Lecture 18: Bases and Dimension

Lecture 18: Bases and Dimension

Theorem

Very Important Theorem. Let v_1, \ldots, v_r be vectors in \mathbb{R}^n and let A denote the $n \times r$ matrix $A = [v_1 \ v_2 \ \cdots \ v_r]$. The following equivalent conditions are equivalent::

- (i) No vector in the list can be written as a linear combination of the remaining vectors in the list.
- (ii) If we have a linear combination

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_r \mathbf{v}_r = \mathbf{0},$$

then $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$.

- (iii) Any vector in span {v₁,..., v_r} can be written **uniquely** as a linear combination of v₁,..., v_r.
- (iv) The system of equations $A \cdot X = \mathbf{0}$ has only the 0 solution.

Vectors satisfying the conditions above are said to be linearly independent.

Definition

Vectors $v_1, \ldots, v_r \in \mathbb{R}^n$ are linearly dependent if they are not linearly independent.

In particular: Vectors v_1, \ldots, v_r are linearly dependent if one of the following equivalent conditions hold:

- (i) Some v_i is in the span of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_r$.
- (ii) There exists a non-trivial dependence relation:

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_r \mathbf{v}_r = \mathbf{0}$$

with NOT all $\lambda_i = 0$.

(iii) For $A = [v_1 \cdots v_r]$, there is a non-zero solution to $A \cdot X = \mathbf{0}$.

Observation: Suppose $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$, with say, $\lambda_2 \neq 0$. Then

$$-\lambda_2 v_2 = \lambda_1 v_1 + \lambda_3 v_3,$$

so $v_2 = -\frac{\lambda_1}{\lambda_2}v_1 + -\frac{\lambda_3}{\lambda_1}v_3$. This shows how a dependence relation among the vectors v_i leads to expressing one of the vectors in terms of the others.

The vectors
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ are linearly **dependent**.
Find a dependence relation among them and use it to express one of the vectors as a linear combination of the remaining vectors.

Solution: If the vectors are not linearly independent, then there is a non-zero solution to the system $AX = \mathbf{0}$, where $A = [v_1 \ v_2 \ v_3]$.

$$\begin{bmatrix} 1 & 1 & 3 & | & 0 \\ 1 & 2 & 4 & | & 0 \\ 2 & 1 & 5 & | & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2} \begin{bmatrix} 1 & 1 & 3 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & -1 & -1 & | & 0 \end{bmatrix} \xrightarrow{-R_2 + R_1} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} .$$

We can write the solution to the homogeneous system as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2t \\ -t \\ t \end{bmatrix} = t \cdot \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}.$

Example continued

This shows that
$$-2 \cdot v_1 + (-1) \cdot v_2 + v_3 = \mathbf{0}$$
. Thus, $v_3 = 2 \cdot v_1 + v_2$.
CHECK: $2 \cdot v_1 + v_2 = 2 \cdot \begin{bmatrix} 1\\1\\2 \end{bmatrix} + \begin{bmatrix} 1\\2\\1 \end{bmatrix} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$, as required.
Since any multiple of $\begin{bmatrix} -2\\-1\\1 \end{bmatrix}$ is also a solution, any such multiple gives a
dependence relation on v_1, v_2, v_3 . For example, taking $t = -3$, we get
that $\begin{bmatrix} 6\\3\\-3 \end{bmatrix}$ is a solution, so that $6 \cdot v_1 + 3 \cdot v_2 - 3 \cdot v_3 = \mathbf{0}$.

Thus there are infinitely many dependence relations among v_1, v_2, v_3 .

But in this case, just one way to write v_3 as a linear combination of v_1 and v_2 .

Definition

Important Definition: Let $U \subseteq \mathbb{R}^n$ be a subspace of \mathbb{R}^n . Vectors $v_1, \ldots, v_r \in U$ are a basis for U if:

(i)
$$U = \operatorname{span}\{v_1, \ldots, v_r\}.$$

(ii) The vectors v_1, \ldots, v_r are linearly independent.

In particular: A basis for \mathbb{R}^n is a collection of linearly independent vectors that span \mathbb{R}^n .

Moreover: If v_1, \ldots, v_n is a basis for \mathbb{R}^n , then: Every vector in \mathbb{R}^n can be written *uniquely* as a linear combination of v_1, \ldots, v_n .

Examples: (i) The standard basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ is a basis for \mathbb{R}^n .

(ii) The basic solutions to a homogeneous system of linear equations form a basis for the solution space of that system.

(iii) If λ is an eigenvalue for the matrix A, then the basic λ -eigenvectors form a basis for E_{λ} , the eigenspace of λ .

Find a basis for the subspace of \mathbb{R}^3 that is the solution space to the homogeneous equation:

$$2x - 4y + 10z = 0.$$

Note that this solution space is a plane through the origin in \mathbb{R}^3 .

Solution: x = 2y - 5z. Thus, in vector form, the solutions are given by

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2s - 5t \\ s \\ t \end{bmatrix} = s \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}.$ Thus $v_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ and $v_2 \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$ are basic solutions.

