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868 OSCAR A. CAMPOLI [November

Calculus 1I. Read specified selections from either The Mathematical Experience
by Davis and Hersh or from How to Solve It by Pélya.

Calculus II1. Read specified selections from either Infinity by Lieber or from
Bridges to Infinity by Guillen.

Introduction to Linear Algebra. Read three articles from Scientific American as
follows.” Either “Linear Programming,” August 1954, or “The Allocation of Re-
sources by Linear Programming,” June 1981. One of these articles: “Input-Output
Economics”, October 1951; “The Structure of U.S. Economy,” April 1965; or “The
World Economy by the Year 2000,” September 1980. One article from the
“Mathematics and Modern World” issue of September 1964. (“Math in Social
Sciences” is most relevant to this course.)

Introduction to Algebraic Structures. Read either Flatland by Abbott, or specified
selections from Kline’s Mathematics, The Loss of Certainty and from Kasner and
Newman’s Mathematics and the Imagination.

A Principal Ideal Domain That Is Not a Euclidean Domain

OscAR A. CAMPOLI
Facultad de Matemdtica, Astronomia y Fisica, Valparaisoy R. Martinez Ciudad Universitaria,
5000 Cordoba, Argentina

Introduction. In most advanced undergraduate and graduate algebra texts a very
simple argument is used to show that a Euclidean domain is a principal ideal
domain (PID). And then it is mentioned that the converse is not true, sometimes
together with the claim that the subring A4 = Z[0] = {a + bbla, b€ Z, 0=
(1 + v—19)/2} of the complex numbers is a PID but is not a Euclidean domain. I
have not been able to find a proof, accessible to beginning graduate students, in any
standard reference (e.g., [1,2, 3, 4]).

In what follows it is shown in an elementary fashion that 4 has both properties.

The proof that 4 is not a Euclidean domain is in [5] but we use here a shorter
argument suggested by the referee.

One way to see that A4 is a PID can be found in algebraic number theory books
where the class number of the field @ (Y—19) is computed. The proof given here
uses that A4 is “almost” a Euclidean domain in the sense that it has a “generalized”
Euclidean algorithm. A criterion (sometimes attributed to Dedekind and Hasse) is
then proven and used to show that A4 is a PID.

A is not Euclidean. In general, it is not clearly stated what Euclidean domains
are. A definition is as follows:

A Euclidean domain consists of an integral domain A4 together with a map
[|:A = Z (the Euclidean norm) that satisfies the following conditions:

@A) |l(a) =|a| > 0 for all a € 4; |a| = 0 if and only if a = 0.

(ii) |ab| = |a| - |b| for all a, b € A.

(iii) (Euclidean algorithm) Given a, b € 4, b # 0, there exist ¢, r € A so that
a = gb + r with |r| < |b|
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It is interesting to note that condition (ii) of the definition can be weakened to
(i) |a| < |b| whenevet a divides b (for nonzero b),
which follows easily from (ii). In fact (ii’) will be used instead of (ii).

To show that A is not Euclidean it is sufficient to prove that .4 does not admit a
function || satisfying the three stated properties. Thus assume that || is a Euclidean
norm in A. This leads to a contradiction.

Indeed, let U be the set of nonzero elements in 4 with minimal norm. Since
every unit of 4 divides every nonzero element, (ii’) implies that every unit is in U
and (iii) implies that every element of U divides every nonzero element of A; so U
consists precisely of the units of A.

We next show that U = {1, —1}. In order to prove this and other assertions a
few specific calculations in the ring A are needed.

The following identities can be proved directly from the definition of 6 =
(1 ++v=19)/2. For a € A, a denotes the complex conjugate of the complex
number a.

Mo=1-9
(I1) 66 =5
(D) 6% =6 -5

(IV) Forany x =a+ b0 € 4, 0x = —5b + (a + b)6.

From (I) it follows that A4 is closed under complex conjugation. Identity (II)
implies that the integer 5 is not a prime in A. Later it will be clear that 8 is not a
unit in A4 and it will then follow that 5 is reducible in 4. From (III) it follows that
62 € A and hence 4 is closed under complex multiplication (a fact not obvious
from the definition of A).

If N(z) = zZ is the usual complex norm, then the preceding identities yield:

(V) N(a + b8) = (a + bb)a + b) = a® + ab + 5b*%

Moreover, the function N: 4 — Z satisfies

(a) N(xy) = N(x)N(y) for all x, y € 4, and

(b) N(x) = 0 for all x € 4 and N(x) = 0 if and only if x = 0.

