
FALL 2019: MATH 558 HOMEWORK SOLUTIONS

HW 1. Section 1.3: 14. To prrove A\(B ∪ C) = (A\B) ∩ (A\C), let x ∈ A\(B ∪ C). Then x is in A, but
not in B ∪ C. In particular, x is not in B. Thus, a ∈ A\B. Similarly x is not in C, so a ∈ A\C. Thus,
x ∈ (A\B) ∩ (A\C), so A\(B ∪ C) ⊆ (A\B) ∩ (A\C).

Now suppose x ∈ (A\B)∩ (A\C). Then x ∈ A, but x 6∈ B, while at the same time x 6∈ C Thus, x 6∈ (B∪C).
Therefore, x ∈ A\(B ∪ C) and hence,(A\B) ∩ (A\C) ⊆ A\(B ∪ C), which shows the two sets are equal.

20. f : N→ N defined by f(n) = 2n, for all n ≥ 1 is one-to-one, but not onto. On the other hand, g : N→ N
defined by g(n) = n

2 , if n is even and g(n) = n if n is odd, then g is onto, but not one-to-one. Note, that
if n is even, then g(2n) = n and if n is odd, then g(n) = n, so g is onto. Since g(1) = 1 = g(2), g is not
one-to-one.

22. Given f : A→ B and g : B → C.

(a) Suppose f, g are 1-1. If g ◦ f(a1) = g ◦ f(a2) then f(a1) = f(a2), since g is 1-1. But then a1 = a2,
since f is 1-1. Thus, f ◦ g is 1-1.

(b) If g ◦ f is onto: Suppose c ∈ C. Then c = (g ◦ f)(a), for some a ∈ A. Thus, g(f(a)) = c, showing g
is onto.

(c) If g ◦ f is 1-1: Suppose f(a1) = f(a2), for a1, a2 ∈ A. Then g(f(a1)) = g(f(a2)), and thus a2 = a1,
since g ◦ f is 1-1. Therefore f is 1-1.

(d) Suppose g ◦ f is 1-1 and f is onto: If g(b1) = g(b2), for b1, b2 ∈ B, take a1, a2 ∈ A, such that
f(a1) = b1 and f(a2) = b2. Then g(f(a1)) = g(f(a2)). Since g ◦ f is 1-1, a1 = a2. Applying f we
have b1 = f(a1) = f(a2) = b2, showing g is 1-1.

(e) Suppose g ◦ f is onto and g is 1-1: Take b ∈ B. Then g(b) ∈ C, so there exists a ∈ A such that
g ◦ f(a) = g(b). Thus, g(f(a)) = g(b), so f(a) = b, since g is 1-1. Thus shows f is onto.

HW 2. Section 1.3: 25. (a) Not an equivalence relation since 2 ∼ 1, but 1 6∼ 2.
(b) Not an equivalence relation, since 0 6∼ 0.
(c) Not and equivalence relation, since 0 ∼ 4 and 4 ∼ 8, but 0 6∼ 8.
(d) This is an equivalence relation. Z = [0]∪ [1]∪ [2]∪ [3]∪ [4]∪ [5], where the union is a disjoint union and
[i] means all integers whose remainder is i upon dividing by 6.

29. (a) (x, y) = 1 · (x, y), for all (x, y)R\(0, 0), so the reflexive property holds.
(b) If (x1y1) = λ(x2, y2), with λ 6= 0, then (x2, y2) = λ−1(x1, y1), which shows that the symmetric property
holds.
(c) Suppose (x1, y2) = λ(x2, y2) and (x2, y2) = γ(x3, y3), then (x1, y1) = λγ(x3, y3), and the product λγ is
not zero, so the transitive property holds.

Note that two points in R\(0, 0) are equivalent if and only if they lie on the same line through the origin.
Just the distinct lines through the origin are the distinct equivalence classes.

