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Example

Let us start with an example. Consider the system of equations:

2x + 4y + 6z = 12

3y + 6z = 18

If we divide the first equation by 2 and the second equation by 3, we get:

x + 2y + 3z = 6

y + 2z = 6.

Next, eliminate y by multiplying the second equation by -2 and adding it
to the first equation:

x + (−z) = −6

y + 2z = 6.

Thus: x = −6 + z and y = 6− 2z , for z any real number. The solution
set is:

{(−6 + t, 6− 2t, t) | t ∈ R}.
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Example Continued

Important observation: Until the last step, the variables x , y , z were
functioning as place holders. We solved the system by working only with
the coefficients.

So let us solve the system by just working with the coefficients, by
putting them in a box (or array), called the augmented matrix of the
system of equations [

2 4 6 12
0 3 6 18

]
.

The large left portion

[
2 4 6
0 3 6

]
of the augmented matrix is called the

coefficient matrix.The right portion

[
12
18

]
of the augmented matrix is

called the constant matrix.

Lecture 2: Gaussian Elimination



Example Continued

Further things to notice about the augmented matrix[
2 4 6 12
0 3 6 18

]
.

Each column in the left portion of the matrix corresponds to a
variable in the given system.

Each row in the augmented matrix corresponds to an equation in the
given system.

We put 0 in a row if a variable does not appear in the expected
place in the corresponding equation.

Lecture 2: Gaussian Elimination



Example Continued

Now let’s perform the same steps on the augmented matrix[
2 4 6 12
0 3 6 18

]
that we did to solve the system of equations.

Step 1: Divide the first row by 2 and the second row by 3.[
2 4 6 12
0 3 6 18

]
1
2 ·R1−−−→
1
3 ·R2

[
1 2 3 6
0 1 2 6

]
.

Step 2: Multiply the second row by -2 and add it to the first row.[
1 2 3 6
0 1 2 6

]
−2·R2+R1−−−−−−→

[
1 0 −1 −6
0 1 2 6

]
.

Note, in the second step, we did not change R2, we just used it to
change R1.
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Example Continued

Convert back to a system of equations:[
1 0 −1 −6
0 1 2 6

]
→ x + 0y +−z = 6

0x +−y + 2z =−6

which is the system

x + (−z) = −6

y + 2z = 6.

And thus, as before, x = −6 + z and y = 6− 2z , for z any real number.

The solution set is: {(−6 + t, 6− 2t, t) | t ∈ R}.
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Important Point

Any system of m linear equations in n unknowns gives rise to an
augmented matrix with m rows and n + 1 columns.

And conversely, any augmented matrix with m rows and n + 1 columns
gives rise to a system of m linear equations in n unknowns.

Thus the systems of equations

3x1 − 5x3 + 2x4 = 9

2x2 + 9x3 − 4x4 = −6

x2 + x3 + x4 = 9

gives rise to the augmented matrix3 0 −5 4 9
0 2 9 −4 −6
0 1 1 1 9

 .
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Important Point Continued

And similarly, the augmented matrix[
0 1 0 1 0

√
7

1 0 1 0 1 99.99

]
Gives rise to the system of equations

x2 + x4 =
√

7

x1 + x3 + x5 = 99.99.
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Class Example

Convert

2x − 3y + 5z = 7

3x − 2z = 9

y + 8z = 4

to an augmented matrix and convert

[
2 0 0 4
0 −2 −2 6

]
to a system of

equations.

Solution: The augmented matrix is

2 −3 5 7
3 0 −2 9
0 1 8 4

, and the system

of equations is

2x = 4

−2y − 2z = 6.
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Definition

The process of solving a system of linear equations by converting the
system to an augmented matrix is called Gaussian Elimination.

The general strategy is as follows:

Convert the system of linear equations into an augmented matrix.

Perform various allowable operations on the augmented matrix until
it is in a desirable form.

Read off or write down the solution set.

In solving a system of linear equations using Gaussian Elimination, we are
free to convert back to a system of linear equations from any augmented
matrix that arises during the elimination process.

Crucial Fact: Any new system of equations that arises along the
way has the same solution set as the original system of equations.
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Example

Let’s look at the case of two equations in two unknowns

ax + by = c

dx + ey = f

The simplest version of this is

x = u

y = v ,

which is easy to solve! The corresponding augmented matrix is[
1 0 u
0 1 v

]
.

This suggests we should try to put the initial augmented matrix into this
form.
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Example

Use Gaussian Elimination to solve the system

2x + 3y = 1

3x + 2y = −1.

The augmented matrix is

[
2 3 1
3 2 −1

]
. We would like to have a 1 in the

upper left corner. Dividing R1 by 2 is messy! Instead: Switch rows and
then subtract[

2 3 1
3 2 −1

]
R1↔R2−−−−→

[
3 2 −1
2 3 1

]
R1−R2−−−−→

[
1 −1 −2
2 3 1

]
.

