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When is a matrix diagonalizable?

Theorem. Let A be an n × n matrix. The following conditions are
equivalent.

(i) A is diagonalizable

(ii) cA(x) = (x − λ1)m1(x − λ2)m2 · · · (x − λr )mr and for each λi , A has
mi basic vectors.

Moreover: When this is the case, if v1, . . . , vn are the n basic vectors
from (ii), and we let P denote the n × n matrix whose columns are the
vi , then P−1AP is the n × n matrix with

λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr , . . . , λr

down its main diagonal, where each λi appears mi times.

To summarize: The n × n matrix A is diagonalizable, if A has n
eigenvalues (counted with multiplicities) and for each eigenvalue λ, if the
multiplicity of λ is m, then A must have m basic eigenvectors.

Very Important Corollary. If A has n distinct eigenvalues, then A is
diagonalizable.
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Comment

Computing powers of a diagonalizable matrix: Suppose A is
diagonalizable. We want to compute An, all n. Then P−1AP = D, where
D = diag(λ1, . . . , λn). Note that Dr = diag(λr1, . . . , λ

r
n), for all r .

To compute the powers of A, we note that A = PDP−1.

(i) A2 = PDP−1 · PDP−1 = PD2P−1.

(ii) A3 = A2 · A = PD2P−1 · PDP−1 = PD3P−1.

(iii) Continuing, An = PDnP−1, for all n.

Thus, if A is diagonalizable, in order to calculate the powers of A, we just
have to diagonalize A and compute the powers of a diagonal matrix.
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Applications

First Application: Solving recurrence relations.

The sequence of non-negative numbers a0, a1, a2, . . . , ak , . . . , is called a
linear recursion sequence of length two if there are fixed integers
α, β, c , d such that:

(i) a0 = α.

(ii) a1 = β.

(iii) ak+2 = c · ak + d · ak+1, for all k ≥ 0.

The conditions in (i) and (ii) are called initial conditions.

To solve the recurrence relation, we set up a matrix equation. Let

vk =

[
ak
ak+1

]
, and A =

[
0 1
c d

]
. Thus, for k ≥ 0,

A · vk =

[
0 1
c d

]
·
[

ak
ak+1

]
=

[
ak+1

ak+2

]
= vk+1.

Since v1 = Av0 and v2 = Av1, we have v2 = A2v0. And:
v3 = Av2 = A · A2v = A3v0. Continuing, we have vk = Akv0, for all k.
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Applications Continued

Thus: To find ak , we must find vk .To find vk , we must calculate Ak .
When A is diagonalizable, this task is made easier.

We can write A = PDP−1, with D =

[
λ2 0
0 λ2

]
diagonal.

Then for all k ≥ 0, vk = PDkP−1 · v0.

ak is then the first coordinate of the vector

PDkP−1 · v0 = P

[
λk1 0
0 λk2

]
· P−1 ·

[
α
β

]
.
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Example

The Fibonacci sequence.

a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 3, a6 = 5, a7 = 8, a8 = 13, ...

In general, ak+2 = ak + ak+1, for all k ≥ 0.

To solve for ak , proceeding as above, we write A =

[
0 1
1 1

]
, and

vk =

[
ak
ak+1

]
= Ak · v0 = Ak

[
0
1

]
.

It is easy to check that cA(x) = x2 − x − 1, and thus, the eigenvalues of

A are: λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 .

Since A has distinct eigenvalues, it is diagonalizable.
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Example continued

To find the matrix P, we have to find the basic eigenvectors for λ1 and
λ2.

λ1I2 − A =

[
λ1 −1
−1 λ1 − 1

]
(λ1−1)·R1+R2−−−−−−−−→

[
λ1 −1
0 0

]
,

which shows that

[
1
λ1

]
is a basic eigenvector for λ1. A similar calculation

shows that

[
1
λ2

]
is a basic eigenvector for λ2.

Thus, we take P =

[
1 1
λ1 λ2

]
. P−1 = − 1√

5
·
[
λ2 −1
−λ1 1

]
.
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Example continued

To calculate ak we just need the top entry of Ak · v0 = Ak ·
[

0
1

]
. We have

Ak ·
[

0
1

]
= PDkP−1 =

[
1 1
λ1 λ2

]
·
[
λk1 0
0 λk2

]
· − 1√

5
·
[
λ2 −1
−λ1 1

]
·
[

0
1

]

= − 1√
5
·
[

1 1
λ1 λ2

]
·
[
λk1 0
0 λk2

]
·
[
−1
1

]
= − 1√

5
·
[

1 1
λ1 λ2

]
·
[
−λk1
λk2

]

=
1√
5
·
[
λk1 − λk2
−

]
.