HW 3. To see that the relation a ∼ b if and only if a− b is divisible by 4 is an equivalence relations:

(a) Since 0 = a− a is divisible by 4, a ∼ a.
(b) Since b− a = −(a− b), it follows that if a ∼ b, then b ∼ a.
(c) If a ∼ b and b ∼ c, then 4 divides a−b and 4 divides b−c. Thus 4 divides the sum (a−b)+(b−c) = a−c,

which shows a ∼ c.
Thus, ∼ is an equivalence relation.
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We now show that the distinct equivalence classes are:

(i) [0] = {. . . ,−8,−4, 0, 4, 8, . . .} = {4n | n ∈ Z}.
(ii) [1] = {. . . ,−7,−3, 1, 5, 9, . . .} = {4n+ 1 | n ∈ Z}.
(iii) [2] = {. . . ,−6,−2, 2, 6, 10, . . .} = {4n+ 2 | n ∈ Z}.
(iv) [3] = {. . . ,−5,−1, 3, 7, 11, . . .} = {4n+ 3 | n ∈ Z}.

Notice that in each case, the set in the middle clearly equals the set on the right.
For (i), for any such integer in the set on the right, 0 − 4n = −4n is divisible by 4, and hence the given

set belongs to [0]. Conversely if an integer k belongs to [0], then 0 − k is divisible by 4 and hence we can
wrote −k = 0 − k = 4n, for some n, thus k = −4n, which show k belongs to the set on the right in (i).
Thus equality holds and we have determined the equivalence class of [0]. The argument for the other cases
is similar. For example, if 4n+ 3 belongs to the set on the right in (iv), then 3− (4n+ 3) = −4n, which is
divisible by 4, so that 4n + 3 belongs to [3]. Conversely, if k belongs to [3], then 3 − k is divisible by 4, so
3− k = 4n, for some n. Thus, k = 3 + 4(−n), which shows that k belongs to the set on the right in (iv) and
therefore this set equals [3].

HW 4. Section 1.3: 21. (a) Clearly, (x, y) ∼ (x, y), for all (x, y).
(b) If (x, y) ∼ (x1, y2), then x2 + y2 = x21 + y21 , and so x21 + y21 = x2 + y2, so (x1, y1) ∼ (x, y).
(c) If (x, y) ∼ (x1, y1) and (x1, y1) ∼ (x2, y2), then, x2 + y2 = x21 + y21 and x21 + y21 = x22 + y22 . Therefore,
x2 + y2 = x22 + y22 , and hence (x, y) ∼ (x2, y2). Thus ∼ is an equivalence relation.

Now suppose (x1, y1) belongs to te equivalence class of (x, y). Then x21+y21 = x2+y2. Suppose R = x2+y2.

Then both (x1, y1) and (x, y) both lie on the circle of radius
√
R centered at the origin. Thus the distinct

equivalence classes are all the circles in R2 centered at the origin.

HW 5. Section 2.3: 9. Base case: 1 + 21 = 3 = 21+1 − 1.
Inductive step: Suppose 1 + 2 + · · ·+ 2n = 2n+1 − 1. Adding 2n+1 to both sides yields:

1 + 2 + · · ·+ 2n + 2n+1 = 2n+1 − 1 + 2n+1.

The left hand sides equals 2 · 2n+1 − 1 = 2n+2 − 1, which is what we want.

10. Base case: 1
1(1+1) = 1

2 = 1
1+1 .

Inductive Step: Suppose 1
2 + 1

6 + · · ·+ 1
n(n+1) = n

n+1 . Adding 1
(n+1)(n+2) to both sides of this equation yields:

1

2
+

1

6
+ · · ·+ 1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
.

Working with the right hand side of this equation we have:

n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n(n+ 2) + 1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)(n+ 2)

(n+ 1)(n+ 2)
,

which is what we want.

HW 6. Section 2.3: 12. There are many ways to prove this. One was is by induction on n. If n = 1, say,
X = {a}, then P(X) = {∅, {a}}, which has 21 elements.

