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Definition

Let x =

x1...
xn

 and y =

y1...
yn

 be vectors in Rn.

1.The dot product x and y is the real number x1y1 + x2y2 + · · ·+ xnyn.
In terms of matrices, we can also write the dot product as:

[
x1 x2 · · · xn

]
·


y1
y2
...
yn

 = xt · y.

Since we write vectors in Rn as column vectors, and, strictly speaking, we
cannot form a column product x · y, we will write x ∗ y for the dot
product of x and y.

2. The length of x is the non-negative real number

||x|| =
√
x21 + · · ·+ x2n =

√
x ∗ x.
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Properties of the Dot Product and Length

Let x, y and z belong to Rn.

(i) x ∗ y = y ∗ x.

(ii) x ∗ (y + z) = x ∗ y + x ∗ z.

(iii) (λx) ∗ y = x ∗ (λy) = λ(x ∗ y), for all λ ∈ R.

(iv) ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0.

(v) ||λx|| = |λ| · ||x||.
(vi) ||x||2 = x ∗ x.
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Illustrations of the Properties of Dot Product and Length. Suppose

x =

 3
−2
1

, y =

 7
−3
2

, z =

3
3
2

, and λ = −5.

1. x ∗ y = 3 · 7 + (−2) · (−3) + 1 · 2 = 29.

y ∗ x = 7 · 3 + (−3) · (−2) + 2 · 1 = 29.

2. x ∗ (y + z) = x ∗

10
0
4

 = 3 · 10 + (−2) · 0 + 1 · 4 = 34.

x ∗ y + x ∗ z = (21 + 6 + 2) + (9− 6 + 2) = 30 + 4 = 34.

3. (−5x) ∗ y = (−15) · 7 + (10) · (−3) +−5 · 2 = −105− 30− 10 = −145.

x∗(−5y) = 3 ·(−35)+(−2) ·(15)+1 ·(−10) = −105−30−10 = −145.

−5 · (x ∗ y) = −5 · (3 · 7 + (−2) · (−3) + 1 · 2) = −5 · 29 = −145.
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Illustrations of the Properties of Dot Product and Length cont. Suppose

x =

 3
−2
1

, y =

 7
−3
2

, z =

3
3
2

, and λ = −5.

4. ||x|| =
√

32 + (−2)2 + 12 =
√

9 + 4 + 1 =
√

14 ≥ 0.

5. ||(−5)x|| = ||

−15
10
−5

 || =
√

(−15)2 + 102 + (−5)2 =
√

350.

| − 5| · ||x|| = 5 ·
√

32 + (−2)2 + 12 = 5 ·
√

14 =
√

25 · 14 =
√

350.

6. x ∗ x = 32 + (−2)2 + 12 = 14.

||x||2 = (
√

32 + (−2)2 + 12)2 = 33 + (−1)2 + 12 = 14.
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Theorem

Let x, y be non-zero vectors in Rn. Then x · y = ||x|| · ||y||cos(θ), where θ
is the angle between x and y.

Remark. 1. The theorem above can be visualized in R2 or R3. For
higher dimensions, we can just define θ to be cos−1( x∗y

||x||·||y|| ).

2. Since cos(π
2 ) = 0, it follows that x and y are orthogonal exactly when

x ∗ y = 0.

3. Vectors x and y are orthonomal if they are orthogonal and have

length one. For example, x =

[√
2
2√
2
2

]
and y =

[
−
√
2
2√
2
2

]
, are orthonormal:

||x|| =

√
(

√
2

2
)2 + (

√
2

2
)2 =

√
2

4
+

2

4
= 1,

and similarly, ||y|| = 1. In addition,

x ∗ y =

√
2

2
· (−
√

2

2
) +

√
2

2
·
√

2

2
= −2

4
+

2

4
= 0.
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Remark continued.

4. A set of vectors u1, . . . , ur is an orthonormal system if each vector ui
has length one and any two vectors ui and uj are orthogonal.

In other words: ||ui || = 1, for all i and ui ∗ uj = 0, for all i 6= j .