Example continued

To see that the basic solutions are in fact a basis for the solution space, note that the vector equation shows that the basic solutions span the solution space.

In addition, if $\alpha_1 \cdot \mathbf{v}_1 + \alpha_2 \cdot \mathbf{v}_2 = \mathbf{0}$, then:

$$\begin{bmatrix} 0\\0\\0 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 2\\1\\0 \end{bmatrix} + \alpha_2 \cdot \begin{bmatrix} -5\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\alpha_1 - 5\alpha_2\\\alpha_1\\\alpha_2 \end{bmatrix},$$

which gives: $\alpha_1 = \alpha_2 = 0$.

Thus v_1 , v_2 are linearly independent and therefore form a basis for the solutions space, or equivalently, a basis for the given plane through the origin.

The matrix
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 has 2 as an eigenvalue of multiplicity two.

Find a basis for the eigenspace E_2 .

Solution: We find the solutions to the homogeneous system having $2I_3 - A = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ as its coefficient matrix.

This matrix clearly reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. For such a homogeneous system, y = 0, while x and z are free variables. Thus the solutions are:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Class Example continued

Thus, the basic solutions to the homogeneous system with coefficient matrix $2I_3 - A$ are: $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, which in turn form a basis for the eigenspace E_2 .

Comment

Very Important Fact. Suppose the subspace U of \mathbb{R}^n is spanned by the vectors v_1, \ldots, v_r . Then there exists a subset of v_1, \ldots, v_r forming a basis of U.

Why: Suppose $U = \text{span}\{v_1, v_2, v_3, v_4\}$. If v_1, \ldots, v_4 are linearly independent, they form a basis for U.

Otherwise of one the vectors is in the span of the remaining ones: say, $v_2 = av_1 + bv_3 + cv_4$.

Suppose $u \in U$. We can write

$$u = pv_1 + qv_2 + rv_3 + sv_4 = pv_1 + q(av_1 + bv_3 + cv_4) + rv_3 + sv_4$$

$$= (p + aq)v_1 + (qb + r)v_3 + (qc + s)v_4.$$

Thus, $u \in \text{span}\{v_1, v_3, v_4\}$. Thus: $U = \text{span}\{v_1, v_3, v_4\}$.

If v_1, v_3, v_4 are linearly independent, they form a basis for U. Otherwise, we may eliminate another vector and continue the process until we have a linearly independent spanning set for U, that is, a basis for U.

Find a basis for the subspace $U = \operatorname{span}\{v_1, v_2, v_3\}$, where $v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 8\\6\\4 \end{bmatrix}$.

Solution: We consider $A \cdot X = \mathbf{0}$, for $A = [v_1 \ v_2 \ v_3]$.

$$\begin{bmatrix} 2 & 2 & 8 & | & 0 \\ 1 & 2 & 6 & | & 0 \\ 1 & 1 & 4 & | & 0 \end{bmatrix} \xrightarrow{\frac{1}{2} \cdot R_{1}} \begin{bmatrix} 1 & 1 & 4 & | & 0 \\ 1 & 2 & 6 & | & 0 \\ 1 & 1 & 4 & | & 0 \end{bmatrix} \xrightarrow{-R_{1} + R_{2}} \begin{bmatrix} 1 & 1 & 4 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\xrightarrow{-R_{2} + R_{1}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} .$$

This shows that the vectors, v_1 , v_2 , v_3 are linearly dependent. The dependence relations are given by the solutions to $A \cdot X = \mathbf{0}$, whic are:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2t \\ -2t \\ t \end{bmatrix}.$$

Example continued

Taking t = 1, obtain $-2v_1 - 2v_2 + v_3 = 0$, so $v_3 = 2v_1 + 2v_2$. This shows v_3 is redundant, and $U = \text{span}\{v_1, v_2\}$.

If v_1, v_2 are linearly independent, they will form a basis for U. We look at the solutions to $B \cdot X = \mathbf{0}$, with $B = [v_1 \ v_2]$.

$$\begin{bmatrix} 2 & 2 & | & 0 \\ 1 & 2 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix} \xrightarrow[-R_2+R_3]{} \xrightarrow[-R_2+R_3]{} \begin{bmatrix} 1 & 0 & | & 0 \\ 1 & 2 & | & 0 \\ 0 & -1 & | & 0 \end{bmatrix} \xrightarrow[-R_1+R_2]{} \xrightarrow[-R_3]{} \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 2 & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix} \xrightarrow[-R_2+R_3]{} \xrightarrow[-R_2+R_3]{} \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Thus, the system $B \cdot X = \mathbf{0}$ has only the $\mathbf{0}$ solution, so that v_1, v_2 are linearly independent.

Alternately: v_1 , v_2 are linearly independent if they are are NOT linearly dependent.So: suppose v_1 is in the span of v_2 , i.e, $v_1 = \lambda \cdot v_2$.