Inductibe step: Suppose the result is true for sets with n elements. Let X be a set with n+ 1 elements. We
can write X = X ′ ∪ {a}, where X ′ has n elements. Now X ′ has 2n subsets, by our inductive hypothesis.
Notice that the set of subsets of X not containing a are exactly the subsets of X ′. Thus, there are 2n subsets
of X not containing a. The remaining subsets of X are obtained by adding a to all of the subsets of X ′.
Thus, there are 2n subsets of X containing a. Therefore, there are 2n + 2n = 2 · 2n = 2n+1 subsets of X,
which is what we want.

Another proof uses the binomial theorem: (x + y)n =
∑n

i=0 x
n−iyi. If we substitute x = 1 = y in this

equation, we get 2n =
∑n

i=0

(
n
i

)
. Now, we note that

(
n
i

)
equals the number of subsets of X containing

exactly i elements. Adding these as i runs from 0 to n shows that
∑n

i=0

(
n
i

)
is number of subsets of X, which

gives what we want.

For the non-book problem: Suppose there exists a positive integer that is neither prime nor a product of
primes. We seek a contradiction. Let X be the set of such numbers. Then X 6= ∅. By the Well Ordering
Principle, there is a least element in X, say n. By definition of X, n is not a prime number. Therefore,
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n = ab, with 1 < a, b,< n. Thus, since n is the least element in X, neither a nor b belong to X. Therefore,
a is either a prime or a product of primes and b is either a prime or a product of primes. But then n = ab
is a product of primes, which is a contradiction. Thus, every positive integer is either a prime or a product
of primes.

HW 7. Section 2.3: 15a. To find the GCD of 14 and 39, long division leads to the following equations:

39 = 2 · 14 + 11

14 = 1 · 11 + 3

11 = 3 · 3 + 2

3 = 1 · 2 + 1

,

which shows that 1 = gcd(14, 39). Working with these equations in reverse order, we have:

1 = −1 · 2 + 1 · 3
1 = −1 · (11− 3 · 3) + 1 · 3 = −1 · 11 + 4 · 3
1 = −1 · 11 + 4 · (14− 1 · 11) = −5 · 11 + 4 · 14

1 = −5 · (39− 2 · 14) + 4 · 14 = −5 · 39 + 14 · 14.

15f. To find gcd(−4357, 3754), long division leads to the equations:

−4357 = (−2) · 3754 + 3151

3754 = 1 · 3151 + 603

3151 = 5 · 603 + 136

603 = 4 · 136 + 59

136 = 2 · 59 + 18

59 = 3 · 18 + 5

18 = 3 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

which shows that 1 = gcd(−4357, 3574). I leave it to you to check that 1 = (1463) · (−4357)+(1698) · (3574).

17c. One way to prove that the nth Fibonacci number fn satisfies fn = an−bn√
5

, for a = 1+
√
5

2 and b = 1−
√
5

2

is to observe that a and b are roots of the polynomial x2 − x − 1. Thus, a2 = a + 1. Multiplying by an−1,
we get that an+1 = an + an−1, for all n ≥ 1. Similarly bn+1 = bn + bn−1 for all n ≥ 1.

Now, we can prove the required statement by induction on n. When n = 1, a1−b1√
5

=
√
5√
5

= 1 = f1, and when

n = 2, a2−b2√
5

=
1+2
√

5+5
4 − 1−2

√
5+5

4√
5

= 1 = f2.

Suppose the formula hold for n, with n ≥ 2. Then

fn+1 = fn + fn−1 =
an − bn√

5
+
an−1 − bn−1√

5
=

(an + an−1)− (bn + bn−1)√
5

=
an+1 − bn+1

√
5

,

as required.

20. There is no need to use induction for this problem. We begin by observing that if n is a perfect square,
then n = m2, for some integer m. If m is even, m = 2s, for some s, so n = 4s2 = 4k, for k = s2. If m is
odd, then m = 2s+ 1, for some s, in which case, n = (2s+ 1)2 = 4s2 + 4s+ 1 = 4k + 1, for k = s2 + s.

