## Lecture 19: Bases and Dimension Continued

## Definition

Important Definition: Let $U \subseteq \mathbb{R}^{n}$ be a subspace of $\mathbb{R}^{n}$. Vectors $v_{1}, \ldots, v_{r} \in U$ are a basis for $U$ if:
(i) $U=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$.
(ii) The vectors $v_{1}, \ldots, v_{r}$ are linearly independent.

In particular: A basis for $\mathbb{R}^{n}$ is a collection of linearly independent vectors that span $\mathbb{R}^{n}$.

Moreover: If $v_{1}, \ldots, v_{n}$ is a basis for $\mathbb{R}^{n}$, then: Every vector in $\mathbb{R}^{n}$ can be written *uniquely* as a linear combination of $v_{1}, \ldots, v_{n}$.

Examples: (i) The standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is a basis for $\mathbb{R}^{n}$.
(ii) The basic solutions to a homogeneous system of linear equations form a basis for the solution space of that system.
(iii) If $\lambda$ is an eigenvalue for the matrix $A$, then the basic $\lambda$-eigenvectors form a basis for $E_{\lambda}$, the eigenspace of $\lambda$.

## Comment

Very Important Fact. Suppose the subspace $U$ of $\mathbb{R}^{n}$ is spanned by the vectors $v_{1}, \ldots, v_{r}$. Then there exists a subset of $v_{1}, \ldots, v_{r}$ forming a basis of $U$.

Why: Suppose $U=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. If $v_{1}, \ldots, v_{4}$ are linearly independent, they form a basis for $U$.

Otherwise of one the vectors is in the span of the remaining ones: say, $v_{2}=a v_{1}+b v_{3}+c v_{4}$.

Suppose $u \in U$. We can write

$$
\begin{gathered}
u=p v_{1}+q v_{2}+r v_{3}+s v_{4}=p v_{1}+q\left(a v_{1}+b v_{3}+c v_{4}\right)+r v_{3}+s v_{4} \\
=(p+a q) v_{1}+(q b+r) v_{3}+(q c+s) v_{4}
\end{gathered}
$$

Thus, $u \in \operatorname{span}\left\{v_{1}, v_{3}, v_{4}\right\}$.Thus: $U=\operatorname{span}\left\{v_{1}, v_{3}, v_{4}\right\}$.
If $v_{1}, v_{3}, v_{4}$ are linearly independent, they form a basis for $U$. Otherwise, we may eliminate another vector and continue the process until we have a linearly independent spanning set for $U$, that is, a basis for $U$.

## Example

Find a basis for the subspace $V=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$, for
$v_{1}=\left[\begin{array}{c}8 \\ 4 \\ 12\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{l}-4 \\ -2 \\ -6\end{array}\right]$.
Solution: By inspection, we see that $v_{1}=4 v_{2}$, so that $v_{1}$ is redundant, and $V=\operatorname{span}\left\{v_{2}, v_{3}\right\}$.

Now note that $v_{3}=-2 \cdot v_{2}$. Thus, $v_{3}$ is redundant, and $V=\operatorname{span}\left\{v_{2}\right\}$.
Thus, $v_{2}$ is a basis for $V$.
MAIN POINT REITERATED. Given a spanning set for a subspace, we may throw out redundant spanning vectors until we have a linearly independent spanning set - which is then a basis for that subspace.

## Class Example

Find a basis for the subspace $U$ of $\mathbb{R}^{4}$ spanned by the vectors
$v_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}3 \\ -5 \\ 2 \\ 5\end{array}\right], v_{3}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 1\end{array}\right]$.
Solution: We Start with the equation $A \cdot \mathbf{X}=\mathbf{0}$, with $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$.
$\left[\begin{array}{ccc|c}1 & 3 & 0 & 0 \\ -1 & -5 & -1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 5 & 1 & 0\end{array}\right] \xrightarrow[-R_{1}+R_{4}]{R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 0 \\ 0 & -2 & -1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0\end{array}\right] \xrightarrow[-R_{2}+R_{4}]{R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 0 \\ 0 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\xrightarrow{-\frac{1}{2} \cdot R_{2}}\left[\begin{array}{lll|l}1 & 3 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. The solutions to $A \cdot \mathbf{X}=\mathbf{0}$ are $\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 t \\ -\frac{t}{2} \\ t \\ 0\end{array}\right]$.

