
Lecture 22: Applications of Orthogonalization

Lecture 22: Applications of Orthogonalization



Comment

Recall that if W ⊆ Rn is a subspace with orthonormal basis u1, . . . , ur ,
then for any x ∈ U,

x = (x ∗ u1) · u1 + · · ·+ (x ∗ ur ) · ur .

If instead, we take an orthogonal basis w1, . . . ,wr , then the expression for
x becomes

x =
x ∗ w1

w1 ∗ w1
· w1 + · · ·+ x ∗ wr

wr ∗ wr
· wr .

To see why: Suppose x = α1w1 + · · ·αrwr . Then x ∗ w1 =

(α1w1 + · · ·+αrwr )∗w1 = α1(w1 ∗w1) + · · ·+αr (wr ∗w1) = α1(w1 ∗w1).

Thus, x ∗ w1 = α1(w1 ∗ w1), which shows that α1 = x∗w1

w1∗w1
.

A similar calculation shows that each αi = x∗wi

wi∗wi
, for all i .
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Example

Let U ⊂ R3 have basis v1 =

1
0
1

 and v2 =

0
1
1

, and take x =

2
4
6

, a

vector in U. Find an orthogonal basis for U and express x in terms of
that basis.

Solution. We first apply Gram-Schmidt to the original basis. Take
w1 = v1. Calculate w1 ∗ w2 = 1 and w1 ∗ w1 = 2. Therefore,

w2 = v2 −
1

2
w1 =

0
1
1

− 1

2
·

1
0
1

 =

− 1
2

1
1
2



To avoid a fractions, we may take w2 = 2 ·

− 1
2

1
1
2

 =

−1
2
1

.
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Example continued

Now: x ∗ w1 = 8 and x ∗ w2 = 12. In addition: w1 ∗ w1 = 2 and
w2 ∗ w2 = 6. Thus:

x ∗ w1

w1 ∗ w1
· w1 +

x ∗ w2

w2 ∗ w2
· w2 =

8

2
·

1
0
1

+
12

6
·

−1
2
1

 =

2
4
6

 = x,

as required.

What if x is not in the subspace U?
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Definition

Suppose w1, . . . ,wr is an orthogonal basis for the subspace W ⊆ Rn.
Take any vector x in Rn. The orthogonal projection of x onto U is the
vector:

pUx =
x ∗ w1

w1 ∗ w1
· w1 + · · ·+ x ∗ wr

wr ∗ wr
· wr .

Note. If u1, . . . , ur is an orthonormal basis for W , then the orthogonal
projection of x onto U is just:

pUx = (x ∗ u1) · u1 + · · ·+ (x ∗ ur ) · ur .

For Example: If U is the subspace in the previous example and x =

1
1
1

 ,
then:

pUx =
x ∗ w1

w1 ∗ w1
·w1+

x ∗ w2

w2 ∗ w2
·w2 =

2

2
·

1
0
1

+
2

6
·

−1
2
1

 =

 2
3
2
3
4
3

 =
1

3
·

2
2
4

 .
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Theorem

Important properties of the orthogonal projection.

Let U be a subspace of Rn. For any vector x:

(i) x− pUx is orthogonal to every vector in U.

(ii) pUx is the closest vector in U to x.

In other words, for all y in U, ||pUx− x|| ≤ ||y− x||.

That is, the distance from x to pUx is less than or equal the distance
from x to any other vector in U.

Why: (i) Take w1 the first element in the orthogonal basis. Then

(x− pUx) ∗ w1 = x ∗ w1 − (
x ∗ w1

w1 ∗ w1
· w1 + · · ·+ x ∗ wr

wr ∗ wr
· wr ) ∗ w1

= x∗w1−
x ∗ w1

w1 ∗ w1
·(w1∗w1)+· · ·+ x ∗ wr

wr ∗ wr
·(wr ∗w1) = x∗w1−x∗w1 = 0.

A similar calculation shows that x− pUx is orthognonal to every basis
vector for U and this implies x− pUx is orthogonal to every vector in U.
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(ii) Take y any vector in U. Set p = pUx. Then y− p belongs to U and
is thus orthogonal to p− x.

Since y− x = (y− p) + (p− x), and these vectors form a right triangle,
applying the Pythagorean theorem we get:

||y− x||2 = ||y− p||2 + ||p− x||2 ≥ ||p− x||2,

Thus, ||p− x|| ≤ ||y− x||, which is what we want.
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For Example: In the example above, pUx = 1
3 ·

2
2
4

 is the closest vector

in the subspace U = span{

1
0
1

 ,
0

1
1

} to the vector x =

1
1
1

.

Moreover u =

2
4
6

 in in U and

u ∗ (pUx− x) =

2
4
6

 ∗ (
1

3
·

2
2
4

−
1

1
1

) =

2
4
6

 ∗ 1

3
·

−1
−1
1

 = 0.
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IMPORTANT APPLICATION

Let A be any m × n matrix, and suppose A · X = b is a system of
equations with no solutions.

Let U denote the column space of A, i.e., the subspace of Rm spanned by
the columns of A.

Then any solution z to the system A ·X = pUb is the best approximation
to a solution of the given system.

WHY: Recall that the system has a solution if and only if there is a
vector z such that A · z = b. In other words, if and only if b belongs to
the column space of A.

Equivalently: If there is no solution, b is not in the subspace U. Since the
closest vector in U to b is pUb, any vector z satisfying A · z = pUb can be
regarded as the best approximation to a solution of the original system.
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Example

Consider the system

x = 1

y = 1

x + y = 1.

