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Definition

Important Definition: Let U ⊆ Rn be a subspace of Rn. Vectors
v1, . . . , vr ∈ U are a basis for U if:

(i) U = span{v1, . . . , vr}.
(ii) The vectors v1, . . . , vr are linearly independent.

In particular: A basis for Rn is a collection of linearly independent vectors
that span Rn.

Moreover: If v1, . . . , vn is a basis for Rn, then: Every vector in Rn can be
written *uniquely* as a linear combination of v1, . . . , vn.

Examples: (i) The standard basis e1, e2, . . . , en is a basis for Rn.

(ii) The basic solutions to a homogeneous system of linear equations
form a basis for the solution space of that system.

(iii) If λ is an eigenvalue for the matrix A, then the basic λ-eigenvectors
form a basis for Eλ, the eigenspace of λ.
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Comment

Very Important Fact. Suppose the subspace U of Rn is spanned by the
vectors v1, . . . , vr . Then there exists a subset of v1, . . . , vr forming a
basis of U.

Why: Suppose U = span{v1, v2, v3, v4}. If v1, . . . , v4 are linearly
independent, they form a basis for U.

Otherwise of one the vectors is in the span of the remaining ones: say,
v2 = av1 + bv3 + cv4.

Suppose u ∈ U. We can write

u = pv1 + qv2 + rv3 + sv4 = pv1 + q(av1 + bv3 + cv4) + rv3 + sv4

= (p + aq)v1 + (qb + r)v3 + (qc + s)v4.

Thus, u ∈ span{v1, v3, v4}.Thus: U = span{v1, v3, v4}.

If v1, v3, v4 are linearly independent, they form a basis for U. Otherwise,
we may eliminate another vector and continue the process until we have
a linearly independent spanning set for U, that is, a basis for U.
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Example

Find a basis for the subspace V = span{v1, v2, v3}, for

v1 =

 8
4

12

 , v2 =

2
1
3

 , v3 =

−4
−2
−6

.

Solution: By inspection, we see that v1 = 4v2, so that v1 is redundant,
and V = span{v2, v3}.

Now note that v3 = −2 · v2.Thus, v3 is redundant, and V = span{v2}.

Thus, v2 is a basis for V .

MAIN POINT REITERATED. Given a spanning set for a subspace, we
may throw out redundant spanning vectors until we have a linearly
independent spanning set – which is then a basis for that subspace.

Moreover:If we throw out a vector from a linearly independent set, the
remaining vectors no longer span the same space.
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Class Example

Find a basis for the subspace U of R4 spanned by the vectors

v1 =


1
−1
0
1

 , v2 =


3
−5
2
5

 , v3 =


0
−1
1
1

.

Solution: We Start with the equation A · X = 0, with A = [v1 v2 v3].
1 3 0 0
−1 −5 −1 0
0 2 1 0
1 5 1 0

 R1+R2−−−−−→
−R1+R4


1 3 0 0
0 −2 −1 0
0 2 1 0
0 2 1 0

 R2+R3−−−−−→
−R2+R4


1 3 0 0
0 −2 −1 0
0 0 0 0
0 0 0 0


− 1

2 ·R2−−−−→


1 3 0 0
0 1 1

2 0
0 0 0 0
0 0 0 0

 −3·R2+R1−−−−−−→


1 0 − 3

2 0
0 1 1

2 0
0 0 0 0
0 0 0 0

 . The solutions to

A · X = 0 are

xy
z

 =


3
2 t
− t

2
t
0

.
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Class Example continued

Taking t = 1, we have the dependence relation

3

2
v1 −

1

2
v2 + v3 = 0. (∗)

Thus, v3 = − 3
2v1 + 1

2v2. Therefore v3 is redundant, so v1, v2 span U.
To see v1, v2 are linearly independent, suppose v1 = λv2.

Then


1
−1
0
1

 = λ ·


3
−2
2
5

. From the 3rd coordinate: λ = 0.

The first coordinate becomes 1 = 0 · 3, a contradiction. Thus, v1, v2 are
not DEPENDENT, so they are independent. Therefore, v1, v2 form a
basis for U.

NOTE: The same argument using (*) shows that v1, v3 and v2, v3 are
also bases for U.
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Fundamental Theorem

Let v1, . . . , vr be vectors in Rn that span the subspace U and suppose
w1, . . . ,wt ∈ U are linearly independent. Then:

(i) t ≤ r . In other words:

In any given subspace, the number of linearly independent vectors is
always less than or equal to the number of spanning vectors.

(ii) Any two bases for U have the same number of elements.
Why: If v1, . . . , vr and w1, . . . ,wt are bases for U, then t ≤ r since
the w ’s are linearly independent and the v ’s span U.

On the other hand, r ≤ t, since the v ’s are linearly independent and
the w ’s span U.

Thus, r = t, and the two sets of bases have the same number
of elements.

Lecture 19: Bases and Dimension Continued



Definition

Let U be a subspace of Rn. The dimension of U is the number of
elements in any basis of U.

Corollary. The dimension of Rn equals n.

WHY: e1, e2, . . . , en forms a basis for Rn.

Corollary. The dimensions of the subspaces of R3 are given as follows:

(i) {0} is zero dimensional – it does not have a basis.