HW 8. Section 2.3: 22. If a ∈ Z, then we can write a = nq + s, with 0 ≤ s < n. Therefore a− s = nq, so
n divides a − s. This means a is equivalent to s, and thus [a] = [s]. For 0 ≤ s < r ≤ n − 1, the difference
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r − s is less than n, but not zero, and hence not divisible by n. Therefore, r and s are not equivalent, and
the classes [r] and [s] are distinct. Thus, there is one equivalence class for each 0 ≤ s ≤ n− 1.

28. This is a proof by contradiction. Suppose 2p − 1 is prime and p is not prime. Then we can write
p = m ·n, with both m and n greater than 1. Using the identity xn− 1 = (x− 1)(xn−1 +xn−2 + · · ·+x+ 1),
we obtain:

2p − 1 = 2m·n − 1 = (2m)n − 1 = (2m − 1)((2m)n−1 + (2m)n−2 + · · ·+ 2m + 1).

Since each term in the product on the right hand side of this equation is greater than one (since m,n > 1),
we get the contradiction that 2p − 1 is not prime. Therefore, p is prime.

31. Starting with the equation p2 = 2q2, let d be the greatest common divisor of p and q, and write p = p′d
and q = q′d. Then (p′d)2 = 2(q′d)2. Cancelling d2 from both sides of the equations yields (p′)2 = 2(q′)2.
Thus, if there are integers p, q satisfying p2 = 2q2, then there are relatively prime integers satisfying the
same equation. So, we may assume, p and q are relatively prime. Then p2 is even, which forces p to be even,
so we can write p = 2p1. Therefore 4p21 = (2p1)2 = 2q2, so that 2p21 = q2. But this forces q2, and hence q, to
be even, which contradicts that p and q are relatively prime. Thus, no pair of integers satisfies the equation
p = 2q2. It follows from this that no rational number p

q satisfies (p
q )2 = 2, and thus

√
2 is not a rational

number.

HW 9. Section 2.3: 21. Starting with the equations

a2 + b2 = r2

a2 − b2 = s2,

if we add the equations we get 2a2 = r2 + s2. Thus, r2, s2 are both even or both odd, in which case r, s are
both even or both odd. But since r, s are relatively prime, they cannot both be even. Thus, r and s are
both odd. Therefore, we may write r = 2k + 1 and s = 2l + 1, for some integers k, l. Therefore,

2a2 = r2 + s2 = (2k + 1)2 + (2l + 1)2 = 4k2 + 4k + 1 + 4l2 + 4l + 1 = 4(k2 + k + l2 + l) + 2,

Dividing the left and right hand sides of these equations by 2 shows that a2 is odd, and therefore, a is odd.
Finally, b2 = r2 − a2 is a difference of odd integers, and therefore b2, and hence b, is even. The proof is now
complete.

HW 10. Section 17.4: 4a. Invoking the division algorithm, we get:

x3 − 8x2 + 21x− 18 = 1 · (x3 − 6x2 + 14x− 14) +−2x2 + 7x− 3

x3 − 6x2 + 14x− 4 = (−1

2
x+

5

4
) · (−2x2 + 7x− 3) + (

15

4
x− 45

4
)

−2x2 + 7x− 3 = (
15

4
x− 45

4
)(− 8

15
x+

4

15
).

Thus, 15
4 x−

45
4 is the last non-zero remainder, and hence, x− 3 is the GCD.

4d. Invoking the division algorithm, we get:

4x3 + x+ 3 = 4 · (x3 − 2x+ 4) + (9x− 13)

x3 − 2x+ 4 = (9x− 13) · (1

9
x2 +

13

81
x+

7

729
) +

3007

729
.

Since the second remainder is a non-zero constant, the next remainder must be zero. There the GCD is a
constant, and thus equals 1.