Next: to get 0 in the lower left corner, add a multiple of R1 to R2.[
1 −1 −2
2 3 1

]
−2·R1+R2−−−−−−→

[
1 −1 −2
0 5 5

]
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Example Continued

We now want 1 in the lower right corner of the coefficient matrix[
1 −1 −2
0 5 5

]
1
5 ·R2−−−→

[
1 −1 −2
0 1 1

]
.

Finally, add R2 to R1 to get:[
1 −1 −2
0 1 1

]
2·R2+R1−−−−−→

[
1 0 −1
0 1 1

]
.

This last augmented matrix corresponds to the system

x = −1

y = 1,

so the solution set is {(−1, 1)}. Check:

2(−1) + 3 · 1 = 1

3(−1) + 2 · 1 = −1.

In general, what are the allowable operations on the augmented matrix
associated to a system of linear equations?

Lecture 2: Gaussian Elimination



Definition

Elementary Row operations:

Interchange two rows: Ri ↔ Rj

Multiple a row by a non-zero number: Rj becomes λ · Rj , λ 6= 0

Add a multiple of one row to another row: Ri becomes Ri + λ · Rj .

Crucial Fact Revisited: Given a system of linear equations, the
solution set does not change as we perform elementary row
operations on the corresponding augmented matrix.
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Example

Use Gaussian Elimination to solve the system

3x − 2y = 14

4x + 3y = 13

[
3 −2 14
4 3 13

]
R1↔R2−−−−→

[
4 3 13
3 −2 14

]
R1−R2−−−−→

[
1 5 −1
3 −2 14

]
−3·R1+R2−−−−−−→

[
1 5 −1
0 −17 17

]
− 1

17 ·R2−−−−→
[

1 5 −1
0 1 −1

]
−5·R2+R1−−−−−−→

[
1 0 4
0 1 −1

]
Thus, x = 4 and y = −1. Check:

3 · 4− 2 · (−1) = 14

4 · 4 + 3 · (−1) = 13
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Class Example

Use Gaussian Elimination to solve the system

2x + 4y = 16

5x + 2y = 16.

Solution: Converting to an augmented matrix we have:[
2 4 16
5 2 16

]
1
2 ·R1−−−→

[
1 2 8
5 2 16

]
−5·R1+R2−−−−−−→

[
1 2 8
0 −8 −24

]
[

1 2 8
0 −8 −24

]
− 1

8 ·R2−−−−→
[

1 2 8
0 1 3

]
−2·R2+R1−−−−−−→

[
1 0 2
0 1 3

]
Thus, x = 2 and y = 3, or as a set, {(2, 3)}. Check:

2 · 2 + 4 · 3 = 16

5 · 2 + 2 · 3 = 16.
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Example

The previous examples illustrate how the augmented matrix indicates
that a system has a unique solution. There are also the cases of no
solution or infinitely many solutions.

Case 1: The augmented matrix has the form

[
α β γ
0 0 δ

]
, with δ 6= 0. In

this case, the second row yields the equation, 0y = δ, i.e., 0 = δ, which is
a contradiction.. Thus the system has no solution.

Case 2: The augmented matrix has the form

[
α β γ
0 0 0

]
, with α or β

non-zero. In this case, the system has been reduced to just one equation:
αx + βy = γ, which has infinitely many solutions.

Then, as we have seen previously, if say, α 6= 0, the solution set is
{( γ

α −
β
α t, t) | t ∈ R}.

If α = 0 and β 6= 0, then the solution set is {(t, γβ ) | t ∈ R}.
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Class Example

Use Gaussian elimination to determine which system has infinitely many
solutions and which system has no solution.

2x + 3y = 6
6x + 9y = 18

x + 4y = 9
6x + 24y = 40

Solution: For the first system we have[
2 3 6
6 9 18

]
−3·R1+R2−−−−−−→

[
2 3 6
0 0 0

]
,

and thus the first sytem has infinitely many solutions. For the second
system [

1 4 9
6 24 40

]
−6·R1+R2−−−−−−→

[
1 4 9
0 0 −14

]
,

and thus the second system has no solution.
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General Principle

If at any stage in the process of Gaussian elimination, we arrive at an
augmented matrix having a row of the form

[0 0 0 · · · 0 | δ],

with δ 6= 0, we may stop and conclude that the system has no solution.

Otherwise, the system will have a unique solution or infinitely many
solutions.
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Second General Principle

If we start with a system of linear equations in n variables that has a
solution, then the system will have a unique solution if we can put the
augmented matrix into the form

1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗
0 0 0 · · · 0 0
...

... · · ·
...

...
...


,

with n 1s down the main diagonal and zeros below.
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Example

If neither principle holds, the system has infinitely many solutions, e.g.,[
1 0 1 0 1 99.99

0 1 0 1 0
√

7

]

So, for example, if the original system had variables x , y , z ,w , u, then the
augmented matrix yields x = 99.99− z − u and y =

√
7− w .

Introducing the independent parameters t1, t2, t3 to replace z ,w , u
respectively, the solution set would be

{((99.9− t1 − t3,
√

7− t2, t1, t2, t3) | ti , t2, t3 ∈ R}.
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