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Converting from a system of equations to a matrix equation

Start with a system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

... =
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

Let A denote the coefficient matrix and set x =


x1

x2

...
xn

 and b =


b1

b2

...
bm

.

The we may rewrite the system of equations as a single matrix equation:

A · x = b.
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Example

For example, if the system is

ax + by + cz = u

dx + ey + fz = v ,

then for A =

[
a b c
d e f

]
, x =

xy
z

 and u =

[
u
v

]
, we get the matrix

equation:
A · x = u.

Comment: When we have a single numerical equation ax = b, i.e., one
equation in one unknown, with a 6= 0, we can solve it by dividing both
sides of the equation by a: x = b

a .

Equivalently: We multiply both sides of the equation by the
multiplicative inverse of a, to get x = a−1 · b. In some cases we can do
this for a matrix equation.
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Definition

Let A be an n × n matrix and write In for the n × n matrix with 1s down

its main diagonal and zeroes elsewhere. I.e., In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

.

(i) We call In the n × n identity matrix. It has the property that

B · In = B and In · C = C ,

for all s × n matrices B and n × p matrices C .

(ii) An n × n matrix A−1 is called an inverse matrix for A if

A · A−1 = In = A−1 · A.
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Thus: If Ax = b is a matrix equation, and A has an inverse, then we have:

A−1(Ax) = A−1b

(A−1A)x = A−1b

In · x = A−1b

x = A−1b.

Thus, if A−1 exists, A−1b is the (unique) solution to the matrix equation
Ax = b.
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Invertibility Criterion

The following theorem tells us when a matrix is invertible, and how to
find its inverse.

Theorem. Let A be an n × n matrix.

(i) A has an inverse if and only if the rank of A equals n.

(ii) If A has an inverse, then the following steps lead to A−1:

(a) Form the n × (2n) augmented matrix [A | In].
(b) Perform elementary row operations until this augmented matrix has

the form [In | B].
(c) The matrix B emerging on the right portion of the augmented

matrix is, in fact, A−1.

Very Important Point: The rank of A equals the number of leading
ones in the RREF of A.

Therefore, if A is an n × n matrix, it has rank n if and only if it can be
row reduced to In..

Thus, A has an inverse if and only if A can be row reduced to In.
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Example

Find A−1, for A =

1 2 3
0 4 5
0 0 6

.

1 2 3 1 0 0
0 4 5 0 1 0
0 0 6 0 0 1

 1
4 ·R2−−−→
1
6 ·R3

1 2 3 1 0 0
0 1 5

4 0 1
4 0

0 0 1 0 0 1
6


−2·R2+R1−−−−−−→

1 0 1
2 1 − 1

2 0
0 1 5

4 0 1
4 0

0 0 1 0 0 1
6

 − 1
2 ·R3+R1−−−−−−→

1 0 0 1 − 1
2 − 1

12
0 1 5

4 0 1
4 0

0 0 1 0 0 1
6


− 5

4 ·R3+R2−−−−−−→

1 0 0 1 − 1
2 − 1

12
0 1 0 0 1

4 − 5
24

0 0 1 0 0 1
6

 .

. Thus,

A−1 =

1 − 1
2 − 1

12
0 1

4 − 5
24

0 0 1
6

 .
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Important Case

The following theorem gives an easy-to-check criterion to test the
invertibility of a 2× 2 matrix, and an explicit formula for the inverse of a
2× 2 matrix when it exists.

Theorem. Let A =

[
a b
c d

]
. Set ∆ = ad − bc, the determinant of A.

Then:

(i) A is invertible if and only if ∆ 6= 0.

(ii) If ∆ 6= 0, then A−1 = 1
∆

[
d −b
−c a

]
.
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For example: Suppose A =

[
2 4
6 8

]
. By the Theorem,

A−1 =
−1

8
·
[

8 −4
−6 2

]
=

[
−1 1

2
3
4 − 1

4

]
.

Via Row reductions:[
2 4 1 0
6 8 0 1

]
1
2 ·R1−−−→
1
2 ·R2

[
1 2 1

2 0
3 4 0 1

2

]
−3·R1+R2−−−−−−→

[
1 2 1

2 0
0 −2 − 3

2
1
2

]
− 1

2 ·R2−−−−→
[

1 2 1
2 0

0 1 3
4 − 1

4

]
−2·R1+R1−−−−−−→

[
1 0 −1 1

2
0 1 3

4 − 1
4

]
.

Thus, the two answers agree.
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Why the Theorem works. Suppose A =

[
a b
c d

]
, and ∆ = ad − bc 6= 0.

We can assume a 6= 0.[
a b 1 0
c d 0 1

]
1
a ·R1−−−→

[
1 b

a
1
a 0

c d 0 1

]
−c·R1+R2−−−−−−→

[
1 b

a
1
a 0

0 d − bc
a − c

a 1

]

=

[
1 b

a
1
a 0

0 ∆
a − c

a 1

]
a
∆ ·R2−−−→

[
1 b

a
1
a 0

0 1 − c
∆

a
∆

]
− b

a ·R2+R1−−−−−−→
[

1 0 1
a + bc

a∆ − b
∆

0 1 − c
∆

a
∆

]
=

[
1 0 d

∆ − b
∆

0 1 − c
∆

a
∆

]
,

since
1

a
+

bc

∆
=

∆ + bc

a∆
=

ad − bc + bc

a∆
=

d

∆
.