Equivalently: ui ∗ ui = 1 for all i and ui ∗ uj = 0, for all i 6= j .

5. The standard basis e1, e2, · · · , en for Rn is an orthonormal system, in
fact, an orthonormal basis.

For example: e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

.

These vectors clearly have length one and ei ∗ ej = 0.
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Comment

Our goal is the following. Suppose W is a subspace of Rn with basis
w1, . . .wr .

We will find a new basis u1, . . . , ur for W forming an orthonormal system.

We call such a basis an orthonormal basis.

The strategy is as follows: We first replace w1, . . . ,wr with a new basis
w ′1, . . . ,w

′
r having the property that w ′i ∗ w ′j = 0, i.e.,the new basis is an

orthogonal basis.

Then we replace each w ′i by a unit vector ui pointing in the same
direction as w ′i .
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Basic Principle. Let x be a vector in Rn. Then u = 1
||x|| · x has length one.

To see this, by Property (v):

|| 1

||x||
· x|| = | 1

||x||
| · ||x|| =

1

||x||
· ||x|| = 1.

For example, if x =

[
3
2

]
, then ||x|| =

√
9 + 4 =

√
13.

1
||x|| · x = 1√

13
·
[

3
2

]
=

[
3√
13
2√
13

]
.

||

[
3√
13
2√
13

]
|| =

√
( 3√

13
)2 + ( 2√

13
)2 =

√
9
13 + 4

13 =
√

13
13 = 1.
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How to orthogonalize.

Let us start with a set of two vectors w1,w2 that form a basis for the
subspace W . We want to replace them by a new basis w ′1,w

′
2 for W so

that w ′1 ∗ w ′2 = 0.

Step 1. Take w ′1 = w1.

Step 2. We seek a vector of the form w ′2 = w2 − λw ′1 such that
w ′1 ∗ w ′2 = 0.

We solve the equation w ′1 ∗ (w2 − λw ′1) = 0, for λ.

0 = w ′1 ∗ (w2 − λw ′1) = w ′1 ∗ w2 − w ′1 ∗ (λw ′1) = w ′1 ∗ w2 − λ(w ′1 ∗ w ′1),

Therefore λ(w ′1 ∗ w ′1) = w ′1 ∗ w2, and thus λ =
w ′

1∗w2

w ′
1∗w ′

1
= w1∗w2

w1∗w1
.

Conclusion. w1,w
′
2 are orthogonal for w ′2 = w2 − w1∗w2

w1∗w1
· w1.
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Example

Convert the pair w1 =

 1
−1
2

, w2 =

 4
−4
5

 into an orthogonal pair.

Solution: Take w ′1 = w1. Now, w1 ∗ w1 = 12 + (−1)2 + 22 = 6 and
w1 ∗ w2 = 4 + 4 + 10 = 18. We take λ = 18

6 = 3.

Therefore:

w ′2 = w2 − 3w1 =

 4
−4
5

− 3 ·

 1
−1
2

 =

 1
−1
−1

 .

Check: w ′1 ∗ w ′2 = w t
1 · w ′2 =

[
1 −1 2

]
·

 1
−1
−1

 = 1 + 1− 2 = 0.
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QUESTION. If w1,w2 form a basis for the subspace W , do the new
orthogonal vectors w ′1,w

′
2 also form a basis for W ? The new vectors are

w1 and w2 − λw1.

Linear Independence. Suppose αw1 + β(w2 − λw1) = 0.

Then, (α− βλ)w1 + βw2 = 0. Since w1,w2 are linearly independent,
α− βλ = 0 and β = 0.

Thus: β = 0 = α, so the new vectors w ′1,w
′
2 are linearly independent.

Spanning. w1,w2 − λw1 are in span{w1,w2}, therefore

span{w ′1,w ′2} ⊆ span{w1,w2}.