This immediately implies that if an element a + b8 € 4 is a unit then a? + ab
+ 5b% = N(a + b6) = 1 and hence, if ab > 0, then b = 0 and a = +1. Also, since
a+bl=a+b-bfand1 = N(a+ b)= N(a+ bl) =(a+ b)*— ab+ 4b% it
follows that when ab < 0 then again b = 0 and a = +1. This concludes the proof
of the fact that U = {1, —1}.

Now assume that m is of minimal norm among the elements of A different from
0, 1, —1. Condition (iii) implies that 2 = gm + r, with |r| < |m|; therefore r is one
of 0,1, or —1. Hence either m divides 2 or m divides 3. We claim that m must then
be one of +2, +3.

This claim is a consequence of the fact that 2 and 3 are primes in A4, which is
shown as follows. Suppose 2 = (a + b8)(c + df). Then 4 = N(2) = N(a + b6)
N(c¢ + df) and assuming that a + b8, ¢ + df are not units in A4, it follows that

2=N(a+b0)=a>+ab+5b>=N(a+bd) = (a+b) — ab+ 4b>

Therefore, considering the cases ab > 0 and ab < 0, we conclude that b and d
each equal zero.

Thus 2 = (a + b@)(c + df) = ac is an integral factorization. Since 2 is a prime
in Z, 2 is a prime in A4. A similar argument shows that 3 is also a prime in 4.
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Now, again using (iii), 8 is congruent to 0,1, or —1 modulo one of +2 or +3.
Hence @ or § — 1 or § + 1 is divisible by 2 or 3. But this is impossible since
N(0) =5 = N(§ — 1) and N(6 + 1) = 7, while N(2) = 4 and N(3) = 9.

A is a PID. As stated in the introduction, to show that A is a principal ideal
domain (PID) it is enough to show that 4 is “almost” a Euclidean domain. More
precisely, it may be seen that given elements a, B € 4, B # 0, if 8 does not divide a
and N(a) > N(PB) then there exist y, 8§ € 4 such that

0 < N(ay - B8) < N(B). (1)
This property implies that A is a PID by an argument similar to the one usually
applied to show that Z is a PID. Let I # 0 be an ideal in A. Let B €I be an
element such that N(B) is minimal among the nonzero elements in I. Then 84 = I.
Indeed, since clearly B4 C I, consider the possibility of having an element « € 1
such that B does not divide a. Then « # 0 and hence N(a) > N(B). Now using (i)
it is possible to obtain another nonzero element ay — 88 in I which contradicts the
minimality of N(B).
To show (i) take a, 8 € 4, B # 0. If B does not divide a and N(a) > N(B) write

Y
& o a b,
B

where a and b are rational numbers and at least one of them is not an integer. This
is possible since the inverse of 8 as a complex number is in Q[8], which is a subfield
of C.

A case by case consideration leads to elements y and § € 4 such that

0< N(%y - 8) <1, whence N(ay—8B8) < N(B).

There are seven cases.

Case 1: b € Z. Then a ¢ Z and we may take y =1 and 8 = {a} + b8 (here
{x} denotes the integer nearest x, with {n + 1/2} = n). Now,

0<%y s <t <q
<N|l—=y-8]<—-<1.
(BY ) 4

o _
Case 2(a): a € Z and 5b & Z. Then E() =a+ 5b — af and we may take
y=86,8={a+5b) - ab.
Case 2(b): a € Z and 5b Z. Take y =1, 8 = a + {b}6.

Case 3(a): a,b & Z and 2a, 2b € Z. Then, although we proved IV for a, b € Z,
it is clearly valid also for a, b rational and hence fa/B = —5b + (a + b)f and
a + b € Z. Therefore, we may take y =0, § = {—5b} + {a + b} 0.

Case3(b):a,b & Z and2a,2b & Z. Theneither|b — {b}| < 1/30r[2b — {2b}|
< 1/3. In the first situation take y = 1 and § = {a} + {b}0 and estimate
0<N - 4 > 1
—y-8|< —=<1.
<Mgr-o)< 5

In the second situation take y = 2 and § = {2a} + {2b}0 with the same estimate.
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Case3(c):a,b & Z,2a € Zand2b & Z. When5b € Ztakey = 5andd = {Sa} +
5b6 and when 5b & Z take y = 260 and § = {2a + 10b} — 246.

Case 3(d): a, b & Z,2b€ Z and 2a ¢ Z. Take y = 2, § = {2a} + 2b4.
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