FALL 2019: MATH 558 HOMEWORK

The page numbers in each assignment below refer to those in the course textbook. Turn in only the problems in bold face.

HW 1. Section 1.3: 1, 12, 14, 20, 22, 24, and read Section 1.2. Due September 6.

HW 2. Section 1.3: 25, 26, 29. Due September 6.

HW 3. Define a relation on \(\mathbb{Z} \) as follows: For all \(a, b \in \mathbb{Z} \), \(a \sim b \) if and only if \(a - b \) is divisible by 4. Prove that \(\sim \) is an equivalence relation, and identify, with proof, the distinct equivalence classes. To be turned in on September 13.

HW 4. Section 1.3: 21, and also describe the equivalences classes of the indicated equivalence relation. Due September 13.

HW 5. Section 2.3: 6, 8, 9, 10. Due September 13.

HW 6. Section 2.3: 12 and the following problem. Use the Well Ordering Principle to prove the following statement: Every natural number is divisible by a prime number. Hint: Suppose the statement is false and apply the Well Ordering Principle to the set of integers for which the statement fails. This is a proof by contradiction. Both problems are to be turned in on September 13.

HW 7. Section 2.3: 15a, 15f, 16, 17c, 18, 19, 20. Hint for 17c: Let \(a = \frac{1 + \sqrt{5}}{2} \) and \(b = \frac{1 - \sqrt{5}}{2} \) and show that \(a, b \) are roots of \(x^2 - x - 1 \). From this, show that \(a, b \) satisfy \(x^{n+1} = x^n + x^{n-1} \), for all \(n \geq 1 \) and then use induction on \(n \) to prove the required statement. Due September 20.

HW 10. Read Section 17.2 and work Section 17.4: 4a, d. Due September 27.

HW 11. Find the GCD of \(f(x) = x^2 - 1 \) and \(g(x) = x^4 + 6x^3 + x + 1 \) over \(\mathbb{Q}[x] \) and write it as a polynomial combination of \(f(x) \) and \(g(x) \).

HW 12. Section 17.4: 17, 18. And, the following problem, to be turned in: Use problem 17 to prove that if \(p(x) \in F[x] \), and \(a \in F \), then \(p(a) = 0 \) if and only if \(x - a \) divides \(p(x) \). Due October 4.

HW 13. Section 17.4: 21, 22. Due October 4. Hint: For 21, try to mimic the standard proof showing the existence of infinitely many prime numbers.

HW 14. Write addition and multiplication tables for \(\mathbb{Z}_6 \). Write a multiplication table for the non-zero elements in \(\mathbb{Z}_7 \). Due October 18.

HW 15. Let \(R \) be an integral domain and let \(R[x] \) denote the ring of polynomials with coefficients in \(R \). Prove that \(R[x] \) is an integral domain. Due October 18

HW 16. Section 16.6: 3a,b,c and the following problem (to be turned in). Use the division algorithm in \(\mathbb{Z} \) to find the multiplicative inverse of \(33 \) in the field \(\mathbb{Z}_{97} \). Due October 18.

HW 17. Due October 25. Let \(R \) denote the set of complex numbers of the form \(a + b\sqrt{3}i \), with \(a, b \in \mathbb{Z} \). Define \(N: R \to \mathbb{Z}_{\geq 0} \), by \(N(a + b\sqrt{3}i) = a^2 + 3b^2 \). Prove:

(i) \(R \) is closed under addition and multiplication. Conclude \(R \) is a ring and also an integral domain.

(ii) Prove \(N(xy) = N(x)N(y) \), for all \(x, y \in R \).

(iii) Prove that \(1, -1 \) are the only units in \(R \).
HW 18. Due October 25. 1. Let \(R \) be an integral domain. Define a relation on \(R \) by \(a \sim b \) if and only if \(a = bu \), for some unit \(u \). Prove that \(\sim \) is an equivalence relation and describe the resulting equivalence classes.

2. Suppose \(R \) is Euclidean domain, and \(d_1 \) and \(d_2 \) are greatest common divisors of the non-zero elements \(a \) and \(b \). Prove that \(v(d_1) = v(d_2) \).

HW 19. Due October 25. Let \(\mathbb{Z}[i] \) denote the Gaussian integers, with norm \(N(a + bi) = a^2 + b^2 \). Recall that \(\pm 1, \pm i \) are the only units in \(\mathbb{Z}[i] \).

(i) Use the norm \(N \) to show that \(1 + i \) is irreducible in \(\mathbb{Z}[i] \).

(ii) Write \(2 \) as a product of distinct irreducible elements in \(\mathbb{Z}[i] \).

HW 20. Due November 1. In this assignment, we will see an example of an integral domain that has elements that can be factored as a product of irreducible elements, but that factorization is not unique. Let \(R \) denote the set of all complex numbers \(a + b\sqrt{5}i \), where \(a, b \in \mathbb{Z} \). Let \(N \) be the norm on \(R \) defined by \(N(a + b\sqrt{5}i) = a^2 + 5b^2 \). As before \(N(z_1z_2) = N(z_1)N(z_2) \), for all \(z_1, z_2 \in R \). (In fact, this holds for all complex numbers if, for \(z = c + di \in \mathbb{C} \) we define \(N(z) = c^2 + d^2 \).)

(i) Show that \(R \) is an integral domain.

(ii) Show that the only units in \(R \) are \(\pm 1 \).

(iii) Use the norm to prove that \(2, 3, 1 + \sqrt{5}i, 1 - \sqrt{5}i \) are irreducible elements in \(R \).