Thus, A−1 =

[
d
∆ − b

∆
− c

∆
a
∆

]
= 1

∆ ·
[
d −b
−c a

]
.
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Class Example

Find the inverse of A =

[
5 4
6 5

]
in two ways: First, using row operations

on the corresponding augmented matrix, and then using the determinant
formula above. Check that the matrix you found is really the inverse.

Solution: Start with the augmented matrix:

[
5 4 1 0
6 5 0 1

]
, and try to

transform the left hand side into I2.[
5 4 1 0
6 5 0 1

]
R1↔R2−−−−→

[
6 5 0 1
5 4 1 0

]
−1·R2+R1−−−−−−→

[
1 1 −1 1
5 4 1 0

]
−5·R1+R2−−−−−−→

[
1 1 −1 1
0 −1 6 −5

]
−1·R2−−−−→

[
1 1 −1 1
0 1 −6 5

]
−1·R2+R1−−−−−−→

[
1 0 5 −4
0 1 −6 5

]
Thus, A−1 =

[
5 −4
−6 5

]
.
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Using the formula: ∆ = 5 · 5− (−4) · (−6) = 25− 24 = 1. Therefore,

A−1 =
1

1
·
[

5 −4
−6 5

]
=

[
5 −4
−6 5

]
,

as before.

Check:

A ·A−1 =

[
5 4
6 5

]
·
[

5 −4
−6 5

]
=

[
1 0
0 1

]
=

[
5 −4
−6 5

]
·
[

5 4
6 5

]
= A−1 ·A,

as required
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Class Example

Find the inverse of the matrix B =

3 −4 0
2 −3 0
0 0 5

.

3 −4 0 1 0 0
2 −3 0 0 1 0
0 0 5 0 0 1

 −1·R2+R1−−−−−−→

1 −1 0 1 −1 0
2 −3 0 0 1 0
0 0 5 0 0 1


−2·R1+R2−−−−−−→

1 −1 0 1 −1 0
0 −1 0 −2 3 0
0 0 5 0 0 1

 −1·R2−−−−→

1 −1 0 1 −1 0
0 1 0 2 −3 0
0 0 5 0 0 1


R2+R1−−−−→

1 0 0 3 −4 0
0 1 0 2 −3 0
0 0 5 0 0 1

 1
5 ·R3−−−→

1 0 0 3 −4 0
0 1 0 2 −3 0
0 0 1 0 0 1

5


Thus, B−1 =

3 −4 0
2 −3 0
0 0 1

5

 .
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Note that for the upper right hand block of B =

3 −3 0
2 −3 0
0 0 5

,

[
3 −4
2 −3

]
·
[

3 −4
2 −3

]
=

[
1 0
0 1

]
,

and for the lower right hand block, 5 · 1
5 = 1.

This illustrates the phenomenon that if the matrix A has the block form

A =

[
B 0
0 C

]
,

where B and C are square matrices, then A is invertible if and only if B
and C are invertible, in which case

A−1 =

[
B−1 0

0 C−1

]
.

Lecture 8: Matrix Inverses and Elementary Matrices



Properties of inverse matrices:

(i) Only a square matrix can have an inverse, i.e., A must be an n × n
matrix, for some n ≥ 1.

(ii) Not every square matrix has an inverse.

(iii) If A has an inverse, then the inverse is unique. That is, any
invertible matrix has just one inverse.

(iv) If A has an inverse, then so does A−1, in which case (A−1)−1 = A.

(v) If A and B are n × n matrices with inverses A−1, B−1, then A · B
has an inverse, and (A · B)−1 = B−1 · A−1.

(vi) More generally, if A1,A2, . . .At are invertible square matrices of the
same size, then A1 · A2 · At is invertible and

(A1 · A2 · · ·At)
−1 = A−1

t · · ·A−1
2 · A

−1
1 .

(vii) If A is invertible, then At is invertible and (At)−1 = (A−1)t .
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Elementary Row Operations via Matrix Multiplication

We now illustrate how elementary row operations correspond to
multiplication by elementary matrices. Fix the 2× 3 matrix

M =

[
a b c
d e f

]
.

Type 1 Elementary Matrix: Suppose we wish to interchange the rows

of M. Interchange the rows of I2 to get

[
0 1
1 0

]
. Now take the product of

this matrix with M:[
0 1
1 0

]
·
[
a b c
d e f

]
=

[
d e f
a b c

]
.

If we want to change back, multiply again by

[
0 1
1 0

]
:

[
0 1
1 0

]
·
[
c d e
a b c

]
=

[
a b c
d e f

]
.
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Type 2 Elementary Matrix: Suppose we wish to multiply the second

row of M by 5. Multiply the second row of I2 by 5 to get

[
1 0
0 5

]
. Now

take the product of this matrix with M:[
1 0
0 5

]
·
[
a b c
d e f

]
=

[
a b c

5d 5e 5f

]
.

