) of an order-3
element x has three components, each isomorphic to
SL(2,F). Here |F| = 2°™,

In general, in groups G of characteristic r, centralizers
of elements of order p will typically have components
that themselves are quasisimple groups of Lie type of
characteristic r, indeed often smaller dimensional ver-
sions of G itself, as in the example in Figure 2. Thus, the
principal criterion for “components of suitable type” is
that they not be groups of Lie type of characteristic p. In
this case, we shall call p a semisimple prime for G.

More accurately, we choose p = 2 if some involution
centralizer Cs (t) has a component which is not a group of
Lie type in characteristic 2. We also exclude most sporadic
components and, for the sake of “largeness,” SL>(g) and
L.(g). If we cannot choose p = 2, then we choose an
odd prime p such that G has p-rank at least 3 and some
p-element centralizer C¢ (x) has a component which has a
noncyclic Sylow p-subgroup and is not a group of Lie type
in characteristic p. (For p = 3, we also exclude several
sporadic components.)
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I have swept under the carpet a serious problem
concerning “p-signalizers,” and I shall continue to do so.
But I will say that I should be saying “p-components”
and not “components” in the previous paragraph, and the
proof that we may reduce the problem from p-components
to components when either p = 2 or p is odd and G has
p-rank at least 4 is one of the principal results of Volume
5 [GLS]. For this reason, we use the term generic even
type to refer to the subset of groups of large even type
which have p-rank at least 4 for a suitable odd prime p.
The signalizer problem for groups of characteristic 2-type
and odd p-rank 3 was handled by Aschbacher in a pair of
papers, which still need to be generalized to the case of
groups of even type.

Building on the work in Volume 5 [GLS], Volumes 7 and
8 will complete the proof of the following two theorems.

Theorem O. Let G be a finite K-proper simple group of
odd type. Then either G is an alternating group of degree
n =5 (but not 8 or 12) or G is a group of Lie type defined
over a finite field of odd order or G is one of the following
sporadic simple groups: M1, M12, J1, Mc, O'N, or Ly.

Theorem GE. Let G be a finite K -proper simple group of
generic even type. Then either G is a group of Lie type
defined over a finite field of even order or G has a proper
p-uniqueness subgroup for some odd prime p or G has a
“p-thin configuration” for some odd prime p.

Volume 7 [GLS] has just been published by the AMS.
It almost completes the identification of the alternating
groups of degree n > 13 and the reduction of the Generic
Case to the case where a suitable p-element centralizer
has a component of Lie type in characteristic r, with either

Inna Capdeboscq, coauthor of Volume 9 [GLS].
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Gernot Stroth’s 600-page treatment of groups with a
strongly p-embedded subgroup will probably appear
as Volume 11 [GLS].

p = 2 or ¥ = 2. Volume 8 will complete the identification
of the alternating groups and the generic groups of Lie
type. It is near completion, and we anticipate submission
to the AMS for publication by August 2018.

An important project stimulated by our work was the
study of a class of amalgams of finite groups, known as
Curtis-Tits-Phan amalgams, by a team of mathematicians
including C. Bennett, R. Blok, R. Gramlich, C. Hoffman,
M. Horn, B. Muhlherr, W. Nickel, and S. Shpectorov. Their
results are added to our list of Background Results and
used in our identification of many of the finite simple
groups of Lie type. An extensive overview of this project,
with a fuller list of authors and papers, may be found in
Gramlich [Gr]. A very recent paper of Blok, Hoffman, and
Shpectorov is also crucial to our work.

What will remain to be done after Volume 8 [GLS]? The
remaining work falls primarily into three cases:

(1) the Bicharacteristic Case,

(2) the p-Uniqueness Case, and

(3) the e(G) = 3 Case.

The Bicharacteristic Case refers to the case when G is of
even type with e(G) > 4 but there is no semisimple prime
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p. Thus, G seems to have two different characteristics:
2 and p. Using an argument of Klinger and Mason, it is
easy to see that p = 3. This is a phenomenon that occurs
in many sporadic simple groups as well as a few groups
defined over fields of order 2 or 3. Considerable work has
been done on this problem, originally by Gorenstein and
Lyons, and more recently by Inna Capdeboscq, Lyons, and
me. We anticipate that this will be the principal content
of Volume 9 [GLS], coauthored with Capdeboscq. This
volume will also dispose of the dangling p-Thin case from
Theorem GE.

The p-Uniqueness Case arises when the proof of The-
orem GE leads to the construction of a proper subgroup
M of G containing all (or almost all) of the p-local over-
groups of a fixed Sylow p-subgroup of G. When p = 2,
this problem was handled elegantly by Helmut Bender
and Aschbacher, and their work is contained in Volume
4 [GLS]. (Similarly, the 2-Thin Problem was handled in
Volume 6, which explains why the statement of Theorem
O is so much cleaner than the statement of Theorem GE.)
When p is odd, there is a major 600-page manuscript by
Gernot Stroth treating groups with a strongly p-embedded
subgroup, which will appear in the [GLS] series, probably
in Volume 11. There are also substantial drafts by Richard
Foote, Gorenstein, and Lyons for a companion volume
(Volume 107?), which together with Stroth’s volume will
complete the p-Uniqueness Case. In particular, Volumes
9, 10, and 11 will strengthen Theorem GE to

Theorem GE+. Let G be a finite K -proper simple group of
generic even type. Then G is a group of Lie type defined
over a finite field of even order.

There remains the gap between generic even type
and large even type, i.e., the e(G) = 3 Case. If G is
a XK-proper simple group of characteristic 2-type with
e(G) = 3, then G was classified in a pair of papers by
Michael Aschbacher. The first paper treats the case when
a 2-local H contains an abelian p-subgroup A of rank
3 for some p > 3. Aschbacher’s method in this case
should extend fairly easily to our case, i.e., the case when
G is of even type. In the second paper, 3 is the only
choice for p. This is the case that was redefined as a
subproblem of the Quasithin Problem in Volume 1 [GLS].
It has been given serious attention by several of our
colleagues, notably Capdeboscq and Chris Parker, who
have a manuscript overcoming one of the difficulties of
extending Aschbacher’s work to the even type situation.
In this context, it might be very helpful to have a proof of
the following result:

Statement. Let G be a finite group with an abelian Sylow
p-subgroup P. Suppose that P contains a strongly closed
elementary abelian subgroup B. Then G contains a normal
subgroup N such thatB = (x EP NN I X’ =1).

Using the Classification Theorem, this resultis a special
case of a theorem of Flores and Foote. However, we are
not permitted to quote the Classification Theorem. For
the purposes of our problem, it would suffice to assume
that p = 3 and P has 3-rank 3.
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It would be wonderful to complete our series by 2023,
the sixtieth anniversary of the publication of the Odd
Order Theorem. Given the state of Volumes 8, 9, 10, and
11, the achievement of this goal depends most heavily on
the completion of the e(G) = 3 problem. It is a worthy
goal.
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