Thus

ak =
λk1 − λk2√

5
=

1√
5
· {( 1 +

√
5

2
)k − (

1−
√

5

2
)k}

for all k ≥ 0. (!!)
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Applications Continued

Calculating eA for A diagonalizable.

Suppose A is diagonalizable. Then A = PDP−1 for D an n × n diagonal
matrix with the eigenvalues of A down its main diagonal.

Thus, An = PDnP−1, for all n, as before.Therefore:

eA = In + A +
1

2!
A2 +

1

3!
A3 + · · ·

= In + (PDP−1) +
1

2!
(PD2P−1) +

1

3!
(PD3P−1) + · · ·

= P{In + D +
1

2!
D2 +

1

3!
D3 + · · · }P−1

= PeDP−1.
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Applications Continued

To calculate eD , suppose D = diag(λ1, . . . , λn). Then

1

r !
Dr = diag(

λr1
r !
, . . . ,

λrn
r !

).

Summing from r 0 to ∞, we see

eD =
∞∑
r=0

1

r !
Dr =

∞∑
r=0

diag(
λr1
r !
, . . . ,

λrn
r !

) = diag(eλ1 , . . . , eλn).

For example: if A =

[
−1 2
0 1

]
, then we have seen that A = PDP−1, for

P =

[
1 1
0 1

]
, P−1 =

[
1 −1
0 1

]
, and D =

[
−1 0
0 1

]
. Thus:

eA = PeDP−1 =

[
1 1
0 1

]
·
[
e−1 0

0 e

]
·
[

1 −1
0 1

]
=

[
e−1 e

0 e

]
·
[

1 −1
0 1

]

=

[
e−1 e − e−1

0 e

]
.
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Class Example

Calculate eA for the matrix A =

[
0 −6
1 5

]
. Use the fact that the

eigenvalues of A are 2 and 3, P =

[
3 2
−1 −1

]
is the diagonalizing matrix,

and P−1 =

[
1 2
−1 −3

]
.

Solution: eA = PeDP−1 = P ·
[
e2 0
0 e3

]
· P−1 =

[
3 2
−1 −1

]
·
[
e2 0
0 e3

]
·
[

1 2
−1 −3

]
=

[
3e2 2e3

−e2 −e3
]
·
[

1 2
−1 −3

]

=

[
3e2 − 2e3 6e2 − 6e3

−e2 + e3 −2e2 + 3e3

]
.

Lecture 13: Applications of Diagonalization



Vector Valued First Order Linear Differential Equations

Let X(t) =

x1(t)
...

xn(t)

 be a vector valued function of t, i.e., each

component xi (t) is a function of t. The derivative of X(t) is just the

vector valued function X′(t) =

x
′
1(t)
...

x ′n(t)

.

A vector valued first order linear differential equation is a vector equation
of the form:

X(t) = A · X′(t),

where A is an n × n matrix with entries in R. The fixed vector X(0) is
called the initial condition.
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Vector Valued First Order Linear Differential Equations

Note that if we let A = (aij), then the matrix equation above is the same
as the system of first order linear differential equations:

x ′1(t) = a11x1(t) + · · ·+ a1nxn(t)

x ′2(t) = a21x1(t) + · · ·+ a2nxn(t)

... =
...

x ′n(t) = an1x1(t) + · · ·+ annxn(t)

GOAL: Solve a system of first order linear differential equations by
converting to a vector valued first order linear differential equation.

If the coefficient matrix A is diagonalizable, we can solve the system.
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A single first order linear differential equation: The 1× 1 case

Recall from Calculus I: If x(t) = Ceat , then x ′(t) = aCeat = a · x(t).

In other words, x(t) = Ceat is the general solution to the first order
linear differential equation x ′(t) = ax(t).

Note that x(0) = C , so C is the initial condition.

Thus the solution to the differential equation x ′(t) = a · x(t), with initial
condition x(0) is:

x(t) = x(0)eat .
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The 2× 2 case

We start with the system of differential equations:

x ′1(t) = a11x1(t) + a12x2(t)

x ′2(t) = a21x1(t) + a21x2(t).