If we want to return to the original matrix M, multiply by

[
1 0
0 1

5

]
:

[
1 0
0 1

5

]
·
[
a b c

5d 5e 5f

]
=

[
a b c
d e f

]
.
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Type 3 Elementary Matrix: Suppose we wish to add -3 times the

second row of M to the first row of M. Do this to I2 to get

[
1 −3
0 1

]
.

Now take the product of this matrix with M:[
1 −3
0 1

]
·
[
a b c
d e f

]
=

[
a− 3d b − 3e c − 3f

d e f

]
.

If we want to return to the original matrix M, multiply by

[
1 3
0 1

]
, which

has the effect of adding 3 times the second row of the new matrix to the
first: [

1 3
0 1

]
·
[
a− 3d b − 3e c − 3f

d e f

]
=

[
a b c
d e f

]
.
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Definition

An m ×m elementary matrix E is one of the following three types:

(i) Type 1. E is obtained by interchanging two rows of Im.

(ii) Type 2. E is obtained from Im by multiplying a row of Im by a
non-zero number.

(iii) Type 3. E is obtained by adding a multiple of one row of Im to
another row of In.

In other words, an n × n elementary matrix is any matrix obtained from
Im by applying an elementary row operation to Im.

Moreover, if A is an m × n matrix, we may perform an elementary row
operation on A by taking a product E · A, where E is the corresponding
elementary matrix.

In addition: If B is obtained from A by a sequence of s elementary row
operations, then there are elementary matrics E1, . . . ,Es such that:

B = Es · · ·E2 · E1 · A.
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Example

Given A =

[
1 2
3 9

]
, we find a 2× 2 matrix C such that C · A is the RREF

of A.

First, use elementary row operations[
1 2
3 9

]
−3·R1+R2−−−−−−→

[
1 2
0 3

]
1
3 ·R2−−−→

[
1 2
0 1

]
−2·R2+R1−−−−−−→

[
1 0
0 1

]
.

We now take, in order, the elementary matrices used in the row reduction:

E1 =

[
1 0
−3 1

]
,E2 =

[
1 0
0 1

3

]
,E3 =

[
1 −2
0 1

]
.

We set C := E3 · E2 · E1 =[
1 −2
0 1

]
·
[

1 0
0 1

3

]
·
[

1 0
−3 1

]
=

[
1 −2
0 1

]
·
[

1 0
−1 1

3

]
=

[
3 − 2

3
−1 1

3

]
.
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Example continued

To Check, we multiply:

C · A =

[
3 − 2

3
−1 1

3

]
·
[

1 2
3 9

]
=

[
1 0
0 1

]
= I2,

which is the reduced row echelon form of A.

It is easy to check A · C = I2, so that in fact, C is the inverse of A.

Thus, the inverse of A is a product of elementary matrices.

This phenomenon is true in general.

And since the inverse of A is invertible, with inverse equal to A, we have
the following important fact.

Fundamental Fact. Any invertible matrix is a product of elementary
matrices.
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Class Example

Write down a sequence of 3× 3 elementary matrices that correspond to
the following row operations on a 3× 3 matrix:

(i) 7 · R3 + R1

(ii) 6 · R2

(iii) R2 ↔ R3

Solution: 1 0 7
0 1 0
0 0 1

 ,

1 0 0
0 6 0
0 0 1

 1 0 0
0 0 1
0 1 0

 .
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Inverses of Elementary Matrices are Elementary Matrices

Let E be an m ×m elementary matrix.

(i) Type 1. If E is obtained by interchanging the ith and jth rows of
Im, then E−1 = E .

(ii) Type 2. If E is obtained by multiplying the ith row of Im by the
constatnt c 6= 0, then E−1 is obtained by multiplying the ith row of
Im by 1

c .

(iii) Type 2. If E is obtained from Im by adding c times Ri to row Rj ,
then E−1 is obtained by adding −c times Ri to Rj .
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Example

Thus: 1 0 7
0 1 0
0 0 1

−1

=

1 0 −7
0 1 0
0 0 1

 ,

since 1 0 7
0 1 0
0 0 1

 ·
1 0 −7

0 1 0
0 0 1

 = I3 =

1 0 −7
0 1 0
0 0 1

 ·
1 0 7

0 1 0
0 0 1

 .

And 1 0 0
0 6 0
0 0 1

−1

=

1 0 0
0 1

6 0
0 0 1


since 1 0 0

0 6 0
0 0 1

 ·
1 0 0

0 1
6 0

0 0 1

 = I3 =

1 0 0
0 1

6 0
0 0 1

 ·
1 0 0

0 6 0
0 0 1

 .
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Finally, 1 0 0
0 0 1
0 1 0

−1

=

1 0 0
0 0 1
0 1 0

 ,

since 1 0 0
0 0 1
0 1 0

 ·
1 0 0

0 0 1
0 1 0

 = I3 =

1 0 0
0 0 1
0 1 0

 ·
1 0 0

0 0 1
0 1 0

 .
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