HW 11. Using the division algorithm to find the GCD of x2 − 1 and x4 + 6x3 + x+ 1, we find:

x4 + 6x3 + x+ 1 = (x2 − 1) · (x2 + 6x+ 1) + (7x+ 2)

x2 − 1 = (7x+ 2) · (1

7
x− 2

49
) +−45

49
.

Since the second remainder is a non-zero constant, the next remainder must be zero. There the GCD is a
constant, and thus equals 1. We will use the two equations above to write − 45

49 as a polynomial combination
4



of the given polynomials, and then divide by this fraction to obtain the final equation. Starting with the
second equation, we have

(x2 − 1)− (7x+ 2) · (1

7
x− 2

49
) = −45

49
.

Now, use the first equation to replace 7x+ 2 by x4 + 6x3 + x+ 1− (x2 − 1) · (x2 + 6x+ 1), to get:

(x2 − 1)− {x4 + 6x3 + x+ 1− (x2 − 1) · (x2 + 6x+ 1)} · (1

7
x− 2

49
) = −45

49
.

Gathering like terms, we have

{1 + (
1

7
x− 2

49
)(x2 + 6x+ 1)} · (x2 − 1) + (−1

7
x+

2

49
) · (x4 + 6x3 + x+ 1) = −45

49
.

Therefore,

(−49

45
) · {1 + (

1

7
x− 2

49
)(x2 + 6x+ 1)} · (x2 − 1) + (−49

45
) · (−1

7
x+

2

49
) · (x4 + 6x3 + x+ 1) = 1.

HW 12. Section 17.4: 17. By the division algorithm, we can write p(x) = (x− a) · q(x) + c, where c ∈ F is
a constant. Substituting x = a, we get: p(a) = (a− a) · q(x) + c = 0 + c, and thus p(a) = c, as required.

18. Suppose p( r
s ) = 0. Then:

0 = an(
r

s
)n + an−1(

r

s
)n−1 + · · ·+ a0.

Multiply by sn to get:

0 = anr
n + an−1r

n−1s+ · · ·+ a0s
n.

Note that s divides every term of the right hand side of the equation above, except possibly anr
n. But since

s divides the left hand side, s divides anr
n. But r and s are relatively primes, so s divides an. Likewise, r

divides every term on the right hand side of the equation above, except possibly a0s
n. But r divides the left

hand side of the equation, and thus r divides a0s
n. Since r and s are relatively prime, r divides a0.

From 17, we have p(x) = (x− a) · q(x) + p(a). Now, if p(a) = 0, then p(x) = (x− a) · q(x), so x− a divides
p(x). Conversely, suppose x− a divides p(x). Then the remainder upon dividing p(x) by x− a is zero. But
this remainder is p(a), so p(a) = 0.

Note to the class: Let’s see how to apply the problems from this homework set. We will use the Rational
Root test to prove that p(x) = x3 + x+ 1 is irreducible over Q. If p(x) were NOT irreducible, it could to be
written as a product of a monic polynomial of degree one times a monic polynomial of degree two over Q.
Thus, x− a would be a factor of p(a), for some a = r

s in Q, i.e., p( r
s ) = 0.

We may assume the fraction is in lowest terms, so r and s are relatively prime. By the Rational Root test,
r divides 1 and s divides 1, as integers. Thus, r = ±1 and s = ±1. Therefore a = ±1. But p(1) = 3 and
p(−1) = −1, a contradiction. Thus, there is no rational root of p(x), and therefore p(x) is irreducible over
Q.

HW 13. Sections 17.4: 21. To see that F [x] has infinitely many irreducible polynomials, suppose to
the contrary that there are only finitely many irreducible polynomials, say, p1(x), . . . , pn(x). Consider
f(x) = p1(x) · · · pn(x) + 1. Either f(x) is irreducible or has an irreducible factor. The first statement is a
contradiction, since f(x) is not equal to any of the pi(x). But none of the polynomials pi(x) divides f(x),
since the remainder upon dividing f(x) by pi(x) is 1. Thus, the second statement is also a contradiction.
Therefore, there cannot exist only finitely many irreducible polynomials.