## Class Example continued

Taking $t=1$, we have the dependence relation

$$
\begin{equation*}
-3 v_{1}-\frac{1}{2} v_{2}+v_{3}=\mathbf{0} . \tag{*}
\end{equation*}
$$

Thus, $v_{3}=3 v_{1}+\frac{3}{2} v_{2}$. Therefore $v_{3}$ is redundant, so $v_{1}, v_{2}$ span $U$. To see $v_{1}, v_{2}$ are linearly independent, suppose $v_{1}=\lambda v_{2}$.
Then $\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]=\lambda \cdot\left[\begin{array}{c}3 \\ -2 \\ 2 \\ 5\end{array}\right]$. From the 3rd coordinate: $\lambda=0$.
The first coordinate becomes $1=0 \cdot 3$, a contradiction. Thus, $v_{1}, v_{2}$ are not DEPENDENT, so they are independent. Therefore, $v_{1}, v_{2}$ form a basis for $U$.

NOTE: The same argument using $\left(^{*}\right)$ shows that $v_{1}, v_{3}$ and $v_{2}, v_{3}$ are also bases for $U$.

## Fundamental Theorem

Let $v_{1}, \ldots, v_{r}$ be vectors in $\mathbb{R}^{n}$ that span the subspace $U$ and suppose $w_{1}, \ldots, w_{t} \in U$ are linearly independent. Then:
(i) $t \leq r$. In other words:

In any given subspace, the number of linearly independent vectors is always less than or equal to the number of spanning vectors.
(ii) Any two bases for $U$ have the same number of elements.

Why: If $v_{1}, \ldots, v_{r}$ and $w_{1}, \ldots, w_{t}$ are bases for $U$, then $t \leq r$ since the $w$ 's are linearly independent and the $v$ 's span $U$.

On the other hand, $r \leq t$, since the $v$ 's are linearly independent and the $w$ 's span $U$.

Thus, $r=t$, and the two sets of bases have the same number of elements.

## Definition

Let $U$ be a subspace of $\mathbb{R}^{n}$. The dimension of $U$ is the number of elements in any basis of $U$.

Corollary. The dimension of $\mathbb{R}^{n}$ equals $n$.
WHY: $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ forms a basis for $\mathbb{R}^{n}$.
Corollary. The dimensions of the subspaces of $\mathbb{R}^{3}$ are given as follows:
(i) $\{\mathbf{0}\}$ is zero dimensional - it does not have a basis.
(ii) A line $L$ through the origin is one dimensional. Any vector on the line forms a basis for $L$.
(iii) A plane $P$ through the origin is two dimensional. Any two non-collinear vectors in $P$ form a basis for $P$.

## Theorem

Very Important Theorem. Let $v_{1}, \ldots, v_{n}$ be $n$ column vectors in $\mathbb{R}^{n}$ and let $A$ denote the matrix whose columns are $v_{1}, \ldots, v_{n}$. The following conditions are equivalent:
(i) $A$ is invertible.
(ii) $\operatorname{det}(A) \neq 0$.
(iii) $A \cdot \mathbf{X}=\mathbf{0}$ has only the $\mathbf{0}$ solution.
(iv) $A \cdot \mathbf{X}=\mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbb{R}^{n}$.
(v) The vectors $v_{1}, \ldots, v_{n}$ are linearly independent.
(vi) The vectors $v_{1}, \ldots, v_{n}$ span $\mathbb{R}^{n}$.
(vii) The vectors $v_{1}, \ldots, v_{n}$ form a basis for $\mathbb{R}^{n}$.

Important Comments. (a) The equivalence of (v)-(vii) works because we are taking $n$ vectors in $\mathbb{R}^{n}$. This enables us to construct an $n \times n$ matrix with the given vectors.
(b) If we take $r$ vectors in $\mathbb{R}^{n}$, with $r \neq n$, then (v)-(vii) will not be equivalent.

## Example

Determine if the vectors $v_{1}=\left[\begin{array}{c}-3 \\ 2 \\ 9\end{array}\right], v_{2}=\left[\begin{array}{c}0 \\ 11 \\ 19\end{array}\right], v_{3}=\left[\begin{array}{c}0 \\ 0 \\ 39\end{array}\right]$ form a basis for $\mathbb{R}^{3}$.
Solution: The determinant of the matrix $\left[\begin{array}{ccc}-3 & 0 & 0 \\ 2 & 11 & 0 \\ 9 & 19 & 39\end{array}\right]$ equals $(-3) \cdot 11 \cdot 39 \neq 0$.
By the previous theorem: $v_{1}, v_{2}, v_{3}$ form a basis for $\mathbb{R}^{3}$.