(iv) Conclude that \(6 = 2 \cdot 3 = (1 + \sqrt{5}i) \cdot (1 - \sqrt{5}i) \) are two distinct factorizations of \(4 \) into a product of irreducible elements.

HW 21. Due November 1. For Gaussian integers \(z = 8 + 12i \) and \(w = 2 + 3i \), write \(z = wz + r \), with Gaussian integers \(w, r \) such that \(r = 0 \) or \(N(r) < N(w) \).

HW 22. Due November 8. Prove that \(L := \{ a + b\sqrt{5}i \mid a, b \in \mathbb{Q} \} \) is a field containing the roots of \(x^2 + 5 \).

Moreover, prove that if \(\mathbb{Q} \subseteq K \subseteq \mathbb{C} \) is a field containing the roots of \(x^2 + 5 \), then \(L \subseteq K \).

HW 23. Due November 8. We are working with the roots of \(p(x) = x^3 - 11 \).

(i) Find the three roots of \(p(x) \) (as complex numbers).

(ii) Show that the roots you found in (i) all have the form \(\alpha \cdot \sqrt[3]{11} \), where \(\alpha \) is one of the three cube roots of \(1 \) and \(\sqrt[3]{11} \) is the real cube root of \(11 \).

(iii) Take the roots \(r_1, r_2, r_3 \) you found in part (i) and verify that \(x^3 - 11 = (x - r_1)(x - r_2)(x - r_3) \).

HW 24. Due November 8. Recall from class that \(\mathbb{Q}(\sqrt{2}) \) is the field consisting of all real numbers of the form \(\alpha + \beta \sqrt{2} + \gamma \sqrt{4} \), with \(\alpha, \beta, \gamma \in \mathbb{Q} \). Let \(a = 3 + 2\sqrt{2} + \sqrt{4} \) and \(b = 1 + 5\sqrt{2} \) belong to \(\mathbb{Q}(\sqrt{2}) \). Calculate \(a \cdot b \) and \(a^{-1} \) as elements of \(\mathbb{Q}(\sqrt{2}) \).

HW 25. Due November 8. Let \(\alpha \in \mathbb{C} \) be a root of \(x^2 + x + 1 \in \mathbb{Q}[x] \). For \(\gamma = 3 + 2\alpha \in \mathbb{Q}(\alpha) \), find \(\gamma^{-1} \) as an element of \(\mathbb{Q}(\alpha) \).

HW 26. Due November 15. (i) Show \(f(x) = 2x^3 + 6x^2 + 6 \) is irreducible over \(\mathbb{Q} \) and (ii) Find all roots of \(g(x) = x^3 - 2x^2 - x - 6 \).

HW 27. Due November 15. Fix \(f(x) = x^2 + x + 1 \), let \(R \) denote the ring \(\mathbb{Z}[x] \) mod \(f(x) \).

(i) Calculate \(3 + 5x + 1 + 6x \) and \(3 + 5x + 1 + 6x \) mod \(f(x) \) in \(R \).

(ii) Use what you did in HW 25 to find the multiplicative inverse of \(3 + 2x \) in \(R \).

HW 28. Due November 22. (i) Let \(K \) denote the commutative ring \(\mathbb{Z}[x] \) mod \(x^2 + x + 2 \). Write out addition and multiplication tables for \(K \). Conclude that \(K \) is a field with nine elements that contains a root of \(x^2 + x + 2 \).

(ii) Let \(L \) denote the commutative ring \(\mathbb{Z}[x] \) mod \(x^3 + x + 1 \). Write a multiplication table for the non-zero elements of \(L \). Conclude that \(L \) is a field with eight elements containing a root of \(x^3 + x + 1 \).

HW 29. Due December 6.

1. Let \(\tau = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \) and \(\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right) \) belong to \(S_3 \) (as in class). Use the relations derived in class (or the group table of \(S_3 \)) to calculate \(\sigma \tau \sigma \tau \sigma^5 \tau \).
2. Let \(x = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \) and \(y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) be elements in the group \(\text{Gl}_2(\mathbb{Z}_2) \). Verify the following relations:

 (i) \(x^3 = I \), \(y^2 = I \).
 (ii) \(yx = x^2y \).

Do these three relations look familiar? Can you make a prediction about the group table for \(\text{Gl}_2(\mathbb{Z}_2) \) in light of what you know about the group table of \(S_3 \)?

HW 30. Due December 6. Write out group tables for the following groups: (a) \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) and (b) \(\mathbb{Z}_2 \times \mathbb{Z}_4 \). Note \(\mathbb{Z}_2 \) and \(\mathbb{Z}_4 \) are abelian groups of order eight with + as their binary operation. Do these groups seem the same to you, or is there something different about them?

HW 31. Due December 11. Here is an interesting group, called the *Quaternion group* and denoted by \(Q_8 \). We have \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \} \), where:

\((-1)^2 = 1, i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j,\)

and multiplication by -1 is the the expected value and -1 commutes with all elements of \(Q_8 \).

 (i) Write the group table for \(Q_8 \).
 (ii) Show that \(H := \{ \pm 1 \} \) and \(K := \{ \pm 1, \pm i \} \) are subgroups of \(Q_8 \).
 (iii) Find the distinct left cosets of \(H \) and \(K \).

HW 32. Due December 11.

1. For \(G = S_3 \), with our usual notation, let \(H = \{ I, \tau, \tau^2 \} \) and \(K = \{ I, \sigma \} \). Find the distinct right cosets of \(H \) and \(K \). How do the left cosets of \(H \) compare to the corresponding right cosets? How do the left cosets of \(K \) compare to the corresponding right cosets?

2. Repeat the steps in the previous problem for \(G = Q_8 \), and \(H \) and \(K \) described in Homework 31.

3