22. Suppose f(x) = anx
n + · · ·+ a0 and g(x) = bmx

m + · · ·+ b0. Say n ≥ m. Then

f(x) + g(x) = anx
n + · · ·+ am+1x

m+1 + (am + bm)xm + · · ·+ (a0 + b0)

= anx
n + · · ·+ am+1x

m+1 + (bm + am)xm + · · ·+ (b0 + a0)

= g(x) + f(x).
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HW 14. Addition and multiplication tables for Z6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Multiplication of non-zero elements in Z7:

· 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

HW 15. Suppose f(x), g(x) are non-zero polynomials in R[x]. We can write f(x) = anx
n + · · · + a0 and

g(x) = bmx
m + · · · + b0, with an 6= 0 and bm 6= 0. Then f(x)g(x) = anbmx

n+m + · · · + a0b0. Since R is an
integral domain anbm 6= 0, so f(x)g(x) 6= 0, which shows that R[x] is an integral domain.

HW 16. Section 16.6: 3a. Units in Z10 : {1, 3, 5, 7, 9}. 3b. Units in Z12 : {1, 5, 7, 11}. 3c. Units in
Z7 : {1, 2, 3, 4, 5, 6}.

97 = 83 · 1 + 14

83 = 14 · 5 + 13

14 = 13 · 1 + 1.

Using these equations and backwards substitution, we see 1 = 6·97+(−7)·83. Thus, 97 divides 1−(−7)7·83,
so that 1 ≡ (−7) · 83 mod 97. Thus, 1 = −7 · 83 in Z97. Since −7 = 90 in Z97, it follows that 90 is the
multiplicative inverse of 87 in Z97.

HW 17. (i) (a+ b
√

3i) + (c+ d
√

3i) = (a+ c) + (b+ d)
√

3i and

(a+ b
√

3i) · (c+ d
√

3i) = ac+ ad
√

3i+ bc
√

3i− 3bd = (ac− 3bd) + (ad+ bc)
√

3i,

therefore R is closed under addition and multiplication. That all of the axioms requiring R to be a ring and
integral domain hold follows from the fact that R ⊆ C, and C is an integral domain (in fact, a field).

(ii) For x = a+ b
√

3i and y = c+ d
√

3i.

N(x · y) = (ac− 3bd)2 + ((ad+ bc)
√

3)2

= (ac)2 − 6acbd+ (3bd)2 + 3(ad)2 + 6adbc+ 3(bc)2

= (ac)2 + 9(bd)2 + 3(ad)2 + 3(bc)2.

On the other hand,

N(x) ·N(y) = (a2 + 3b2) · (c2 + 3d2)

= a2c2 + 3a2d2 + 3b2c2 + 9b2d2,

which shows N(x)N(y) = N(xy).
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(iii) If x ∈ R is a unit, then for some y ∈ R, 1 = xy and therefore

1 = N(xy) = N(x)N(y) = (a2 + 3b2)(c2 + 3d2).

Since a, b, c, d ∈ Z, this forces c = d = 0 and a, b = ±1.

HW 18. 1. If a ∈ R, then a = 1 · a, so a ∼ a. If a ∼ b, then a = ub, for u a unit. Therefore, b = u−1a, for
the unit u−1, and thus b ∼ a. If a ∼ b and b sin c, then a = ub and b = vc, for units u, v ∈ R. Therefore
a = u(vc) = (uv)c. Since uv is a unit, a ∼ c and thus ∼ is a equivalence relation. The class of a in R is just
all unit multiples of a.

2. Since d1|d2, d2 = ad1, for some a ∈ R. Therefore v(d1) ≤ v(d2). By symmetry, v(d2) ≤ v(d1), so
v(d1) = v(d2).

HW 19. 1. Suppose 1+i = uv, with u, v ∈ Z[i]. Then 2 = N(1+i) = N(uv) = N(u)N(v) = (a2+b2)·(c2+d2),
for u = a + bi and v = c + di. But then one of a2 + b2 or c2 + d2, say a2 + b2, must equal 1. This implies
either a = 0 and b = ±1 or a = ±1 andb = 0. Thus, u = ±1 or u = ±i, which shows that 1 + i is irreducible.