(ii) A line L through the origin is one dimensional. Any vector on the
line forms a basis for L.

(iii) A plane P through the origin is two dimensional. Any two
non-collinear vectors in P form a basis for P.
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Theorem

Very Important Theorem. Let v1, . . . , vn be n column vectors in Rn and
let A denote the matrix whose columns are v1, . . . , vn. The following
conditions are equivalent:

(i) A is invertible.

(ii) det(A) 6= 0.

(iii) A · X = 0 has only the 0 solution.

(iv) A · X = b has a unique solution for all b ∈ Rn.

(v) The vectors v1, . . . , vn are linearly independent.

(vi) The vectors v1, . . . , vn span Rn.

(vii) The vectors v1, . . . , vn form a basis for Rn.

Important Comments. (a) The equivalence of (v)-(vii) works because we
are taking n vectors in Rn. This enables us to construct an n × n matrix
with the given vectors.

(b) If we take r vectors in Rn, with r 6= n, then (v)-(vii) will not be
equivalent.
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Example

Determine if the vectors v1 =

−3
2
9

 , v2 =

 0
11
19

 , v3 =

 0
0

39

 form a

basis for R3.

Solution: The determinant of the matrix

−3 0 0
2 11 0
9 19 39

 equals

(−3) · 11 · 39 6= 0.

By the previous theorem: v1, v2, v3 form a basis for R3.
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Class Example

Which pairs of vectors in R2 are linearly independent:

v1 =

[
2
1

]
, v2 =

[
3
7

]
and

w1 =

[
3
6

]
,w2 =

[
2
4

]
.

Solution:

∣∣∣∣2 3
1 7

∣∣∣∣ = 11 6= 0, so v1, v2 are linearly independent.∣∣∣∣3 2
6 4

∣∣∣∣ = 0, so w1,w2 are not linearly independent.
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Example

Given the vectors v1 =

1
1
0

 , v2 =

1
0
1

 , v3 =

0
1
1

 , v4 =

1
1
1

. Find a

basis for span{v1, v2, v3, v4} and determine whether or not that basis
forms a basis for R3.

Solution: First we eliminate redundancies. Consider A · X = 0, for
A = [v1 v2 v3 v4].1 1 0 1 0

1 0 1 1 0
0 1 1 1 0

 −R1+R2−−−−−→

1 1 0 1 0
0 −1 1 0 0
0 1 1 1 0

 R2+R3−−−−→
−1·R2

1 1 0 1 0
0 1 −1 0 0
0 0 2 1 0


−R2+R1−−−−−→
1
2 ·R3+R2

1 0 1 1 0
0 1 0 1

2 0
0 0 2 1 0

 1
2 ·R3−−−−−→

−R3+R1

1 0 0 1
2 0

0 1 0 1
2 0

0 0 1 1
2 0

 .
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Example continued

The corresponding homogenous system has non-trivial solutions, so the
vectors v1, v2, v3, v4 are not linearly independent.

Since the solutions are given by


x
y
z
w

 = −t ·


1
2
1
2
1
2
−1

, if we take t = −2,

we see that


1
1
1
−2

 is a solution.

Thus, v1 + v2 + v3 − 2v4 = 0, so that v4 = 1
2 (v1 + v2 + v3). Therefore, we

may eliminate the redundant vector v4.

Therefore, span{v1, v2, v3, v4} = span{v1, v2, v3}.
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Example continued

Since we now have three vectors in R3, we can check their linear
independence by taking the determinant of the matrix whose columns are
v1, v2, v3.∣∣∣∣∣∣

1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣0 1
1 1

∣∣∣∣− 1 ·
∣∣∣∣1 1
0 1

∣∣∣∣ = −1− 1 = −2 6= 0.

Thus, the three vectors v1, v2, v3 are linearly independent and therefore
form a basis for R3.
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Summary of Spanning, Linear Independence, and Bases

Let v1, . . . , vr ,w be columns vectors in Rn.Let A = [v1 v2 · · · vr ]. Then:

(i) w belongs to span{v1, . . . , vr} if and only if the system of equations
A · X = w has a solution.

(ii) If

λ1...
λn

 is a solution to A · X = w , then w = λ1v1 + · · ·+ λrvr .

(iii) v1, . . . , vr are linearly independent if and only if A · X = 0 has only
the zero solution.

(iv) If v1, . . . , vr are not linearly independent and

λ1...
λn

 is a non-zero

solution to A · X = 0, then

(∗) λ1v1 + · · ·λrvr = 0.

This means the vectors v1, . . . , vr are linearly dependent, and thus
redundant.
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Summary of Spanning, Linear Independence, and Bases

(v) One can use (*) to write some vi in terms of the remaining v ’s.
Upon doing so:

span{v1, . . . , vi−1, vi+1, . . . , vr} = span{v1, . . . , vr}.

(vi) One may continue to eliminate redundant vectors from among the
vi ’s. As soon as one one arrives at a linearly independent subset of
v1, . . . , vr , this set of vectors forms a basis for the original subspace
span{v1, . . . , vr}. The number of elements in the basis is then the

dimension of span{v1, . . . , vr}.
(vii) To test if n vectors in Rn are linearly independent, or span Rn or

form a basis for Rn, it suffices to show that det[v1 v2 · · · vn] 6= 0.
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