Then
$$\begin{bmatrix} 2\\1\\1 \end{bmatrix} = \lambda \cdot \begin{bmatrix} 2\\2\\1 \end{bmatrix}$$
. From the first entry we get $2 = \lambda \cdot 2$, so $\lambda = 1$.
But comparing second entries, $1 = 1 \cdot 2$ a contradiction. Thus, v_1, v_2 are independent, and v_1, v_2 form a basis for U .

Find a basis for the subspace $V = \operatorname{span}\{v_1, v_2, v_3\}$, for $v_1 = \begin{bmatrix} 8\\4\\12 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $v_3 = \begin{bmatrix} -4\\-2\\-6 \end{bmatrix}$.

Solution: By inspection, we see that $v_1 = 4v_2$, so that v_1 is redundant, and $V = \text{span}\{v_2, v_3\}$.

Now note that $v_3 = -2 \cdot v_2$. Thus, v_3 is redundant, and $V = \text{span}\{v_2\}$.

Thus, v_2 is a basis for V.

MAIN POINT REITERATED. Given a spanning set for a subspace, we may throw out redundant spanning vectors until we have a linearly independent spanning set – which is then a basis for that subspace.

Class Example

0 0 0 0

Find a basis for the subspace U of \mathbb{R}^4 spanned by the vectors $v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ -5 \\ 2 \\ 5 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}.$

Solution: We Start with the equation $A \cdot X = \mathbf{0}$, with $A = [v_1 \ v_2 \ v_3]$.

$$\begin{bmatrix} 1 & 3 & 0 & | & 0 \\ -1 & -5 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} \xrightarrow[-R_1 + R_4]{R_1 + R_2} \begin{bmatrix} 1 & 3 & 0 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} \xrightarrow[-R_2 + R_4]{R_2 + R_3} \begin{bmatrix} 1 & 3 & 0 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} \xrightarrow[-R_2 + R_4]{R_2 + R_3} \begin{bmatrix} 1 & 3 & 0 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{2} \cdot R_2} \begin{bmatrix} 1 & 3 & 0 & | & 0 \\ 0 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
. The solutions to $A \cdot X = \mathbf{0}$ are $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3t \\ -\frac{t}{2} \\ t \\ 0 \end{bmatrix}$.

Taking t = 1, we have the dependence relation

$$-3v_1 - \frac{1}{2}v_2 + v_3 = \mathbf{0}.$$
 (*)

Thus, $v_3 = 3v_1 + \frac{3}{2}v_2$. Therefore v_3 is redundant, so v_1, v_2 span U. To see v_1, v_2 are linearly independent, suppose $v_1 = \lambda v_2$.

Then
$$\begin{bmatrix} 1\\ -1\\ 0\\ 1 \end{bmatrix} = \lambda \cdot \begin{bmatrix} 3\\ -2\\ 2\\ 5\\ 5 \end{bmatrix}$$
. From the 3rd coordinate: $\lambda = 0$.

The first coordinate becomes $1 = 0 \cdot 3$, a contradiction. Thus, v_1, v_2 are not DEPENDENT, so they are independent. Therefore, v_1, v_2 form a basis for U.

NOTE: The same argument using (*) shows that v_1 , v_3 and v_2 , v_3 are also bases for U.

Fundamental Theorem

Let v_1, \ldots, v_r be vectors in \mathbb{R}^n that span the subspace U and suppose $w_1, \ldots, w_t \in U$ are linearly independent. Then:

(i) $t \leq r$. In other words:

In any given subspace, the number of linearly independent vectors is always less than or equal to the number of spanning vectors.

(ii) Any two bases for U have the same number of elements. Why: If v_1, \ldots, v_r and w_1, \ldots, w_t are bases for U, then $t \le r$ since the w's are linearly independent and the v's span U.

On the other hand, $r \leq t$, since the v's are linearly independent and the w's span U.

Thus, r = t, and the two sets of bases have the same number of elements.

Definition

Let U be a subspace of \mathbb{R}^n . The **dimension** of U is the number of elements in any basis of U.

Corollary. The dimension of \mathbb{R}^n equals *n*.

WHY: $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ forms a basis for \mathbb{R}^n .

Corollary. The dimensions of the subspaces of \mathbb{R}^3 are given as follows:

- (i) $\{\mathbf{0}\}$ is zero dimensional it does not have a basis.
- (ii) A line *L* through the origin is one dimensional. Any vector on the line forms a basis for *L*.
- (iii) A plane P through the origin is two dimensional. Any two non-collinear vectors in P form a basis for P.

Comment

Most examples of finding a basis for for a subspace of Euclidean space require one to delete redundant vectors from a spanning set. For other examples, let A be an $m \times n$ matrix:

- (i) To find a basis for the image of *A*, start with the space spanned by the columns of *A*.
- (ii) To find a basis for the null space of A, find a set of basic solutions to the homogeneous system $A \cdot X = 0$.
- (iii) If m = n, to find a basis for the eigenspace E_{λ} , find a set of basic solutions to the homogeneous system $(\lambda \cdot I_n A) \cdot X = 0$.