2. Since 2 = N(1− i), the proof in 1 shows 1− i is irreducible. Thus 2 = (1 + i) · (1− i) is a product of two
irreducible elements in Z[i].

HW 20. (i) R = Z[
√

5i] is an integral domain because it is contained in the field (integral domain) C.

(ii) If xa+ b
√

5i ∈ R is a unit, then for some y = c+ d
√

5i ∈ R, 1 = xy and therefore

1 = N(xy) = N(x)N(y) = (a2 + 5b2)(c2 + 5d2).

Since a, b, c, d ∈ Z, this forces c = d = 0 and a, b = ±1.

(iii) The proofs that 2, 3, 1 +
√

5i, 1 −
√

5i are very similar, so we will just prove two of them. Suppose

2 = x · y = (a+ b
√

5i) · (c+ d
√

5i). Taking the norm of both sides, we get:

4 = N(2) = N(xy) = N(x) ·N(y) = (a2 + 5b2) · (c2 + 5d2).

Since every term in the equation above is a positive integer and we can only factor 4 as 2 · 2 or 1 · 4 using
positive integers, either (a2 + 5b2) = 2, in which case b = 0 and a2 = 2, which cannot happen, or one of
a2 + 5b2 or c2 + 5d2 equals 1. Suppose a2 + 5b2 = 1. Then b = 0 and a = ±1. This shows that x is a unit.
Likewise, if c2 + 5d2 = 1, y is a unit. Thus, 2 is an irreducible element of R.

The proof that 1 +
√

5i is irreducible is essentially the same. Its norm is 6. If 1 +
√

5i = xy, then the norm
of x is either 2, 3, 1, or 6. The first two cases cannot happen. If N(x) = 1, x is unit. If N(x) = 6, N(y) = 1

and y is unit. Thus, 1 +
√

5i is irreducible.

(iv) Clearly 2 · 3 = 6 = (1 +
√

5i) · (1 −
√

5i), and all factors are irreducible, by (iii). Since the only units
in R are ±1, clearly none of the irreducible factors is a unit multiple of any other of the irreducible factors,
and hence the two factorizations are distinct. Thus, uniqueness of factorization fails in R.

HW 21. OK, so a randomly chosen example turned out to be trivial: z = 4w!

HW 22. Since L ⊆ C, to check that L is a field, it suffices to check that L is closed under addition and
mulitplication, and that the multiplicative inverse of L (as a complex number) belongs to L. The first two
of these are very easy to check, and the third is standard high school algebra:

1

a+ b
√

5i
=

1

a+ b
√

5i
· a− b

√
5i

a− b
√

5i
=
a− b

√
5i

a2 + 5b2
=

a

a2 + 5b2
+

−b
a2 + 5b2

√
5i.

Since a
a2+5b2 and −b

a2+5b2 are rational numbers (a + b
√

5i)−1 = a
a2+5b2 + −b

a2+5b2
√
5i

belongs to L. The roots

±
√

5i of x2 + 5 are clearly in L. Finally, if Q ⊆ K ⊆ C is a field that contains the roots of x2 + 5, then
since K is closed under addition and multiplication, it contains all expressions of the form a+ b

√
5i and thus

contains L.
7



HW 23. (i) Since 3
√

11 is a root of x3 − 11, x− 3
√

11 is a factor of x3 − 11. from the division algorithm, we

see that x3 − 11 = (x− 3
√

11) · (x2 + 3
√

11x+ ( 3
√

11)2). Thus, we may use the quadratic formula to find the
other two roots.

x =
− 3
√

11±
√

( 3
√

11)2 − 4( 3
√

11)2

2
=
− 3
√

11±
√
−3( 3
√

11)2

2
=
− 3
√

11± 3
√

11
√

3i

2
=

3
√

11 · −1±
√

3i

2
.