On the other hand, w2 = (w2 − λw1) + λ · w1, so w1,w2 are in
span{w ′1,w ′2}, therefore,

W = span{w1,w2} = span{w ′1,w ′2},

so the new orthogonal vectors w ′1,w
′
2 are a basis for W .
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Theorem

Theorem (First Case of Gram-Schmidt Process). Let w1,w2 be a basis
for the subspace W ⊆ Rn. Then for

w ′1 := w1 and w ′2 := w2 −
w1 ∗ w2

w1 ∗ w1
· w1,

w ′1,w
′
2 is an orthogonal basis for W .

Class Example. Suppose w1 =

1
1
1

 and w2 =

−2
5
3

 is a basis for the

subspace W of R3. Find an orthogonal basis for W .
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Solution. We need to calculate w1 ∗ w1 and w1 ∗ w2.

w1 ∗ w1 = 1 + 1 + 1 = 3. w1 ∗ w2 = −2 + 5 + 3 = 6. Thus, w1∗w2

w1∗w1
= 2.

Therefore w ′2 = w2 − 2w1 =

−2
5
3

− 2 ·

1
1
1

 =

−4
3
1

.

w ′1 =

1
1
1

 ,w ′2 =

−4
3
1

 is an orthogonal basis for W .

CHECK. w ′1 ∗ w2 = −4 + 3 + 1 = 0.
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Comment

Once we obtain an orthogonal basis for W , we can normalize these
vectors to obtain an orthonormal basis.

Previous Example Revisited. We started with the basis w1 =

1
1
1

 and

w2 =

−2
5
3

, and derived an orthogonal basis w ′1 =

1
1
1

 and w ′2 =

−4
3
1

.

To get an orthonormal basis, we take u1 = 1
||w ′

1 ||
· w ′1 and u2 = 1

||w ′
2 ||
· w ′2.

||w ′1|| =
√

3 and ||w ′2|| =
√

26, thus

u1 =


1√
3
1√
3
1√
3

 and u2 =


−4√
26
3√
26
1√
26

, is an orthonormal basis for W .
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Value in using an orthonormal basis

Suppose u1, u2 is an orthonormal basis for the subspace W ⊆ Rn. Let
w ∈W . Then

w = (w ∗ u1)u1 + (w ∗ u2)u2.

WHY: If we write w = αu1 + βu2, then:

w ∗ u1 = (αu1 + βu2) ∗ u1 = (αu1) ∗ u1 + (βu2) ∗ u1 =

= α(u1 ∗ u1) + β(u2 ∗ u1) = α · 1 + β · 0 = α.

and
w ∗ u2 = (αu1 + βu2) ∗ u2 = (αu1) ∗ u2 + (βu2) ∗ u2 =

= α(u1 ∗ u2) + β(u2 ∗ u2) = α · 0 + β · 1 = β.
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Example continued

Previous Example Continued Further. Write

w = w1 + w2 =

1
1
1

+

−2
5
3

 =

−1
6
4

 as a linear combination of u1, u2.

w ∗ u1 = −1√
3

+ 6√
3

+ 4√
3

= 9√
3
.

w ∗ u2 = 4√
26

+ 18√
26

+ 4√
26

= 26√
26

Thus: w = 9√
3
· u1 + 26√

26
· u2.

Notice: We can write w as a linear combination of u1, u2 without
resorting to Gaussian elimination!
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Class Example

Find an orthonormal basis for the subspace of R3 spanned by w1 =

1
0
1


and w2 =

0
1
1

 and then use the dot product to write v =

 4
−1
3

 as a

linear combination of those vectors.

Solution: w ′1 = w1 and w ′2 = w2 − λ · w1, where λ = w1∗w2

w1∗w1
= 1

2 .

w ′2 =

0
1
1

− 1

2
·

1
0
1

 =

− 1
2

1
1
2

 .

u1 =

√
2

2
·

1
0
1

 and u2 =

√
2√
3
·

− 1
2

1
1
2

 .
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v ∗ u1 =
√
2
2 (4 + 0 + 3) = 7

√
2

2 , v ∗ u2 =
√
2√
3

(−2− 1 + 3
2 ) = − 3

√
2

2
√
3

.

Therefore,

v =
7
√

2

2
· u1 −

3
√

2

2
√

3
· u2.
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