## Class Example

Which pairs of vectors in $\mathbb{R}^{2}$ are linearly independent:

$$
v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

and

$$
w_{1}=\left[\begin{array}{l}
3 \\
6
\end{array}\right], w_{2}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Solution: $\left|\begin{array}{ll}2 & 3 \\ 1 & 7\end{array}\right|=11 \neq 0$, so $v_{1}, v_{2}$ are linearly independent.
$\left|\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right|=0$, so $w_{1}, w_{2}$ are not linearly independent.

## Example

Given the vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Find a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and determine whether or not that basis forms a basis for $\mathbb{R}^{3}$.

Solution: First we eliminate redundancies. Consider $A \cdot \mathbf{X}=\mathbf{0}$, for $A=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{llll|l}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \xrightarrow{-R_{1}+R_{2}}\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \xrightarrow[-1 \cdot R_{2}]{R_{2}+R_{3}}\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right]} \\
& \\
& \underset{\frac{1}{2} \cdot R_{3}+R_{2}}{-R_{2}+R_{1}}\left[\begin{array}{llll|l}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right] \xrightarrow[-R_{3}+R_{1}]{\frac{1}{2} \cdot R_{3}}\left[\begin{array}{cccc|c}
1 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & \frac{1}{2} & 0
\end{array}\right] .
\end{aligned}
$$

## Example continued

The corresponding homogenous system has non-trivial solutions, so the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are not linearly independent.
Since the solutions are given by $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]=-t \cdot\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$, if we take $t=-2$, we see that $\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -2\end{array}\right]$ is a solution.
Thus, $v_{1}+v_{2}+v_{3}+2 v_{4}=0$, so that $v_{4}=\frac{1}{2}\left(v_{1}+v_{2}+v_{3}\right)$. Therefore, we may eliminate the redundant vector $v_{4}$.

Therefore, $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.

## Example continued

Since we now have three vectors in $\mathbb{R}^{3}$, we can check their linear independence by taking the determinant of the matrix whose columns are $v_{1}, v_{2}, v_{3}$.

$$
\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=1 \cdot\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|-1 \cdot\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=-1-1=-2 \neq 0
$$

Thus, the three vectors $v_{1}, v_{2}, v_{3}$ are linearly independent and therefore form a basis for $\mathbb{R}^{3}$.

## Summary of Spanning, Linear Independence, and Bases

Let $v_{1}, \ldots, v_{r}, w$ be columns vectors in $\mathbb{R}^{n}$. Let $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{r}\end{array}\right]$. Then:
(i) $w$ belongs to $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$ if and only if the system of equations $A \cdot \mathbf{X}=w$ has a solution.
(ii) If $\left[\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{n}\end{array}\right]$ is a solution to $A \cdot \mathbf{X}=w$, then $w=\lambda_{1} v_{1}+\cdots+\lambda_{r} v_{r}$.
(iii) $v_{1}, \ldots, v_{r}$ are linearly independent if and only if $A \cdot \mathbf{X}=\mathbf{0}$ has only the zero solution.
(iv) If $v_{1}, \ldots, v_{r}$ are not linearly independent and $\left[\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{n}\end{array}\right]$ is a non-zero solution to $A \cdot \mathbf{X}=\mathbf{0}$, then

$$
\text { (*) } \quad \lambda_{1} v_{1}+\cdots \lambda_{r} v_{r}=\mathbf{0} .
$$

This means the vectors $v_{1}, \ldots, v_{r}$ are linearly dependent, and thus redundant.

## Summary of Spanning, Linear Independence, and Bases

(v) One can use $\left(^{*}\right)$ to write some $v_{i}$ in terms of the remaining $v$ 's. Upon doing so:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{r}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} .
$$

(vi) One may continue to eliminate redundant vectors from among the $v_{i}$ 's. As soon as one one arrives at a linearly independent subset of $v_{1}, \ldots, v_{r}$, this set of vectors forms a basis for the original subspace $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$. The number of elements in the basis is then the dimension of $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$.
(vii) To test if $n$ vectors in $\mathbb{R}^{n}$ are linearly independent, or span $\mathbb{R}^{n}$ or form a basis for $\mathbb{R}^{n}$, it suffices to show that $\operatorname{det}\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right] \neq 0$.