It has no solution. Find the best approximation to a solution.

The system is A · x = b, for A =

1 0
0 1
1 1

, and b =

1
1
1

. We must solve

the system A · x = pUx.

The column space of A is generated by the vectors v1, v2 from the

example above. Thus, pUx = 1
3

2
2
4

.
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Example continued

Using Guassian elimination:1 0 2
3

0 1 2
3

1 1 4
3

 −R1+R3−−−−−→
−R2+R3

1 0 2
3

0 1 2
3

0 0 0

 .
Thus, x = 2

3 and y = 2
3 is the best approximation to a solution of the

original solution.
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Class Example

Find the best approximate solution to the system

x − y = −1

y = 2

x + y = 1.

Write down the augmented matrix you would solve to find the best
approximate solution to the given system.

Note that the columns of the coefficient matrix are orthogonal.

Use the formula pUx = x∗w1

w1∗w1
· w1 + x∗w2

w2∗w2
· w2.
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Class Example continued

Solution. The given system becomes A · X = b, for A =

1 −1
0 1
1 1

 and

b =

−1
2
1

.

We must solve the system A · X = pUb, for U the column space of A.

pUb =
b ∗ w1

w1 ∗ w1
· w1 +

b ∗ w2

w2 ∗ w2
· w2 =

0

2
·

1
0
1

+
4

3
·

−1
1
1

 =
4

3

−1
1
1

 .

Thus, we need to work with the augmented matrix

1 −1 − 4
3

0 1 4
3

1 1 4
3

.
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Comment

An Alternate method. Suppose the system A · X = b deos not have a
solution. Then any vector z ∈ Rn satisfying

AtA · z = Atb

is the best approximation to a solution of the original system.

Example. For the same example above, with A =

1 0
0 1
1 1

 and b =

1
1
1

,

AtA =

[
1 0 1
0 1 1

]
·

1 0
0 1
1 1

 =

[
2 1
1 2

]
,

and At · b =

[
1 0 1
0 1 1

]
·

1
1
1

 =

[
2
2

]
.
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Example continued. Thus, a best approximation is a solution z to the

system

[
2 1
1 2

]
·
[
x
y

]
=

[
2
2

]
. Using Gaussian elimination:

[
2 1 2
1 2 2

]
R1↔R2−−−−→

[
1 2 2
2 1 2

]
−2·R1+R1−−−−−−→

[
1 2 2
0 −3 −2

]
− 1

3 ·R2−−−−→
[

1 2 2
0 1 2

3

]
−2·R2+R1−−−−−−→

[
1 0 2

3
0 1 2

3

]
Thus, x = 2

3 and y = 2
3 is the best approximation to a solution of the

original system.

Note that this agrees with the answer obtained previously by the first
technique.
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Comment

Remark. Given the system A · X = b with no solution:

(i) That the second method works depends on the fact that pUx− x is
orthogonal to every vector in the column space of A. A proof can be
found in our text.

(ii) Regardless of the method, a best approximate solution z need not be
unique.

(iii) If the square matrix AtA is invertible, then the system
(AtA) · X = Atb has a unique solution z = (AtA)−1Atb.

In this case, there is a unique best approximate solution.

Lecture 22: Applications of Orthogonalization



SECOND IMPORTANT APPLICATION

Curve Fitting. Suppose we wish to find a quadratic function

f (x) = a0 + a1x + a2x
2

that best fits given data (1,3), (-1, 2), (2, 6), (3, 10). To do this, we find
the best approximation to a system that would have a solution if the
given points were exactly on a quadratic polynomial.

Solution. If there were a polynomial f (x) as above with these data
points, then:

a0 + a1 · 1 + a2 · 12 = 3

a0 + a1 · (−1) + a2 · (−1)2 = 2

a0 + a1 · 2 + a2 · 22 = 6

a0 + a1 · 3 + a2 · 32 = 10.
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Solution continued. Thus, we consider the system A ·

a0a1
a2

 = b, where

b =


3
2
6

10

 and A =


1 1 1
1 −1 1
1 2 4
1 3 9

. We seek a best approximate solution

to this system.

That is, a solution z to the system (AtA) · X = At · b, where X =

a0a1
a2

.

Computer software shows we need a solution to the equation: 4 5 15
5 15 35

15 35 99

 ·
a0a1
a2

 =

 21
43

119

 .
The coefficient matrix in this sytem has non-zero determinant, so there
will exists a unique best approximation to the original system
AtA · X = At · b.
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Example continued. Linear algebra software yields the solution

a0 =
20

11
, a1 =

31

55
, a2 =

8

11
.

Thus, f0(x) = 20
11 + 31

55x + 8
11x

2 best fits the given data.

Let’s see how well f0(x) fits the data.

f0(1) =
20

11
+

31

55
· 1 +

8

11
· 12 =

171

55
≈ 3.1

f0(−1) =
20

11
+

31

55
· (−1) +

8

11
· (−1)2 =

109

55
≈ 1.98

f0(2) =
20

11
+

31

55
· 2 +

8

11
· 22 =

312

55
≈ 5.67

f0(3) =
20

11
+

31

55
· 3 +

8

11
· 32 =

553

55
≈ 10.1

Note: These values are close to the exact values of 3, 2, 6, 10,
respectively, so f0(x) fits the data well.
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Comment

Given any collection of data points, (xi , yi ), the method above can be
used to find a polynomial of degree d best fitting the data as long as we
have at least d + 1 data points. When we seek a a polynomial of degree
one, i.e., a line of best fit, this method is called the Method of Least
Squares.
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