This is equivalent to the vector equation: X′(t) = A · X(t), where
A = (aij) is the 2× 2 coefficient matrix.

Assume A is diagonalizable, so A = PDP−1, where P is the matrix of
basic eigenvectors and D = diag(λ1, λ2), where λ1, λ2 are the
eigenvalues of A.

Set Y(t) = P−1 · X(t). Then Y′(t) = P−1 · X′(t). This leads to:

X′(t) = A · X(t)

X′(t) = PD(P−1 · X(t))

P−1 · X′(t) = D(P−1 · X(t))

Y′(t) = D · Y(t).
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The 2× 2 case

Translating the last vector equation into a system:

y ′1(t) = λ1y(t) and y ′2(t) = λ2y2(t).

In other words we now have two separate, independent equations. Thus

y1(t) = y1(0)eλ1t and y2(t) = y2(0)eλ2t .

Converting back to a matrix equation, we have

Y(t) =

[
eλ1t 0

0 eλ2t

]
·
[
y1(0)
y2(0)

]
= eDt · Y(0).
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The 2× 2 case

Converting back to X we have:

P−1 · X(t) = eDt · P−1X(0), and thus X(t) = PeDtP−1X(0).

Since eAt = PeDtP−1,
X(t) = eAt · X(0).

This looks just like the answer in the 1× 1 case. .

This explains why we want to consider expressions eA.

The solution in the n × n case takes exactly the same form.
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Example

Find the solution to the system of first order linear differential equations:

x ′1(t) = x2(t)

x ′2(t) = x1(t).

with initial conditions: x1(0) = 1, x2(0) = −1.

Solution: The vector equation is X′(t) = A · X(t), with A =

[
0 1
1 0

]
.

Thus, the solution is: X(t) = eAt · X(0), where X(0) =

[
1
−1

]
.

The usual calculation shows that A has eigenvalues 1 and -1 with

corresponding eigenvectors

[
1
1

]
and

[
1
−1

]
.Thus, we take P =

[
1 1
1 −1

]
.

Then P−1 = − 1
2

[
−1 −1
−1 1

]
. We aso have Dt =

[
t 0
0 −t

]
.
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Example continued

Now,

eAt = PeDtP−1 =

[
1 1
1 −1

]
·
[
et 0
0 e−t

]
· −1

2

[
−1 −1
−1 1

]

= −1

2

[
−et − e−t −et + e−t

−et + e−t −et − e−t

]
.

Thus,[
x1(t)
x2(t)

]
= X(t) = eAt · X(0) = −1

2

[
−et − e−t −et + e−t

−et + e−t −et − e−t

]
·
[

1
−1

]

= −1

2

[
−et − e−t + et − e−t

−et + e−t + et + e−t

]
=

[
e−t

−e−t
]

Thus, the solution to the system is: x1(t) = e−t and x2(t) = −e−t .
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Example

Find the solution to the system of first order linear differential equations:

x ′1(t) = −6x2(t)

x ′2(t) = −x1(t) + xy2(t),

with initial conditions x1(0) =
√

2 and x2(0) = π.

Solution: In terms of matrices, we have X ′(t) = A · X(t), with

A =

[
0 −6
−1 5

]
and X(0) =

[√
2
π

]
. The solution is: eAt · X(0). From

above, we have eAt =

[
3e2t − 2e3t 6e2t − 6e3t

−e2t + e3t −2e2t + 3e3t

]
- just repeat the

calculation above with the eigenvalues 2,3 replaced by 2t, 3t.
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Example continued

Thus:[
x1(t)
x2(t)

]
= X(t) = eAt · X(0) =

[
3e2t − 2e3t 6e2t − 6e3t

−e2t + e3t −2e2t + 3e3t

]
·
[√

2
π

]

=

[
3
√

2e2t − 2
√

2e3t + 6πe2t − 6πe3t

−
√

2e2t +
√

2e3t − 2πe2t + 3πe3t

]
=

[
(3
√

2 + 6π)e2t − (2
√

2 + 6π)e3t

−(
√

2 + 2π)e2t + (
√

2 + 3π)e3t

]
.

Therefore the solution is :

x1(t) = (3
√

2 + 6π)e2t − (2
√

2 + 6π)e3t

x2(t) = −(
√

2 + 2π)e2t + (
√

2 + 3π)e3t .
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