(ii) Since x3 − 1 = (x− 1)(x2 + x+ 1), the cube roots of 1 are 1, −1±
√
3i

2 , so part (ii) now follows from what
we have done in part (i)

(iii) Write α = −1+
√
3i

2 and β = −1−
√
3i

2 , so that r1 = 3
√

11, r2 = 3
√

11α, r3 = 3
√

11β, with α3 = β3 = 1. Then

(x− r1)(x− r2)(x− r3) = (x− 3
√

11)(x− 3
√

11α)(x− 3
√

11β)

= (x2 − 3
√

11(1 + α)x+ (
3
√

11)2)α)(x− 3
√

11β)

= x3 − 3
√

11(1 + α+ β)x2 + (
3
√

11)2(α+ β + αβ)x− 11αβ.

But 1+α+β = 1+ −1+
√
3i

2 + −1−
√
3i

2 = 0 and αβ = −1+
√
3i

2 · −1−
√
3i

2 = 1+4
4 = 1, so α+β+αβ = α+β+1 = 0.

Thus, the last polynomial displayed above is x3 − 11, which is what we want.

HW 24. To calculate a · b, multiplying term by term we get

a · b = 1 + 2
3
√

2 +
3
√

4 + 15
3
√

4 + 10
3
√

8 + 5
3
√

16

= 1 + 2
3
√

2 +
3
√

4 + 15
3
√

4 + 20 + 10
3
√

2

= 21 + 12
3
√

2 + 16
3
√

4.

To find the inverse of a, we use the division algorithm, yielding the equations:

x3 − 2 = (x− 2)(x2 + 2x+ 3) + (x+ 4)

x2 + 2x+ 3 = (x− 2)(x+ 4) + 11.

Using backwards substitution yields 11 = (x2− 4x+ 5)(x2 + 2x+ 5)− (x− 2)(x3− 2). Substituting x = 3
√

2,

we get 11 = ( 3
√

4− 4 3
√

2 + 5)( 3
√

4 + 2 3
√

2 + 3). Thus, a−1 = 1
11 · (

3
√

4− 4 3
√

2 + 5).

HW 25. To find γ−1, we use the division algorithm to write x2 +x+ 1 = (2x+ 3)( 1
2x−

1
4 ) + 7

4 . Substituting

x = α yields 0 = (2α+ 3)( 1
2α−

1
4 ) + 7

4 . Rewriting yields, γ−1 = 1
7 −

2
7α.

HW 26. (i) Since f(x)has degree three, it is irreducible over Q if it has not rational roots. On the other
hand, since f(x) = 2 · (x2 + 3x+ 3), it suffices to show that g(x) = x2 + 3x+ 3 has no rational roots. By the
Rational Root Test, it suffices to see that none of ±1,±3 are roots of g(x). Since the coefficient of g(x) are
positive, we can eliminate 1, 3. On the other hand g(−1) = 1 and g(−3) = 3, so g(x) and hence, f(x) have
no rational roots.

(ii) To find the roots of f(x) = x3x− 2x2 − x− 6, we first look for rational roots. Trying ±1, ]pm, 2,±3,±6,
shows x = 3 is a root. We then see f(x) = (x− 3)(x2 + x+ 2). Using the quadratic formula on the second

term yield the additional roots −1±
√
7i

2 .

HW 27. (i) 3 + 5x + 1 + 6x = 4 + 11x. 3 + 5x · 1 + 6x = 3 + 23x+ 30x2. To put this last term in its
proper form, we use the division algorithm: 3 + 23x + 30x2 = 30(x2 + x + 1) + (−7x− 29). It follows that
3 + 5x · 1 + 6x = −29− 7x.

(ii) Following the same steps as in HW 25, one sees that 3 + 2x
−1

= 1
7 −

2
7x.
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