1. Let \(X, Y \) be subsets of a universal set \(U \). Define \(X' \), the complement of \(X \), and then write down (without proof) one of the two variations of DeMorgan’s Laws.

Solution. The complement \(X' \) is the set of elements \(u \in U \) such that \(u \) is not in \(X \). DeMorgan’s laws are:

(i) \((X \cap Y)' = X' \cup Y' \).
(ii) \((X \cup Y)' = X' \cap Y' \).

2. Let \(X \) be a set and \(\sim \) a relation on \(X \). Define what it means for \(\sim \) to be an equivalence relation.

Solution. The relation \(\sim \) is an equivalence relation if:

(i) \(x \sim x \), for all \(x \in X \).
(ii) For all \(x, y \in X \), if \(x \sim y \), then \(y \sim x \).
(iii) For all \(x, y, z \in X \), if \(x \sim y \) and \(y \sim z \), then \(x \sim z \).